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Abstract
A recently derived equation for nucleation is applied for pure aluminum and Al–6 
wt% Cu–3 wt% Si alloy under upward solidification conditions to calculate the 
surface stress, surface energy, nucleus radius, and Gibbs–Thomson Coefficient as 
a function of the distance from the chill. The microscopic and macroscopic fields 
are coupled through a Representative Elementary Volume—REV approach. As 
expected, higher surface energy and lower critical radius values are observed in 
positions in which high cooling rates occurred. Then, a nucleation model is carried 
out to simulate the effect of cooling rates for the molar specific heat capacity of pure 
Al, Fe, and Nb, and for  Al2Cu and  Al3Ni2 phases. In the case of Nb, a set of experi-
mental data deviates from high temperatures from theoretical predictions, probably 
due to high  O2 activity as previously observed for the case of pure Fe. A nuclea-
tion model for the alloy is proposed as a function of pressure, concentration, and 
temperature gradients in view to permit the calculation of nucleation radius, surface 
energy, surface stress, and Gibbs–Thomson Coefficient under non-equilibrium any 
given cooling rate.

Keywords Molar specific heat capacity · Non-equilibrium nucleation · Pure metals 
and phases · Unsteady upward solidification

1 Introduction

The coupling of theoretical predictions of thermophysical properties and the lab-
oratory practice is a constant search to improve the quality of experimental data 
and allow improvements in the experimental setup [1, 2]. Thermophysical proper-
ties such as density, heat capacity, and thermal conductivity depend on the thermal 

 * Ivaldo Leão Ferreira 
 ileao@ufpa.br

1 Faculty of Mechanical Engineering, Federal University of Pará-UFPA, Belém, PA, Augusto 
Correa Avenue 1, 66075-110, Brazil

http://orcid.org/0000-0002-3118-7125
http://crossmark.crossref.org/dialog/?doi=10.1007/s10765-021-02956-0&domain=pdf


 International Journal of Thermophysics (2022) 43:33

1 3

33 Page 2 of 25

history and the applied cooling rate. Considering the case of Differential Thermal 
Analysis (DTA) and Differential Scanning Calorimetry—DSC [3, 4], different cool-
ing rates used provide entirely different results for molar specific heat capacity, as 
far as equilibrium curves are dislocated from those of low cooling rate and solute 
diffusion occurs partially, in a process called finite diffusion. Recently, Ferreira [5] 
derived for surface energy an equation from Shuttleworth [6–8] and Gibbs–Duhem 
[9, 10] equations and demonstrated the dependence of surface energy and surface 
stress on the nucleation radius. Several approaches have been proposed in the lit-
erature to deal with the temperature and concentration gradients [11–13]. By cap-
turing the microscopic fields related to the microstructural evolution, it is possible 
to solve properly macroscopic transport equations. With this point of view, Ni and 
Beckermann proposed and applied the Volume-Averaged Method [14] and Voller 
the Representative Elementary Volume (REV) by solving the density concentration 
and energy fields in the macroscopic domain, and retrieving the local liquid con-
centration from the REV, by coupling local solutes concentration and the density 
fields [15]. Ferreira et al. applied a numerical model to solve thermal and concentra-
tion fields based on the REV approach for binary [16, 17] and ternary [18] alloys. 
Gibbs–Thomson Coefficient, as it relates surface energy and the bulk entropy for 
an undeformed surface area, can only deal with low thermal gradients close to the 
equilibrium. As far as the nucleation radius decreases for higher cooling rates, the 
surface area deformation term promotes the increase in the surface energy, changing 
the Gibbs–Thomson Coefficient [6, 10] considerably. The normal total thermal gra-
dient, which comprises pressure, concentration, and temperature gradients, changes 
for spherical shape in the case of anisotropic thermal gradients, for instance, for any 
anisotropic thermal gradient in the phase-field simulation.

In this paper, a numerical solution for solidification of ternary Al–6 wt% Cu–3 
wt% Si plotted against experimental data to obtain the thermal and concentration 
gradients, and a numerical simulation for the solidification of pure Al to be used as a 
reference of the behavior of the temperature gradient are carried out to a nucleation 
model [5] to analyze the influence of the gradients on the nucleation radius, surface 
stress, surface energy, and the Gibbs–Thomson Coefficient. The nucleation model 
is applied to the molar specific heat capacity for Al, Fe, Nb pure metals and  Al2Cu 
and  Al3Ni2 phases [5, 19–21]. Throughout this work, the term equilibrium nuclea-
tion signifies that nucleation only occurs due to surface area creation. Meanwhile, 
non-equilibrium nucleation implies surface area creation and deformation, triggered 
by the interaction among temperature, chemical species, and pressure gradients, 
embodied by the expression thermal gradient, indistinctively applied to pure metals, 
compounds, phases, and alloys.
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2  Mathematical Formulation

2.1  Secondary Dendrite Arm Spacing and Nucleation Model Derivations 
and Observations

Kim and Lee [22] observed the development of nucleation radius and temperature 
drop by applying the Gibbs–Thomson equation for nanoparticles and more recently 
by Wu et al. [23] have modified the Gibbs–Thomson equation to improve the melt-
ing point depression predictions. Ferreira et al., investigated the effect of transient 
solidification parameters on secondary dendrite arm spacing evolution predictions 
[24], modified an existing SDAS model previously derived by Rappaz and Böet-
tinger [13] for equilibrium conditions to encompass the back-diffusion coefficient �j 
proposed by Voller [25], which is the Clyne and Kurz correction of the Brody and 
Flemings finite-diffusion approach, that predicts the finite-diffusion solidification, 
between Lever Rule and Scheil’s equation, assuming the following form,

and,

Ferreira et  al. [24] have compared the secondary dendrite arm spacing predic-
tions in horizontal and upward solidification experiments for aluminum-based ter-
nary alloys and in these experiments the cooling rates varied from 120 to 1560 °C/
min. The model agreed well with the experimental scatter, however, something 
unexpected happened with the surface energy applied to the Gibbs–Thomson Coef-
ficient. The surface energy for five experiments was numerically equal to the surface 
tension. It just could have a single explanation, due to high cooling rates, the surface 
energy was increasing, as it also depends on the level of strain in the new created 
nucleus surface area [6, 8, 10]. Its mean value was found to be very close to the 
surface tension value for this particular set of high cooling rates in upward and hori-
zontally solidified samples [24].

Bobadilla et al. [11, 13] proposed an equation for SDAS dendrite radius, which is 
a function of the Gibbs–Thomson Coefficient Γ , liquid temperature gradient G , sol-
ute gradients GC,j , Peclet number function �

(
Pej

)
 , and liquidus slopes mj [12],
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In the case of Bobadilla et al. [11] and Rappaz et al. [12], the function �
(
Pej

)
 is 

applied to consider the relationship between convective and diffusive solute trans-
port. Ferreira et al.’s model [24] added the microsegregation transport to Rappaz 
and Boettinger’s model [13] in which the solute transport is associated with the 
back-diffusion parameter �j , that influences the liquid fraction, latent heat release 
and, consequently, the temperature and solute gradients. The Peclet number Pej is 
only present in the calculation of parameter M in the effective partition coefficient 
keff ,j for each solute j.

Problems arise when defining the Gibbs–Thomson as considering constant 
surface energy �0,

that contradicts the surface–stress/surface–energy relationship derived from 
Gibbs–Duhem’s and Shuttleworth’s equations [9, 10, 26], and gives the strain � 
dependence of the surface energy �(�) . At a constant temperature T  and chemical 
potential � , for non-isotropic solid,

The isotropic form for of the surface stress, considering s�� = s��� , is given by

Gurtin and Murdoch [8] stated that whenever a new surface is created it gives 
rise to strain in the interior of the crystal, confirming the surface area creation and 
deformation terms in the superficial energy change equation [10]. The authors 
solved surface stress for a sphere of radius a considering uniform pressure. As 
the radius decreases by da , the surface stress increases by d�

d�
 , and so does the 

strain d� . By calling Shuttleworth’s equation, an increase in strain will cause an 
increase in the surface energy by d�

d�
 . Therefore, the Gibbs–Thomson Coefficient 

must consider the increase in the surface energy triggered by both the rise in the 
stress level and the decrease of the nucleus radius by da.

Rappaz et al. [12], derived an equation to describe the dependence of nucleus 
radius on Gibbs–Thomson Coefficient, the temperature and concentration gra-
dients, and a Peclet function to correct solute gradients by the diffusion mean 
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path, which dislocates the solution from the equilibrium (Lever Rule) to a level of 
finite-diffusion solidification based on the Eq. 3

The Gibbs–Thomson Coefficient is not constant; it depends on the nucleus 
radius r , the level of strain, and the surface energy. Ferreira et  al. observed the 
dependence on the high cooling rate of the surface energy [24]. In 2021, Ferreira 
has derived the surface energy as a function of surface stress. The author has 
found that the surface energy value, for the case of pure Ag, Al, Cu, Fe, Ni, and 
other metals, is numerically close to the surface tension value for the mean inte-
gral surface energy [5]. Consequently, for any upward and horizontally solidified 
sample, at a high cooling rate, surface stress, surface energy, nucleus radius, and 
mechanical strength are expected to vary along with the sample.

The expression derived by Ferreira [5] for Gibbs–Thomson Coefficient based 
on the Gibbs–Duhem [9] and Shuttleworth [6, 8, 26] equations, are able to handle 
the level of strain in the interior of the nucleus and the surface stress and sur-
face energy occurring during nucleation. In a paper published recently, Ferreira 
[5], while typing the final Gibbs–Thomson equation following, his paper order 
number, Eq.  26, which was obtained from the derived surface energy equation, 
Eq. 18, left an additional entropy term, however, the form Eq. 26 from his paper 
was not applied in any of his calculation, but Eq. 18 instead, for later combine 
with Gibbs–Thomson, as shown by the following form,

where s is the surface stress. The relationship among the decrease in radius � , the 
equilibrium radius rEq and non-equilibrium radius r is given by

By substituting Eq.  11 into Eq.  10, the Gibbs–Thomson coefficient can be 
expressed in terms of non-equilibrium radius r,

The liquidus isotherm is generally described physically in terms of pressure, 
for high-pressure applications 50 (GPa) to 300 (GPa) about 1000 (km) to 4700 
(km) in Earth’s interior [27], solute content and undercooling/superheating ΔT̃  
related to a cooling/heating kinetic by,
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By calculating the thermal gradient,

Rearranging Eq. 7

Let �⃗h = x�i + y�j + z�k  , be the position vector of any point P(x, y, z) on the surface 
S(x, y, z) = a . Then, d �⃗h = dx�i + dy�j + dz�k  , lies on in the tangent plane to the sur-
face S at P , what provides ∇S ⋅ d �⃗h = 0 , where, ∇S =
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By writing the Gibbs–Thomson Coefficient, as a function of the thermal gradi-

ent ∇T  considering the effect of local chemical species, pressure and temperature 
gradients and nucleus radius vector r⃗ =

{
r⃗(x, y, z) ∈ R3||r⃗ ⊂ S

}
 and the surface 

S
(
r⃗
)
 provides,

By approximating the surface area S for a sphere of radius r , unit normal 
vector �n =

r⃗+d⃗r

r
 , since r⃗ × dr⃗ = 0 , and ||r⃗ + dr⃗|| > r , considering only the radial 

component,

An example of application is the nucleation of Al–3 wt% Cu–9 wt% Si consider-
ing isotropic temperature and solute concentration gradients ∇T = 3827.5[K ⋅m−1] 
for 𝜋 < 𝜃 < 2𝜋 , and anisotropic ∇T = 3827.5 + 862.7 ⋅ sin

6�[K ⋅m−1] for 
0 ≤ � ≤ � , as shown in Fig. 1.

The analysis of the change of thermophysical properties due to the nucleation 
in the case of alloys can be derived from the relation between mass fraction and 
liquid fraction,
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Fig. 1  Nucleation of �-phase of Al–3 wt% Cu–9 wt% Si alloy for isotropic and anisotropic gradient in 
(A) Two-dimensional, and (B) Three-dimensional calculations
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The volume fraction rate is very important because it is directly correlated to 
the release of the transformation heat during the change of phase. By deriving 
Eq.  18 with respect to time, it is possible to determine how the change in the 
mass fraction and density affect the volume fraction rate.

The change in density can be written in terms of rate of change in solute con-
centration, the rate of change in pressure, and cooling rate as follows,

and, finally,

where P is the pressure. Typically, in metallurgical applications, P ∼ 1[atm] and 
��

�P
∼ 0.
The importance of this term increases considerably in geophysics, phases 

transformation under Earth’s crust or any other high-pressure phenomena.
Equation  21, can be expressed in terms of expansivity and compressibility 

coefficients, that is,

Whenever a new surface is created, occurs strain in the crystal as a conse-
quence. The surface energy will be a function of the level of strain in the bulk [6, 
8]. Surface stress and surface energy are strongly linked by Gibbs–Duhem’s equa-
tion, from which Shuttleworth’s equation can be derived [9].

The change in the superficial energy can be expressed in terms of the following 
contributions: energy, number of particles and surface area [9, 10],
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where the third and the fourth terms in RHS of the Eq. 25 represent  the creation 
and the change in surface area, U is the internal energy,S is the entropy, � is the 
chemical potential, � is the surface energy, Acre is the surface area creation, A0 is the 
undeformed area, s�� is the surface stress tensor and d��� is the bulk strain. The term 
A0

∑
�� s��d��� is the isothermal work necessary to deform a surface.

By defining internal energy Usurf  as the surface excess of the bulk internal energy U,

By comparing the variation of excess of internal energy, Eq. 25, with the differenti-
ated form of Eq. 26 and correlating with the Gibbs–Duhem equation [9],

The surface stress and surface energy relationship, the so-called Shuttleworth equa-
tion [6–9], can be derived from Eq. 27 by assuming no change in heat and in the num-
ber of particles on the surface. For anisotropic solids,

On the other hand, for isotropic surface stress and isothermal volumetric work 
provides,

in the case of equilibrium nucleation, the surface energy is given by �0 and the sur-
face stress by surface tension �0 . In this case, the fundamental level of strain [5], is 
the following:

By integrating Eq. 29 with respect to r [5],

2.2  Molar Specific Heat Capacity for Pure Elements and Phases

In this work, the nucleation model is applied for the molar specific heat capacity of 
solid metals and phases to examine the thermal gradients [5, 19–21], according to 
Eqs. 16 and 17.
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For pure solid elements,

In the case of phases and compounds,

A key part of the solution scheme is to solve the density of state [5, 19–21], 
by considering a sphere of radius kD containing N wave vectors, the density of 
modes n , and the volume V containing the total number of modes N . The volume 
V is associated with the nucleation kinetics.

Then, the density of modes n can be given by

In the case of equilibrium, Eq. 12, the radius r = rEq gives

The equilibrium radius rEq can be obtained by the following expression

where, ΔTEq is the equilibrium temperature drop. After calculating the volume of 
containing the number of Modes N in equilibrium, the density of state of equilib-
rium can be determined by

and,
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Particularly important in the calculation of Debye sound velocity is understand-
ing the Brillouin zone structure to describe waves in solids adequately. According to 
Simon [28], entirely equivalent to the one-dimensional situation, physical waves in 
the crystal are unchanged if their wavevector is shifted by a reciprocal lattice vec-
tor k → k + G , considering each physical crystal momentum once in the definition 
of the Brillouin zone. Furthermore, methods to handle the effect of polycrystalline 
materials on sound velocity can be found in [29]. By defining the Brillouin zone to 
consider k = k + G , velocities � calculated for Al and Fe are approximately equal to 
5 400  ms−1 and 5 900  ms−1, respectively.

By applying Eqs. 16 and 17,

As an example of application, Eq.  40 can be applied to the solidification of a 
metallic alloy. To capture the macroscopic nodal value from the microscopic 
domain, several approaches are available in the literature such as the Volume Aver-
aged which makes use of interfacial transfers to treat mass, momentum, and species 
equations [14] as well as the Representative Elementary Volume—REV [15] which 
is applied to one-dimensional solidification binary [16], two-dimensional binary 
[17], and one-dimensional ternary [18] alloys.

The density of state D(�) for a nucleus of volume V, is given by

The radius r can be obtained hence equilibrium radius rEq was previously 
calculated.

A numerical simulation of unidirectional solidification of pure Al is considerably 
important for the present analysis since only the temperature gradient is present,

For solidification of pure metals and alloys, at atmospheric pressure �T
�P

∼ 0 , it is 
possible to express the temperature gradient dT̃

dr
 in respect of vf ,

The velocity vf  could be, for instance, the velocity of solidification front or liq-
uidus isotherm velocity (dendrite tip growth rate). The cooling rate Ṫ  usually is a 
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parameter utilized to control the experimental determination of molar specific heat 
capacity in the Differential Scanning Calorimetry—DSC devices. The temperature 
and solute concentration gradients calculated in this paper are determined by apply-
ing a multicomponent solidification model [16].

2.3  Numerical Model for Pure Metals and Multicomponent Alloys Solidification

The temperature gradients for pure Al and temperature and solute concentration 
gradients for Al–6 wt% Cu–3 wt% Si alloy are calculated for an upward transient 
solidification setup by applying a multicomponent alloy solidification model devel-
oped for solving the inverse macrosegregation by considering shrinkage-induced 
flow and the finite-diffusion solidification conditions associated with the back-dif-
fusion parameter � . This segregation parameter governs the way in which the local 
liquid concentration is captured from Representative Elementary Volume—REV to 
the macroscopic domain, Lever rule ( � = 1 ), finite-diffusion ( 0 < 𝛽 < 1 ), and the 
Scheil’s equation ( � = 0 ). A detailed description of the experimental setup can be 
found in previously published articles [16, 18].

The solution scheme is based on the implicit–explicit algorithm, implicit for 
energy, and explicit for momentum and species equations.

The mathematical and physical assumptions considered by the numerical model 
to solve temperature/solute fields are the following:

 i. the domain is one-dimensional;
 ii. the solid phase is stationary;
 iii. in the Representative Elementary Volume—REV, the liquid concentrations, the 

temperature, the liquid density, and the velocity are constant [15];
 iv. solutes partition coefficients and liquidus slopes are constant;
 v. the thermophysical properties in the liquid and solid phases are the mean inte-

gral inside each phase [30];
 vi. the metal/mold thermal resistance varies with time and it is incorporated 

through a transient global heat transfer coefficient.

3  Results and Discussion

The importance of the cooling rate in the process of nucleation phases is well-
known. It dislocates the equilibrium curve in the phase diagram and allows other 
metastable phases to be developed due to the atomic diffusion phenomenon be a 
thermally activated process. Recently, Ferreira [5] has proved that the surface energy 
depends on the nucleus radius, and the Gibbs–Thomson Coefficient changes accord-
ingly. In the literature, other authors [12, 13] have proposed equations considering 
the concentration and temperature gradients. However, they have assumed the sur-
face energy independently of nucleus radius, which contradicts Shuttleworth’s and 
Gibbs–Duhem’s equation [6, 8, 9]. First, numerical simulation of solidification of 
pure Al is performed considering only the effect of temperature gradient on the 
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surface energy and Gibbs–Thomson Coefficient. Similarly, for the Al–6 wt% Cu–3 
wt% Si but concentration gradients are highlighted. Finally, the molar specific heat 
capacity is expressed for pure Al, Fe, Nb elements and for the  Al2Cu and  Al2Ni3 
phases to permit the cooling rate to be set as observed in the practical application of 
Differential Scanning Calorimetry—DSC analysis [1, 2].

Figure 2A shows the cooling curve of pure aluminum, for six thermocouple posi-
tions, that is, 5, 10, 20, 30, 50 and, 70 mm from metal-mold interface to determine 
a transient global heat transfer coefficient, hg = 4500t−0.03 [W∙m−2∙K−1], by IHCP 
[16, 18]. It is very close to the global heat transfer coefficient observed for the Al–6 
wt% Cu–3 wt% Si alloy. In Fig. 2B the thermal gradient is plotted against the dis-
tance. Figure 3A presents the nucleation radius and as can be observed, it decreases 

Fig. 2  Upward solidification of pure aluminum, (A) cooling curves, and (B) thermal gradient
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Fig. 3  Upward solidification of pure aluminum, equilibrium, and non-equilibrium (A) nucleation radius, (B) 
surface stress, and (C) surface energy as a function of the distance from the from the metal/mold interface
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considerably for a high cooling rates and gets close to the equilibrium radius, 
rEq = 3.33 × 10

−6[m] at the final positions of the solidified sample. In Fig. 3B and C, 
the surface stress and the surface energy have similar behaviors. It can be seen that 
both curves are high at positions of high thermal gradients, however, they approxi-
mate of equilibrium at the final positions of the casting. In Fig. 4 the equilibrium 
Gibbs–Thomson Coefficient is ΓEq = 1.4 × 10

−7[K ⋅m] , for the regions close to the 
chill, the non-equilibrium Gibbs–Thomson is higher than ΓNon−Eq = 7 × 10

−7[K ⋅m]

.
In the case of Al–6 wt% Cu–3 wt% Si alloy, Fig. 5A shows the temperature pro-

file compared with experimental data in which the numerical simulation fits well the 
experimental scatter. The experimental superheat dependence on height is assumed 
as parabolic [16]. The transient global heat transfer Coefficient is obtained by IHCP 
technique and the reckoned time-dependent function is given by hg = 4600t−0.12 
[W∙m−2∙K−1]. A study of the thermophysical properties, considered their depend-
ence on temperature to obtain the mean integral values to assure they are not influ-
encing the results by setting mean constant values within each phase, however, dif-
ferent between phases [30]. The global heat transfer coefficient remains unchanged 
concerning the liquidus isothermal velocity predictions, as can be seen in Fig. 5B, 
where the numerical results for the mean integral and temperature-dependent ther-
mophysical properties agree with the experimental data. In Fig. 5C the thermal gra-
dient is plotted against the ingot height and, similarly, in Fig. 6 in which the liquid 
solute profiles for Cu and Si are obtained from the numerical simulations. The wave-
like oscillations found in the solute profiles are related to the numerical coupling 
between microscopic solute concentration and macroscopic concentration density 
fields. As the number of nodes increases, the oscillation decreases for a given space 
dz and time dt steps. The oscillation levels observed in the liquid concentrations 
do not compromise the present analysis. By considering the nucleation radius, a 

Fig. 4  Upward solidification of pure aluminum, equilibrium, and non-equilibrium Gibbs–Thomson coef-
ficient
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Fig. 5  Upward solidification of Al–6 wt% Cu–3 wt% Si alloy, (A) cooling curves, (B) tip growth rate, 
and (C) thermal gradient
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decrease can be seen for higher cooling rates (higher thermal gradients) comparably 
to the case of pure Al. In addition, it crosses the equilibrium radius around the half 
of the solidified sample in the case of the present solidification kinetic. A probable 
reason for this behavior is the coupling between the temperature and concentration 
gradients, which controls the thermal gradients mainly at low-temperature gradient 
positions. Figure  7 presents nucleation radius (A), surface stress (B), and surface 
energy (C). It is worth noting that initially, a comparable behavior with pure Al can 
be observed for higher cooling rates. On the contrary, for regions of low cooling rates 
nucleation is controlled mainly by concentration gradients. The Gibbs–Thomson 
Coefficient is higher for higher thermal gradients, i.e., close to the metal/mold inter-
face, as shown in Fig. 8. Therefore, as solute gradients begin to dominate the ther-
mal gradient behavior, as noted in Eq. 40, local Gibbs–Thomson evaluations cross 
the equilibrium value and stay near it. Typically, a constant Gibbs–Thomson Coef-
ficient can be applied to microstructural evolution models, and a good fit is generally 
obtained for lower cooling rates. It means that, for lower cooling rates, the nuclea-
tion is fully controlled by solute gradients and, consequently, the Gibbs–Thomson 
Coefficient stays near the equilibrium [13]. On the other hand, temperature gradi-
ent dominates the process for higher cooling rates, and both Gibbs–Thomson and 
surface energy strongly deviate from the equilibrium [13, 24]. Furthermore, by cal-
culating the mean integral of the Gibbs–Thomson Coefficient from Fig. 8, a value 
higher than the equilibrium is expected, as the surface area creation and deformation 
terms are both considered in the surface energy prediction, as indicated by Eq. 29, 
which gives A = A(r) < A0 and 𝛾 = 𝛾(r) > 𝛾0 . In contrast, at the equilibrium, no sur-
face area deformation term is computed and, consequently, it provides A = A0 and 
� = �0 . The change in the surface energy in respect to the nucleation radius, tem-
perature and solute concentration gradients must be considered in the analysis of 
unsteady-state phase transformation for any local condition, as noticed in Eqs. 11, 12 

Fig. 6  Solute gradients during upward solidification of Al–6 wt% Cu–3 wt% Si alloy for Cu and Si
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Fig. 7  Upward solidification of Al–6 wt% Cu–3 wt% Si alloy, equilibrium, and non-equilibrium (A) nucleation 
radius, (B) surface stress, and (C) surface energy as a function of the distance from the metal/mold interface
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and 17. In the case of rapid solidification, comparatively to the application of lasers 
in additive manufacturing, higher cooling rates and thermal gradients of magnitude 
between  105 

[
K ⋅m−1

]
 and  106 

[
K ⋅m−1

]
 can be easily reached. Therefore, an atypi-

cal augment in the surface energy is envisioned. Nucleation of a crystalline phase 
does not occur indefinitely for any level of temperature, solute concentration, and 
pressure gradients, and the resulting crystalline or amorphous phase shall depend on 
the level of gradients interaction. It is mainly because of the impossibility of a stable 
nucleus to be formed on account of gradients involved in a particular phase-change 
process. In this case, owing to the degree of internal strain, the surface energy would 
increase rapidly, and no stable nucleus could be formed from any cluster of atoms 
acting as substrate in the current phase. Consequently, no long-range order crystal-
line structure or extended three-dimensional arrangement can occur. In the case of 
a liquid–solid transformation, a supercooled liquid will arise in the place of long-
range crystal three-dimensional arrangements for temperatures below the melting 
point, as no latent heat, i.e., no ordering state entropy, will be absorbed.

Figure 9A exhibits the molar specific heat capacity for pure Al considering equi-
librium and non-equilibrium nucleation. The experimental data are found in Giauque 
et al. [31] for lower and Brooks et al. [32] for higher temperatures. Theoretical cal-
culation fitted experiments for equilibrium nucleation, where energy is given by �0 
associated with surface area creation only. Thermo-Calc calculations agree well for 
r = 0.84rEq . By comparing with Fig. 3A, nucleation radius r = 0.84rEq is consider-
ably near the equilibrium radius. Similar behavior is noticed concerning the theo-
retical predictions for pure Fe [33–37], r = 0.94rEq . Thermo-Calc simulations con-
formed well to the experimental data determined by Awbery [33] for cooling rates 
close to the equilibrium nucleation. In Fig. 9, heat capacity curves for pure Nb agree 
well with the experimental scatter. In Fig. 10A, the results found by Kirilin [38] and 
Fig. 10B and Novikov [39–41] fit well with the theoretical predictions. According 

Fig. 8  Upward solidification of Al–6 wt% Cu–3 wt% Si alloy, equilibrium and non-equilibrium Gibbs–
Thomson coefficient
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Morohoshi et al. [42] the activity of  O2 changes the surface tension ~ 1 mN∙m−1 to 
1.9 mN∙m−1 for  aO2 = − 12. The surface energy and surface tension are correlated by 
Eqs. 27 and 28 [6, 9]. Another effect of the activity of  O2 is the oxide contribution to 
the increase in the melting temperature and both effects are considered in Fig. 10B 
simulations.

Figure  11A and B show the application of equilibrium and non-equilibrium 
Gibbs–Thomson for the molar specific heat capacity of the  Al2Cu and  Al3Ni2 
phases, respectively. The results for the heat capacity of the  Al2Cu phase, calcu-
lated by Thermo-Calc using COST507 database for temperatures higher than 550 K 
deviate from theoretical calculations and of those furnished by TTAL7 and TCMP2 
databases.

Fig. 9  Molar specific heat capacity and nucleation model (A) pure Al and (B) pure Fe
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3.1  Considerations on the Sanity Control of Additive Manufacturing Products

Defects due to solidification are common associated with additive manufactur-
ing causing brittle fracture in the part degrading the mechanical properties [43]. 
For example, in the laser-assisted metal deposition of aluminum-based alloys, the 
decrease in the cooling rate due to an increasing layer of thermal resistance pro-
motes anisotropic distribution of mechanical strength along length [44]. On the other 
hand, vaporization of low-vapor pressure of important aluminum-based alloying ele-
ments deteriorates the mechanical strength locally. The thermal gradient order of 
magnitude of laser-assisted metal deposition [45] is about  105–106 

(
K ⋅m−1

)
 , and 

Fig. 10  Molar specific heat capacity and nucleation model (A) pure Nb without activity of  O2 (B) pure 
Nb with activity of  O2
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in upward solidification [16]  103–104 
(
K ⋅m−1

)
 . The solution for the vaporization 

of alloying elements is achieved either by changing alloy composition [46–48] or 
controlling the thermal gradient. It is well stablished that the mechanical strength 
depends on the local cooling rate. Similarly, for surface energy, nucleation radius, 
even thermophysical properties, such as density, thermal conductivity, and heat 
capacity. The thermophysical properties can be engineered by controlling the nucle-
ation radius which is a function the local temperature and chemical species gradi-
ents. By combining Eq. 16 with the derivative of Eq. 26 to encompass the change 
in particle numbers and the change in heat in the superficial energy with the view to 
consider phase nucleation and growth. The combination of different laser techniques 

Fig. 11  Molar specific heat capacity and nucleation model (A)  Al2Cu and (B)  Al3Ni2 phases
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and the proposed set of equations permit a local tuning of the thermal gradient to 
furnish a designed local thermophysical properties and to assist the automation of 
the additive manufacturing process.

4  Conclusion

A previously proposed model for the non-equilibrium nucleation to describe the 
nucleation radius, surface stress, surface energy, and the Gibbs–Thomson Coeffi-
cient was successfully extended to deal with the temperature, solute concentration 
and pressure gradients with the view to permit the potential use in DTA/DSC analy-
sis. By analyzing the solidification of pure Al, it was found that the surface energy 
and the Gibbs–Thomson Coefficient are hardly influenced by thermal gradient as 
a function of the sample height. In this sense, the surface energy depends not only 
on the surface area creation but also on its deformation. A higher thermal gradient 
causes higher level of deformation in the newly created surface area, which increases 
the surface energy. For alloys, the concentration gradients play a significant role in 
lower temperature gradients, which leads the Gibbs–Thomson Coefficient to remain 
near the equilibrium. Non-equilibrium Gibbs–Thomson Coefficients approximate 
only the equilibrium value in the transient upward solidified sample for lower local 
temperature gradients, which occur in the regions of higher thermal resistances 
associated with the solid phase thickness. The nucleation model was successfully 
applied to the molar specific heat capacity for pure elements and phases to perform 
a change in the cooling rate, which dislocates the molar specific heat capacity curves 
downwards as cooling rate increase. The highest possible heat capacity is obtained 
for the equilibrium conditions, where no surface area deformation is considered by 
neglecting any element or phase impurity, such as oxygen. A brief discussion on 
defects caused by solidification in laser-assisted manufacturing is added to highlight 
the importance of present formulation in predicting local nucleation and growth 
and their relevance to the automation of laser-assisted AM processes. Its potential 
use could help mitigate local defects by combining and controlling different laser 
sources and process parameters, and by controlling thermal gradients beforehand.
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