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Abstract

We report the speeds of sound in liquid toluene (methylbenzene) measured using
double-path pulse-echo apparatus independently at The University of Western Aus-
tralia (UWA) and Imperial College London (ICL). The UWA data were measured at
temperatures between (306 and 423) K and at pressures up to 65 MPa with stand-
ard uncertainties of between (0.02 and 0.04)%. At ICL, measurements were made at
temperatures between (283.15 and 473.15) K and at pressures up to 390 MPa with
standard uncertainty of 0.06%. By means of thermodynamic integration, the meas-
ured sound-speed data were combined with initial density and isobaric heat capac-
ity values obtained from extrapolated experimental data to derive a comprehensive
set of thermodynamic properties of liquid toluene over the full measurement range.
Extensive uncertainty analysis was performed by studying the response of derived
properties to constant and dynamic perturbations of the sound-speed surface, as well
as the initial density and heat capacity values. The relative expanded uncertainties at
95% confidence of derived density, isobaric heat capacity, isobaric expansivity, iso-
choric heat capacity, isothermal compressibility, isentropic compressibility, thermal
pressure coefficient and internal pressure were estimated to be (0.2, 2.2, 1.0, 2.6, 0.6,
0.2, 1.0 and 2.7)%, respectively. Due to their low uncertainty, these data and derived
properties should be well suited for developing a new and improved fundamental
Helmbholtz equation of state for toluene.
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1 Introduction

Toluene (methylbenzene, C;Hy) is predominantly used in the production of paints,
rubbers, glues and adhesives. It is also a widely used solvent, a precursor in explo-
sives manufacture and a component of high-octane gasolines [1]. Toluene can be
obtained with high purity, has relatively low toxicity and corrosivity, and exists in
the liquid state over a wide range of temperature, making it suitable as a calibration
fluid in measurements of thermophysical properties such as density and viscosity [2,
3]

The use of toluene in various applications depends on the reliability of models
to predict its thermodynamic properties over wide ranges of temperature and pres-
sure. Such predictions are best made using fundamental equations of state (EOS)
[4]. Several models have been developed for toluene. The most widely used is the
Helmbholtz EOS developed by Lemmon and Span [4], which is valid over a tem-
perature range of (178 to 700) K and pressures up to 500 MPa. The development
of equations of state for any fluid requires accurate experimental data for a range of
thermodynamic properties, including the speed of sound. The speed of sound in lig-
uid toluene has been reported by several investigators (Table 1). The distribution of
the literature data in (7, p)-space is provided in Fig. 1 along with the vapour—liquid
phase boundary.

It is noteworthy that the most extensive and accurate experimental campaigns
were conducted after the development of the Helmholtz EOS by Lemmon and

Table 1 Summary of the literature of experimental speed-of-sound data of toluene

References Year N* Method T (K) p (MPa) Uncertainty

Speed of sound at atmospheric pressure and along saturation pressure, p,

Freyer [5] 1929 6 SI* 273.15-323.15 0.1 1 ms™!
Desphpande [6] 1968 3 or 298.14-318.13 0.1 0.15%
Zotov [7] 1969 19 PE° 293.14-473.15  p, 2ms™!
Reddy [8] 1986 8 SI 303.14-313.14 0.1 0.1%
Tamura [9] 1985 3 PE 293.15-303.15 0.1 0.1%
Gongalez-Olmos [10] 2007 15 PE 288.15-323.15 0.1 1 ms™!
Luning Prak [11] 2014 10 PE 293.15-373.15 0.1 I ms™!
Dragoescu [12] 2019 6 PE 298.15-318.15 0.1 0.5ms™!
Speed-of-sound in compressed liquid phase
Tagaki [13] 1985 17 PE 303.15 0.1-160 0.3%
Muringer [14] 1985 88 PE 173.18-320.30  0.1-263.45 5.1 ms™!
Okhotin [15] 1988 150 PE 273.15-473.11 0.1-58.93 0.05%
Vervieko [16] 1991 24 PE 293-373 0.1-250 0.3%
Meier [17] 2013 222 PE 280-420 0.1-100.17 0.03%
Yebra [18] 2017 84 PE 283.15-343.15 0.1-95.1 0.1%
Shchamialiou [19] 2020 36 PE 298.15-433.15 0.1-100.1 0.1%

Sonic interference. ®Optical interference. *Pulse-echo

*Number of points measured
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Fig. 1 Measurement conditions for selected low-uncertainty experimental data of speed-of-sound of lig-
uid Toluene available in the literature (Table 1) and experimental data investigated in this work. x, UWA;
%, ICL; ), Meier et al. [17]; A, Okhotin et al. [15]; +, other experimental data; O, Critical point stated
by Helmholtz EOS [4]. The solid line represents the vapour—liquid phase boundary

Span [4]. Due in part to the lack of highly accurate experimental data at the time,
the uncertainties in speeds of sound predicted by the EOS (1% at pressure up to
100 MPa and temperature up to 500 K, increasing to 2% at higher values of pressure
and temperature [4]) are considerably larger than the reported standard uncertainties
of current data, e.g. well below 0.1% at pressures up to 100 MPa and temperatures
up to 420 K [17].

In this work, we extend both the temperature and pressure ranges at which highly
accurate speed-of-sound measurements in liquid toluene have been determined.
Based on the measured speeds of sound, we have employed thermodynamic integra-
tion to obtain a comprehensive set of thermodynamic properties over the full range
of the measurements with small uncertainties. The speeds of sound and derived
properties are also compared with available literature data and predictions based on
the Helmholtz EOS of Lemmon and Span [4].

2 Experimental Procedure

The sound-speed measurements were carried out using two sets of double-path
pulse-echo equipment having different but overlapping operating pressure ranges.
At UWA, the apparatus was the same as that used recently by Al Ghafri et al.
[20] in their study of p-xylene. This apparatus uses a dual-path ultrasonic cell,
mounted within a high-pressure stainless-steel vessel, with signal excitation and
detection achieved with a gold-plated piezoelectric ceramic disc transducer oper-
ated at 5 MHz. The apparatus was housed in a thermostatic air bath maintain-
ing temperature stability of better than 0.1 K. Temperature measurements were
carried out using platinum resistance thermometer (PRT) probes (Netsushin
model NR-141-100S, 1.6 mm diameter) with a standard uncertainty of 0.02 K.
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Considering the stability of the oven, non-uniformity of temperature across the
cell, and the calibration uncertainty, the standard uncertainties in temperature
were estimated to be 0.03 K for 7=(306, 320 and 343) K, 0.04 K for T=(363
and 383) K, 0.05 K for T=403 K, and 0.07 K for T=423 K. Pressure was meas-
ured using a pressure transmitter (Keller model PA-33X) with a full-scale reading
of 70 MPa and a manufacturer-specified relative uncertainty of 0.05% (k=1.73).
Its calibration was validated against a hydraulic pressure balance (DH-Budenberg
model EHX-580, relative standard uncertainty 0.008%) and the greatest abso-
lute deviation was found to be 0.019 MPa. Taking this into account, the standard
uncertainty of pressure was estimated to be 0.02 MPa within the experimental
range. The calibration of the apparatus for this study was carried out using water
and has been detailed previously by Al Ghafri et al. [20].

The apparatus used at ICL employed a similar 5 MHz double-path pulse-echo
apparatus housed in a stainless-steel high-pressure vessel and immersed in a ther-
mostatic oil bath. This apparatus, described in detail by Tay and Trusler [21],
had an extended operating temperature ranges of (273.15 to 473.15) K with pres-
sures up to 390 MPa. Pressure was measured with a pressure transducer (Honey-
well model TJE/60000) having an estimated standard uncertainty of 0.05 MPa or
6 x 10~*.p, whichever is greater. Temperature was measured using a PRT (Fluke
Model 5615) with a standard uncertainty of 0.015 K. Calibration was carried out
with water as a part of the work described earlier [21]. The toluene (methylben-
zene) samples were used as supplied by Sigma-Aldrich. The sample descriptions,
including batch/lot and purity analysis as provided by the supplier, are listed in
Table 2 for both UWA and ICL. Other than degassing the samples, no further
purification or analysis was performed.

Experimental uncertainties in the speed of sound arise from the uncertainties
in the pressure, temperature, and pulse-echo time delays under both calibration
and measurement conditions. Additional uncertainties are associated with the
speed of sound in the calibration fluid(s) and with the thermal expansion and
compressibility of the ultrasonic cell [21]. For the apparatus used at UWA, the
combined standard relative uncertainty in the speed of sound was found to vary
between 0.01% and 0.04%, with the greatest relative uncertainty found at the
highest temperature and lowest pressure studied. For the measurements carried
out at ICL, the standard relative uncertainty was found to have an almost constant
value of 0.06%.

Table 2 Description of chemical samples used in the study where w is mass-fraction purity

Chemical name CAS number Source Purity w Purification Analysis?
Toluene® 108-88-3 Sigma-Aldrich® 0.9993 Vacuum degassed GC
Toluene 108-88-3 Sigma-Aldrich? 0.9994 Vacuum degassed GC

Gas-chromatography. ®Methylbenzene. “Batch number: SHBG 1684V, w(H,0)<0.00001. Lot number:
MKBX7400V, w(H,0) <0.00001
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3 Experimental Results

We report a total of 274 different sound-speed experimental values along with
the associated uncertainties. A total of 157 sound-speed data points of toluene
were measured in the liquid region along seven isotherms of average tempera-
tures 7=(306.25, 320.42, 343.38, 363.19, 383.41, 403.07, and 422.61) K at pres-
sures up to 65 MPa at UWA. The measured speed-of-sound data with the standard
uncertainties are provided in Table 3. Similarly, at ICL, a total of 117 meas-
urements were carried out at temperatures of (283.15, 298.15, 323.15, 348.15,
373.15, 398.15, 423.15, 448.15, and 473.15) K and at pressures between (30 and
390) MPa. The measured sound-speed data along with the standard uncertain-
ties are provided in Table 4. In both laboratories, measurements were carried
out along isotherms, starting from lowest pressure. For repeatability checks, the
pressure was brought back to certain selected values along the fixed isotherm.
Similarly, after completing all sets of measurements along each isotherm, the
temperatures were returned to selected values to check for the repeatability of
the results. At UWA, measurements were also repeated at selected pressures and
temperatures to check for the reproducibility of the results when fresh samples
were introduced. The relative change in the initial and repeated measurements in
all cases was within 0.01% which confirms that the sensor and the sample were
stable during the measurements.

4 Correlation of Data

In order to facilitate comparison with the existing literature and equation-of-state
predictions, the measured speed-of-sound data were combined and correlated as a
function of pressure and temperature. The thermodynamic integration procedure,
discussed later, also depends on the accurate correlation of the speed-of-sound
data over the experimental range. The data were correlated in terms of the follow-
ing equations as employed previously by Al Ghafri et al. [20]:

303 j
p=po= Y, Y ac— %ﬁ/(%) o))

3 TV
Cor= )b, ) ©)

Here, p,=0.1 MPa is a reference pressure, T, = 300 K is a reference tempera-
ture, ¢, 7 is the speed of sound at temperature 7 and pressure p,, and a; and b; are
parameters which were adjusted to minimize the residual sum of squares. The
coefficients are provided in Table 5. The values of the coefficients have been trun-
cated to six decimal places for convenience, beyond which the results obtained
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o wome

¢ and standard uncertainty u(c) 306.17 0.13 1269.90 0.19

as a function of pressure p and

temperature 7 measured at 306.19 0.53 1272.06 0.19

UWA 306.20 1.07 1274.93 0.18
306.16 2.41 1282.21 0.18
306.41 243 1279.22 0.18
306.42 4.99 1292.62 0.18
306.24 547 1297.90 0.18
306.43 10.58 1320.96 0.18
306.22 10.67 1324.17 0.18
306.43 14.35 1339.30 0.18
306.23 15.10 1345.59 0.18
306.34 16.72 1350.95 0.18
306.23 19.28 1365.11 0.18
306.42 20.29 1367.14 0.18
306.29 24.02 1384.63 0.18
306.31 24.32 1385.92 0.18
306.24 24.84 1390.16 0.18
306.32 25.21 1389.81 0.18
306.28 28.20 1403.11 0.18
306.21 29.71 1411.70 0.18
306.24 29.84 1411.89 0.18
306.10 30.14 1413.70 0.18
306.30 30.40 1412.49 0.18
306.17 32.46 1423.24 0.18
306.30 35.08 1432.10 0.18
306.30 35.11 1432.20 0.18
306.18 41.06 1458.18 0.18
306.18 45.10 1474.01 0.18
306.14 47.84 1484.75 0.18
306.11 51.38 1498.10 0.18
306.17 59.43 1527.36 0.18
306.18 59.78 1528.58 0.18
306.19 64.67 1545.85 0.18
320.45 0.17 1209.59 0.19
320.38 0.49 1211.71 0.19
320.38 1.21 1215.84 0.18
320.38 2.40 1222.63 0.18
320.46 4.04 1223.87 0.18
320.41 5.10 1237.70 0.18
320.46 5.51 1231.91 0.18
320.41 10.40 1266.19 0.18
320.31 10.60 1267.74 0.18
320.31 10.60 1267.74 0.18
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Table 3 (continued)

1

T/IK p/MPa c/ms” u(c)/m-s~!
320.42 12.73 1269.97 0.18
320.39 19.58 1312.50 0.18
320.55 19.58 1303.15 0.18
320.45 25.92 1332.98 0.17
320.48 26.12 1333.78 0.17
320.45 30.11 1361.11 0.17
320.47 33.53 1376.21 0.17
320.46 39.80 1403.01 0.17
320.42 45.16 142521 0.17
320.42 45.16 1425.19 0.17
320.40 49.98 1444.44 0.17
320.40 49.98 1444.44 0.17
320.46 53.00 1456.00 0.17
320.46 53.01 1456.01 0.17
320.42 59.61 1481.06 0.17
320.42 59.61 1481.08 0.17
320.41 65.03 1500.95 0.18
320.41 65.04 1500.98 0.18
343.35 0.11 1114.66 0.19
343.36 0.11 1114.63 0.19
34337 0.56 1117.55 0.19
343.38 0.57 1117.63 0.19
343.38 1.04 1120.63 0.19
343.38 1.04 1120.69 0.19
343.39 272 1131.30 0.19
343.39 272 1131.35 0.19
343.42 5.27 1147.11 0.18
343.42 5.27 1147.15 0.18
343.43 10.41 1177.63 0.18
343.43 10.41 1177.65 0.18
343.26 10.94 1181.38 0.18
34327 10.95 1181.41 0.18
343.44 15.07 1203.83 0.18
343.37 19.36 1227.23 0.18
343.40 25.37 1258.02 0.17
343 .41 31.31 1287.05 0.17
343.42 34.92 1303.94 0.17
343.39 44.67 1347.66 0.17
343.40 50.99 1374.36 0.17
343.38 55.43 1392.66 0.17
34337 58.02 1403.03 0.17
343.37 58.02 1403.06 0.17
343.40 65.05 1430.40 0.17
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Table 3 (continued) TIK p/MPa c/mes~! u(c)/m-s~!
343.40 65.06 1430.42 0.17
363.18 0.11 1035.00 0.21
363.17 4.86 1068.34 0.20
363.20 9.90 1101.15 0.19
363.20 9.90 1101.21 0.19
363.14 10.88 1107.61 0.19
363.20 19.76 1160.19 0.18
363.20 19.76 1160.17 0.18
363.22 25.13 1189.66 0.18
363.22 30.04 1215.40 0.17
363.21 35.18 1241.19 0.17
363.17 40.05 1264.84 0.17
363.19 44.94 1287.48 0.17
363.19 50.07 1310.39 0.17
363.19 55.18 1332.43 0.17
363.17 60.79 1355.89 0.17
363.15 64.55 1371.16 0.17
363.16 64.58 1371.24 0.17
383.44 0.11 955.06 0.22
383.44 0.55 958.63 0.22
383.45 1.06 962.79 0.22
383.43 9.94 1028.75 0.21
383.44 19.70 1092.02 0.19
383.44 19.71 1092.01 0.19
383.43 24.87 1122.69 0.19
383.39 29.79 1150.45 0.19
383.39 29.79 1150.45 0.19
383.42 35.01 1178.26 0.18
383.42 35.01 1178.27 0.18
383.43 40.28 1205.08 0.18
383.40 44.78 1227.21 0.18
383.40 50.11 1252.28 0.18
383.41 54.92 1274.13 0.18
383.39 59.86 1295.90 0.17
383.35 64.88 1317.23 0.18
383.35 64.88 1317.23 0.18
403.10 0.29 880.19 0.26
403.11 0.55 882.54 0.26
403.07 1.16 888.19 0.26
403.08 2.89 903.45 0.25
403.11 10.08 961.23 0.24
403.06 16.11 1004.91 0.22
403.10 20.06 1031.25 0.22
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Table 3 (continued)

T/IK p/MPa c/m-s™! u(c)/m-s~!
403.10 20.06 1031.30 0.22
403.04 29.68 1090.66 0.20
403.05 29.69 1090.72 0.20
403.05 34.85 1120.01 0.20
403.05 34.85 1119.99 0.20
403.05 39.99 1147.76 0.19
403.05 39.99 1147.75 0.19
403.06 4429 1169.94 0.19
403.06 44.29 1169.99 0.19
403.08 50.60 1201.06 0.19
403.06 54.84 1221.20 0.19
403.04 59.96 1244.64 0.19
403.04 64.55 1265.03 0.19
422.63 0.30 804.97 0.32
422.63 0.30 804.99 0.32
422.65 0.73 809.37 0.32
422.65 0.73 809.39 032
422.62 1.04 812.59 0.31
422.63 1.04 812.62 0.31
422.63 2.69 828.98 0.31
422.63 2.69 829.04 0.30
422.66 5.08 851.58 0.30
422,57 8.28 880.24 0.28
422.58 8.28 880.28 0.28
422.55 11.28 905.36 0.27
422.54 11.28 905.37 0.26
422.60 14.92 933.70 0.25
42261 14.93 933.79 0.26
422.63 20.87 976.80 0.24
422.63 20.87 976.83 0.25
422.62 24.86 1003.67 0.24
422.62 24.86 1003.66 0.24
422.65 31.56 1045.82 0.23
422.65 31.56 1045.85 0.23
422.63 34.90 1065.74 0.22
422.63 34.90 1065.72 0.22
422.60 39.92 1094.35 0.22
422.60 39.93 1094.36 0.22
422.59 44.96 1121.61 0.21
422.60 44.97 1121.68 0.21
422.58 50.05 1148.00 0.21
42258 50.05 1147.99 0.21
422.58 54.88 1171.98 0.21
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Table 3 (continued)

T/K p/MPa c/m-s~! u(c)/m-s™!
42258 54.88 1171.99 0.21
422.59 59.89 1195.82 0.20
42259 59.90 1195.85 0.21
42275 64.29 1215.66 0.21

Standard uncertainty of temperature u(7): 0.03 K for 7=(306,
320, and 343) K; 0.04 K for 7=(363 and 383) K; 0.05 K for
T=403 K; 0.07 K for T=423 K. Standard uncertainty of pressure,
u(p)=0.02 MPa

from the fit were found to vary insignificantly. For instance, the maximum devi-
ation between the truncated coefficients and actual coefficients upon which the
results presented in this study are based was less than 0.5 parts per million. The
goodness of fit of the speed-of-sound surface correlation was quantified by ana-
lysing the Average Absolute Relative Deviations (A, sgp) and Maximum Abso-
lute Relative Deviation (Apagrp)-

The experimental speeds of sound from UWA and ICL are compared with the
correlation in Figs. 2 and 3, while the relative deviations are shown in Fig. 4. The
goodness-of-fit metrics are A, \pp =0.01%, Ayarp =0.08% (found at 7=373.15 K
and p=60 MPa) and the 95% confidence interval of the average relative deviations
is between (0.012 and 0.016)%. Approximately 85% of the experimental dataset is
fitted with absolute relative deviations of <0.02%, while 96% of the data set is fit-
ted with absolute relative deviations of <0.03%. The effect of outlying data on the
surface correlation was assessed and confirmed to not significantly influence the fit.

5 Comparison of Speed of Sound with Literature Data

In this section, our sound-speed data are compared against the Helmholtz EOS of
Lemmon and Span [4] as well as the most accurate experimental data currently
available for toluene in the investigated region. The relative deviations of the EOS
and literature experimental data from the surface fit correlated to our data (which
is chosen as the baseline) are plotted against pressures at various experimental iso-
therms used in this study as shown in Figs. 5 and 6.

At pressures up to 100 MPa and at all temperatures, the Helmholtz EOS of Lem-
mon and Span [4] represents our data to within its reported uncertainty of 1% in that
range. At higher pressures, the values obtained from EOS vary from our correlation
by up to 2.1% which is close to the reported EOS uncertainty of 2%. The deviations
are the greatest at the highest pressures of the isotherms 7=(373.15 and 383.41) K.
The maximum and average deviations of the EOS from our correlation are summa-
rized in Table S1 of the supplementary information section.

Comparisons were also made against other models but have not been presented
graphically owing to their very high deviations from the available literature and our
experimental data. In summary, the EOS of Polt et al. [22] within the range of its
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Table 4 Experimental values for
the speed of sound of toluene

¢ and standard uncertainty u(c)
as a function of pressure p and
temperature 7 measured at ICL

1

T/IK p/MPa c/ms” u(c)/m-s~!
283.15 30.19 1502.39 0.90
283.15 60.14 1609.63 0.97
283.15 90.04 1703.20 1.02
283.15 120.24 1787.54 1.07
283.15 149.99 1863.04 1.12
283.15 180.43 1934.00 1.16
283.15 210.03 1997.94 1.20
283.15 240.31 2059.12 1.24
283.15 269.98 2115.45 1.27
283.15 300.05 2169.82 1.30
283.15 330.05 2221.18 133
283.15 360.25 2270.54 1.36
283.15 389.98 2317.01 1.39
298.15 30.08 1443.49 0.87
298.15 60.20 1557.01 0.93
298.15 90.13 1654.39 0.99
298.15 119.97 1740.39 1.04
298.15 150.23 1819.34 1.09
298.15 180.19 1891.02 1.13
298.15 210.16 1957.36 1.17
298.15 240.26 2019.46 121
298.15 270.46 2078.03 1.25
298.15 300.15 2132.53 1.28
298.15 329.91 2184.37 131
298.15 360.02 2234.29 1.34
298.15 390.01 2282.09 1.37
323.15 30.00 1350.79 0.81
323.15 60.17 1473.56 0.88
323.15 90.20 1577.76 0.95
323.15 120.66 1670.01 1.00
323.15 150.27 1750.52 1.05
323.15 179.98 1824.20 1.09
323.15 210.22 1893.85 1.14
323.15 240.02 1957.41 1.17
323.15 270.09 2017.64 121
323.15 300.07 2074.27 1.24
323.15 330.00 2127.69 1.28
323.15 360.29 2179.26 1.31
323.15 389.93 2227.48 1.34
348.15 30.15 1265.36 0.76
348.15 60.13 1395.96 0.84
348.15 90.31 1506.73 0.90
348.15 120.32 1602.26 0.96
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Table 4 (continued) TIK p/MPa c/mes~! u(c)/m-s~!
348.15 150.46 1687.69 1.01
348.15 180.23 1764.23 1.06
348.15 210.54 1836.00 1.10
348.15 240.10 1900.99 1.14
348.15 270.60 1963.70 1.18
348.15 300.32 2021.20 1.21
348.15 330.13 2075.74 1.25
348.15 360.14 2127.73 1.28
348.15 390.00 2176.92 1.31
373.15 30.07 1183.47 0.71
373.15 60.00 1323.42 0.79
373.15 90.34 1440.60 0.86
373.15 120.24 1540.23 0.92
373.15 150.34 1628.84 0.98
373.15 180.20 1708.20 1.02
373.15 210.11 1781.11 1.07
373.15 240.27 1849.24 1.11
373.15 270.18 1912.25 1.15
373.15 300.19 1971.49 1.18
373.15 330.35 2027.37 1.22
373.15 360.55 2080.74 1.25
373.15 390.03 2130.48 1.28
398.15 30.07 1107.29 0.66
398.15 60.01 1256.71 0.75
398.15 90.31 1379.44 0.83
398.15 120.39 1483.63 0.89
398.15 150.32 1574.92 0.94
398.15 180.22 1656.81 0.99
398.15 210.00 1731.10 1.04
398.15 240.20 1800.46 1.08
398.15 270.09 1864.90 1.12
398.15 300.00 1925.01 1.16
398.15 330.09 1982.29 1.19
398.15 360.01 2036.20 1.22
398.15 390.00 2088.55 1.25
423.15 30.08 1035.61 0.62
423.15 60.12 1194.96 0.72
423.15 90.12 1322.02 0.79
423.15 120.03 1429.30 0.86
423.15 150.23 1524.26 091
423.15 180.33 1608.84 0.97
423.15 210.09 1684.92 1.01
423.15 240.21 1755.96 1.05
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Table 4 (continued)

1

T/IK p/MPa c/ms” u(c)/m-s~!
423.15 270.10 1821.45 1.09
423.15 300.10 1883.03 1.13
423.15 329.96 1940.82 1.16
423.15 360.00 1997.13 1.20
423.15 390.00 2049.64 1.23
448.15 30.30 969.48 0.58
448.15 59.95 1136.31 0.68
448.15 90.25 1269.95 0.76
448.15 119.95 1379.82 0.83
448.15 150.22 1477.59 0.89
448.15 180.07 1563.71 0.94
448.15 209.85 1641.64 0.98
448.15 240.09 1714.35 1.03
448.15 270.23 1781.81 1.07
448.15 300.00 1844.24 1.11
448.15 330.05 1904.07 1.14
448.15 360.26 1960.61 1.18
448.15 389.97 2013.46 1.21
473.15 30.06 903.93 0.54
473.15 60.11 1082.96 0.65
473.15 90.33 1221.13 0.73
473.15 120.36 1335.44 0.80
473.15 150.13 1434.05 0.86
473.15 180.09 1522.51 0.91
473.15 210.21 1603.20 0.96
473.15 240.00 1676.68 1.01
473.15 269.85 1745.42 1.05
473.15 300.11 1810.67 1.09
473.15 330.02 1869.02 1.12
473.15 360.02 1926.03 1.16
473.15 390.03 1979.82 1.19

Standard uncertainties are u(7)=0.015 K and u(p) =Max(0.025 MPa,

0.0006-p).

Table 5 Coefficients of fit of correlations of Egs. 1 and 2

ay, —1.148868x107" a
a,y —4.373371x10™%  a,
ay, 1.208315x107 a4
by 2.958112x10° b,

1.061382x 107!
1.736190x 107
—3.691194x 1077
—2.146336x 10°

a;, 4.474984x107"  ay,
a,, —1.812275x107° a,,
as, 5.146784x107  ay,
b, 5.986051x10° by

— 2496091 x 107!
6.885332x 107

—2.289112x 1077
— 1.140723x 10?
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Fig.2 Experimental speed of sound, c,,,, in liquid toluene as a function of pressure measured at UWA.
O, T=306.19 K; 0, T=32041K; /., T=343.38 K; & T=363.19 K; % T=383.41 K; O T=403.07 K; A,
T=422.62 K. Lines represent the values evaluated from the correlation of Egs. 1 and 2

Cexp /(M.571)

30 90 150 210 270 330 390
p/MPa

Fig. 3 Experimental speed of sound, ¢,y in liquid toluene as a function of pressure measured at ICL. ),
T=283.15K; 0 T=298.15K; /, T=323.15 K; &, T=348.15 K; %, T=373.15 K; O, T=398.15 K; A,
T=423.15K; 4, T=448.15 K; © T=473.15 K. Lines represent the values evaluated from the correlation
of Egs. 1 and 2

validity of up to 25 MPa in pressure deviates from our data by up to nearly 2% at
the highest pressures along all isotherms. At higher pressures, for all temperatures,
their EOS overpredicts sound speed relative to our data with the deviations increas-
ing with increasing pressure. The non-analytical EOS of Goodwin [23] at selected
pressures follows a similar trend, consistently overpredicting sound speed relative to
our data at the lowest pressures with deviations of up to 5% at the lowest isotherm
and lowest pressures. At other points of pressure and temperature, the deviations fall
within 2%.
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Fig.4 Relative percentage deviations of the combined experimental speed-of-sound data measured
at UWA and ICL, Coxpr from the combined surface fit, cg, values calculated by using Eqs. 1 and 2. (>
T=283.15K; 0, T=298.15 K; », T=323.15 K; &, T=321.42 K; %, T=343.38 K; 0, T=348.15 K; A
,T=363.19K; A, T=373.15K; 4, T=383.41 K; %, T=398.15 K; /, T=403.04 K; X, T=422.76 K; O
T=448.15K; 4, T=473.15K

Our correlated data most closely and consistently agree with the experimental data
of Meier et al. [17]. Most of the deviations are within the reported uncertainty of their
data of 0.03%. Deviations of up to 0.06% from their data occur at the lowest pressures
at T=300 K; however, this is within the mutual uncertainties of both experiments. The
data from Okhotin et al. [15] also show close agreement with our data with most of the
deviations falling within the reported experimental uncertainty of 0.05% with average
deviations below 0.03% for all isotherms. However, larger deviations of up to 0.12% are
observed at p=0.1 MPa at T=383.12 K, which is close to the normal boiling point of
T=383.75 K. The data from Vervieko et al. [16] at T=(293, 323 and 373) K are con-
sistently lower than our data at all pressures, except at p=0.1 MPa. The highest devia-
tions of up to 0.7% occur at their highest reported pressure of p=250 MPa. Similarly,
the data from Muringer et al. [14] at 7=(298.14 and 320.29) K are consistently close
to 0.2% higher than our data with the highest deviation of 0.3% occurring at the atmos-
pheric pressure, p=0.1 MPa. The 2017 data by Yebra et al. [18] at 7=(303.15, 323.15
and 343.15) K have average deviations of close to 0.1% from our data. However, at
the highest pressure of p=60.1 MPa and at atmospheric pressures, deviations of up to
0.2% are observed.

6 Derived Thermodynamic Properties and Uncertainties
Thermodynamic properties over the investigated ranges of temperature and pressure

can be derived with very high accuracy from the sound-speed surface by means of
numerical integration of the following partial differential equations (PDEs) [24]:
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Fig.5 Relative percentage deviations for experimental literature data (¢, symbols) and the Helmholtz
EOS [4] (dotted lines), calculated relative to the surface-fit correlation of this work (baseline), cg,. Devia-
tions are presented as a function of pressure at temperatures in the vicinity of the experimental isotherms
used in this work. Experimental data: x, UWA; x, ICL; A, Meier et al. [17] at 300 K, 320 K, 340 K
and 360 K; O, Yebra et al. [18] at 303.15 K, 323.15 K and 343.15 K; (}, Vervieko et al. [16] at 323 K
and 373 K; +, Muringer et al. [14] at 298.14 K and 320.29 K and O, Okhotin et al. [15] at 283.19 K,
293.15 K, 323.14 K, 343.14 K, 363.12 K and 373.12 K. EOS: —, Lemmon and Span [4]
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Fig.6 Relative percentage deviations for experimental literature data (¢, symbols) and the Helmholtz
EOS [4] (dotted lines), calculated relative to the surface-fit correlation of this work (baseline), cg,. Devia-
tions are presented as a function of pressure at temperatures in the vicinity of the experimental isotherms
used in this work. Experimental data: x, UWA; x, ICL; A, Meier et al. [17] at 380 K, 400 K and 420 K
and O, Okhotin et al. [15] at 383.12 K, 393.12 K, 403.12 K, 423.11 K, 443.11 K, and 473.11 K, EOS:

—, Lemmon and Span [4]
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(9 (L )(eY
op), p*C, J\oT p’
aC, T\|,( % ? 0%p
op )r p3 T ), oT? »
The solutions of these PDEs are subject to prescribed initial values of density and
specific heat capacity along the isobar at p=p,=0.1 MPa. For the initial densities, a
correlation was created by first extrapolating the low-uncertainty experimental data

of McLinden and Splett [25] and Tay and Trusler [21] to p,, and then correlating the
results in terms of the equation:

3 e;

Por 3T\’

: = E d | — ,
kgm= & ]< Ty > @

with coefficients d; and exponents e; as adjustable parameters. The data were
weighted based on the experimental uncertainties, and an optimum solution was
obtained by minimizing the weighted residual sum of squares. Similarly, a third-
order polynomial fit was used to correlate the isobaric heat capacity based on the
experimental data of Akhundov et al. [26], Chirico and Steele [27], Cerdeirifia et al.
[28], and Perdersen et al. [29] and in terms of the equation:

3

3 7
-1 -1 _ T
C, /1 kg™ K _1000><Z(;gj<T—0>, )
J=

with coefficients g; as an adjustable parameter. The values at high pressures were
extrapolated to p=p,, while those pertaining to saturation condition were corrected
to the (possibly hypothetical) state at p=p, with the help of the EOS of Lemmon
and Span [4]. The coefficients of the correlations of Eqgs. 4 and 5 are provided in
Table 6.

The PDEs, Eq. 3, were integrated using a predictor—corrector algorithm imple-
mented in MATLAB R2019b. Prediction of the density, p, and isobaric heat capac-
ity, C,, at each temperature and pressure grid point was carried out by first-order
Taylor series expansion, and the predicted values were corrected by using a more
accurate mid-point formula as employed by Davila and Trusler [30]. Temperature
derivatives of p and C, at each grid point were obtained by means of third-order

Table 6 Coefficients of fit of

correlations of Egs. 4* and 5" for 4 b &

various reference pressures 0 _ _ 1.054785
1 1.123743%x 10° 0.000 0.517658
2 —8.354357x 10! 1.042 0.036530
3 — 1.600587x 107 7.765 0.105107

Weighted sum of squares of errors: *WSSQ=0.043.
dWSSQ=0.0045.
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polynomial fitting, which was found to sufficiently represent the calculated data.
Rigorous mesh-dependency tests were carried out to ensure that the algorithm
implemented was insensitive to the grid of spacings defined by (AT, Ap). Trial step
sizes for temperature were AT=(10, 5, 2.5 and 1) K. The differences in the derived
densities for all trial grids were less than 9 ppm overall with convergence as the
grid size were lowered. The difference between 2.5 K and 1 K grid sizes for den-
sity results was less than 3 ppm along all isobars and isotherms. The results in iso-
baric heat capacity showed similar behaviour with the maximum difference in val-
ues between temperature grids of 2.5 K and 1 K being less than 70 ppm. Therefore,
AT=1 K was chosen as the final temperature grid size as the computational time
did not increase significantly. Similarly, step sizes for pressure were varied between
Ap=(0.1 and 0.01) MPa with resulting variation in density of less than 0.07 ppm
and isobaric heat capacity of less than 0.25 ppm throughout the whole range of inte-
gration. Finally, the pressure grid size of Ap=0.1 MPa was chosen for computa-
tional efficiency. Since these variations are much less than the typical uncertainties
of the most accurate available data for density and isobaric heat capacity of tolu-
ene, i.e. 500 ppm and 5000 ppm, respectively, it can be concluded that the chosen
step sizes of pressure and temperature render the numerical error in the integration
algorithm negligible. These results suggest that the implemented algorithm is mesh
independent within the allowable limits of uncertainties.

The accuracy of the derived thermodynamic properties is dependent upon the
speed-of-sound surface employed as well as the initial values of density and heat
capacities imposed along the isobar at p=p,. However, the evaluation of uncer-
tainties of the derived properties obtained from the thermodynamic integration
of sound-speed data is a non-trivial problem. The typical way of estimating these
uncertainties is to study empirically the effect on the derived properties of variation
of input parameters by a fixed percentage. Trusler and Lemmon [31] advocated a
more comprehensive strategy in which these parameters are subject to both constant
and oscillatory perturbations. In the remainder of this section, a brief description of
the methodology is provided, and its application in this work is explained. Here, we
follow the same methodology detailed in [31] with the only difference being in the
way in which the temperature derivatives are calculated.

Defining an arbitrary dimensionless number € <1 and a function f; of the order
of unity, the perturbed speed of sound ¢’ related to the true speed of sound by

1 1+ ¢f
a2 Ta ©
Similarly, the perturbed values of p and C, can be stated as follows:
¢ =p(1+ef,),and @
) =C(l+eh) ®)

Substitution of the perturbed quantities in Eq. 3 and isolation of the first-order
terms in ¢ lead to the following auxiliary PDEs:
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2
p % = fl _f2 — Z f +f + 3 %
op); 2 c, JI?"7 e \oT), |’

<0(C,j3)> _T<az(f2/p)> ®
ap T_ 012 p’

_ 1 9p
a®, =—p a7 ) - (10)
4

These auxiliary PDEs relate the functions f}, f,, and f;. For example, if the sound
speed is perturbed according to Eq. 6 with a prescribed function f{(7, p), then the
resulting perturbation functions f, and f; can be obtained from Eq. 9.

Here, we define the oscillatory function of temperature and/or pressure with
wavenumbers for the ith term of

where

ki=—, (11)

where 4, is a wavelength in temperature or pressure units. The imposed perturbations
to the sound-speed surface, f), initial density, f; 4, and initial isobaric heat capacity,
f3,0 are then defined as follows:

fi(T,p) = A; cos (k,T) cos (kyp), (12)
foo(T) = A, cos (k,T), and (13)
fo.0(T) = Az cos (ksT), (14)

where the amplitudes are given by A;=1 or 0, according to where the corresponding
perturbations are switched on or off. Calculations were carried out for both constant
(k;=0) and dynamic/variable (k;>0) perturbations.

The PDEs of Eq. 9 were also implemented in MATLAB and solution was
achieved with initial assumed perturbations of f}, f, ;, and f; , by employing Euler’s
first-order expansion method as described by Trusler and Lemmon [31].

The main difficulty in this method arises during the evaluation of the derivatives
of temperature in Eq. 9. Since the dynamic perturbations (k;>0) we have in this
study are sinusoidal in nature, we employed a six-variable second-order sum-of-sine
fit to relate the quantities f, and f,/p as functions of temperature along individual
isobars. The equation of fit employed is given by

2
X = Aj sin(BjT+ Cj), (15)
Jj=1
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where X is either f, or f,/p. These fitted quantities were then differentiated with
respect to temperature along each isobar.

The choice of order of fit for the dynamic perturbations was made after an exten-
sive analysis of fit at various isobars. The fit coefficients vary at each isobar with
the variation in the values of f, and p. The improvement in sum-of-sine fit from first
order to second order was found to be significant with the sum of squares errors
more than eight orders of magnitude lower than this increase in order of fit. Hence,
the second-order sum-of-sine fit was employed to fit the temperature derivatives of
Eq. 9. This higher-order fit also ensures that the more rapid fluctuations owing to
high k; values are well explained. In the case of constant perturbations (k;=0), a
second-order polynomial fit was found to sufficiently represent the fitted data.

To illustrate the overall nature of dynamic perturbations on the derived proper-
ties, k,, k, and k; were selected from values of (0.025, 0.05, 0.1 and 0.2) K™, cor-
responding to wavelengths of about (251, 125, 63 and 31) K, while k, was zero,
0.03 MPa~! or 0.05 MPa~!. The results of the sensitivity analysis are summarized
in Table 7 which includes various scenarios of constant and dynamic perturba-
tions. A selection of the results is also represented graphically in Figures S1 to S6
of the Supplementary Information.

These results illustrate the negative impact of temperature-dependent fluctua-
tions in any of the input quantities on the derived isobaric heat capacity and isobaric
expansivity. When the cyclic variations of sound speed with pressure are also con-
sidered, the perturbations decrease significantly. These observations suggest that the
cyclic variation with pressure reduces the negative impact of variations with respect
to temperature. Since the effect of f; at a given temperature oscillates with increas-
ing pressure and is not constant, the reduction in the effect of sound-speed perturba-
tion on derived property perturbation functions is reasonable. These observations
are consistent with those made by Trusler and Lemmon [31].

Constant perturbations of the input parameters have a minimal effect on the
derived properties. However, dynamic perturbations in input quantities lead to
higher perturbations in derived properties. Particularly, the short wavelength per-
turbations have the most negative impact on the derived properties with the result-
ing perturbations being orders of magnitude higher than in the case of slowly vary-
ing perturbations in temperature. These observations suggest that fit of sound-speed
data needs to be such that these perturbations do not vary rapidly with increasing
temperature. The fit deviations in this study do not vary rapidly with temperature.

Following these observations, the uncertainties in derived properties in this study
were estimated by considering the average of constant perturbations and dynamic
perturbations (cf. Table 7, Cases I to V) resulting from the input perturbations
equivalent to the experimental uncertainty of the experimental sound-speed data
(0.08%) and the highest uncertainties in initial values of density (0.1%) and isobaric
heat capacity (1%) from the experimental data that were used for correlations. For
an arbitrary derived property, z, the overall standard uncertainty was estimated by
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2 2 :
u@ = (%) uer+ (%) u(p0)2+( = > u(C,y). (16)
P0.cpq 0/ ¢Cpy, 0]

D ¢.py

In the above equation, the first term on the right-hand side describes the influence
of overall sound-speed measurement uncertainty on the derived property. Similarly,
the second and third terms describe the influence of overall uncertainty of initial
density and heat capacities. The uncertainties in density and isobaric heat capacity
were estimated by means of constant input perturbations to Eq. 9 with the resulting
perturbed values given by Eqs. 7 and 8. The uncertainties in the other derived prop-
erties described in this work were then evaluated by using the perturbed values of
speed of sound, density, and isobaric heat capacities over the entire thermodynamic
integration range. The overall expanded uncertainties of all derived properties are
provided in Table 8.

Other thermodynamic properties were also calculated based on the correlated speed
of sound and derived density and isobaric heat capacity values. Isothermal compress-
ibility, k;, is determined according to the following relationship:

d
ey
T

Isobaric expansivity, a, was evaluated using the relation given by Eq. 10. Simi-
larly, a useful relation for the speed of sound propagation which relates the density,
heat capacities and isothermal compressibility with isentropic compressibility in fluid
phases, ,, can be used to derive other thermodynamic properties [32]:

2= (‘)_P> S < . (18)
op), px, C pKr
The thermal pressure coefficient can be obtained as follows:
op @,
Pc= <ﬁ>p=K—T~ (19)

Finally, the thermodynamic equation of state can be used to evaluate the internal
pressure, p;, according to the relation:

_(oU\ _ dp _ %
pl‘"’=<av>T_T<aT>p p=Tr —p (20)

All derived thermodynamic properties with the overall relative uncertainties over a
range of selected isobars and isotherms are provided in Table 8.
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Fig.7 Deviations from the Helmholtz EOS of Lemmon and Span [4] of liquid densities of toluene, pey,
as a function of pressure at various temperatures. Derived in this work (u(p)=0.20%, k=2) (solid and
dotted lines): —, T=283 K; ==, T=298 K; —, T=306 K; ==, T=321 K; =, T=343 K; ==, T=348 K;
,T=363K; -, T=373 K; —, T=383 K; ==, T=398 K; —, T=403 K; ==, T=423 K; —, T=448 K; = =
, T=473 K. Literature data (experimental): O, Moravkova et al. [33] from 298.15 K to 328.15 K; A,
Sommer et al. [3] at 453.15 K and 473.15 K; X, Kashiwagi et al.[34] between 273.15 K and 373.12 K; +,
Dymond et al. [35] between 298.23 K and 373.27 K; (O, McLinden and Splett [25] between 283.15 K
and 473.16 K; (), Tay and Trusler [21] between 283.16 K and 473.15 K

7 Comparison of Derived Properties with Literature Data

The derived density p, isobaric heat capacity C,, isobaric expansivity «,, isother-
mal compressibility x; and isochoric heat capacity C, obtained by means of ther-
modynamic integration and relations described in the previous section were com-
pared against the values obtained from Helmholtz EOS of Lemmon and Span [4]
and literature data, with the EOS as the baseline. Although there are a great amount
of experimental data available for density of liquid toluene in our temperature and
pressure range, experimental data of other thermodynamic properties are limited.
Therefore, comparisons against the derived thermodynamic properties data reported
in literature are also provided where necessary.

All comparisons are made at isotherms near the average experimental tempera-
tures as functions of pressure. Figure 7 shows the relative percentage deviation of
derived density and literature data against the EOS. The deviations increase with
increasing temperature with the lowest deviations observed at the lowest pressures.
Most of our derived density values lie within the reported uncertainty of 0.05% of
the EOS up to 100 MPa and within the reported uncertainty of 0.5% of the EOS at
higher pressures. Average deviations of our data against the EOS are A, \gp=0.05%
with maximum deviation, Aysrp=0.2% over the entire pressure range. These
results suggest very close agreement between our derived data and the EOS predic-
tion for density, mainly due to the high-quality fits of sound speed and density at
reference isobar.

The deviations in density of Kashiwagi et al. [34] between T=(273.15 and
373.14) K and p=(0.1 and 250) MPa are up to 0.6% from the EOS. The data of
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Fig.8 Deviations from the Helmholtz EOS of Lemmon and Span [4] of liquid isobaric heat capacities

of toluene, C, .., as a function of pressure at various temperatures. Derived in this work (u(C,) =2.2%,

k=2) (solid and dotted lines): —, T=283 K; ==, T=298 K; —, T=306 K; ==, T=321 K; =, T=343 K;
==, T=348 K; -, T=363 K; - -, T=373 K; -, T=383 K; ==, T=398 K; —, T=403 K; ==, T=423 K; —
, T=448 K; ==, T=473 K. Literature data (experimental): O, Shulga et al. [36] at 326.20 K, 354.50 K
and 401.50 K; +, Akhundov and Eksaev [26] between 298.14 K to 473.11 K; O, Segovia et al. [37] at
313.15K and 333.15 K

Dymond et al. [35] between temperatures of 298.23 K to 373.27 K and pressures
up to 300 MPa are at a maximum of 0.4%. More recent data of Moravkova et al.
(T=(273.15 to 373.14) K and p=(0.1 to 250) MPa) [33], McLinden & Splett
[25], Sommer et al. [3] and Tay & Trusler [21] show better agreement with the
EOS with maximum deviations in the experimental range of this work of 0.08%,
0.07%, 0.05% and 0.06%, respectively.

Similarly, the derived isobaric heat capacity is compared against the EOS and
available experimental and derived data from the literature as shown in Fig. 8.
The derived values are in close agreement with the EOS with A, ,zp=0.5% and
Aparp=1.5%. The highest deviations generally occur at the highest pressures
and lowest temperatures. All derived values fall within the reported experimental
uncertainty of the EOS, which are reported to be up to 3%.The experimental data
of Shulga et al. [36] at T=(326.20, 354.50 and 401.50) K and pressures up to
54 MPa deviate up to 1.3% from the EOS. Similarly, the data of Akhundov et al.
[26] between 298.14 K and 473.11 K and pressures up to 20 MPa vary from the
EOS by up to 0.7%. The data of Segovia et al. [37] at 313.15 K and 333.15 K and
pressures up to 30 MPa vary from the EOS by up to 0.9%.

Our derived isobaric expansivity values compared against the EOS indicate
maximum deviations of nearly 3% occurring at the lowest pressures of the highest
temperatures as shown in Fig. 9. The experimental data for isobaric expansiv-
ity of liquid toluene of Chorazewski et al. [38] between T=(304.1 and 422.2)
K and pressures up to 195 MPa deviate from the EOS by as much as 8.6%. The
experimental data of Navia et al. [39] between T=(308.15 and 348.15) K and
pressures up to 55 MPa are in much closer agreement with the EOS. The average
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Fig.9 Deviations from the Helmholtz EOS of Lemmon and Span [4] of liquid isobaric expansivities of
toluene, expr 85 @ function of pressure at various temperatures. Derived in this work (u(a,)=0.60%,
k=2) (solid and dotted lines): —, T=283 K; ==, T=298 K; —, T=306 K; ==, T=321 K; -, T=343 K;
==, T=348 K; —, T=363 K; - -, T=373 K; —, T=383 K; ==, T=398 K; —, T=403 K; ==, T=423 K; -
, T=448 K; = -, T=473 K. Literature data (experimental): X, Chorazewski et al. [38] between T=(304.1
and 422.2) K; A, Navia et al. [39] between T=(308.15 and 348.15) K
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Fig. 10 Deviations from the Helmholtz EOS of Lemmon and Span [4] of liquid isochoric heat capacities

of toluene, C, ., as a function of pressure at various temperatures. Derived in this work (u(C,)=2.6%,

k=2) (solid lines): =, T=283 K; = =, T=298 K; =, T=306 K; = =, T=321 K; =, T=343 K; = =, T=348 K

,T=363K;--, T=373K; -, T=383 K; ==, T=398 K; —, T=403 K; ==, T=423 K; —, T=448 K = =,
T=473 K. Literature data (all reported as derived values): O, EOS of Goodwin [23] at 320 K, 400 K and
470 K; O, Sun et al. [40] at 320 K; +, Shchamialiou et al. [19] between T=(313.15 and 413.15) K

deviations of their data are nearly 0.5% with maximum deviations of 1.4%. Both
these experimental datasets have reported uncertainty of 2%.

Figure 10 shows comparison between our derived isochoric heat capacity values
against the EOS with A, sgp=0.5% and Ay arp=1.5%. Experimental data of isochoric
heat capacity values for our range of study are not currently available in the literature.
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Fig. 11 Deviations from the Helmholtz EOS of Lemmon and Span [4] of liquid isothermal com-
pressibilities of toluene, k7., as a function of pressure at various temperatures. Derived in this work
(u(k7)=0.28%, k=2) (solid and dotted lines): —, T=283 K; ==, T=298 K; =, T=306 K; - =, T=321 K;
— T=343 K; ==, T=348 K; -, T=363 K; - -, T=373 K; —, T=383 K; ==, T=398 K; —, T=403 K; = -
, T=423 K; =, T=448 K; = -, T=473 K. Literature data (all reported as derived values): O, Eastel et al.
[41] between T=(278.15 and 323.14) K; O, Shchamialiou et al. [19] between T=(313.15 and 413.15)
K

Therefore, comparisons of derived values from the literature against the EOS are pro-
vided. The deviations of values obtained from non-analytical EOS of Goodwin [23]
against the Helmholtz EOS at 7=(320, 400 and 470) K and at pressures up to 100 MPa
are up to 3% with the highest deviations occurring at highest pressures. Similarly, the
derived data of Sun et al. [40] obtained from sound-speed data at 320 K and pressures
up to 60 MPa show maximum deviations of up to 0.17%. At that temperature and pres-
sure range, our data indicate maximum deviations of nearly 0.3% against the Helmholtz
EOS. The derived data of Shchamialiou et al. [19] between T=(313.15 and 413.15) K
and pressures up to 60 MPa vary by up to 0.5% from the EOS.

In addition, the derived isothermal compressibility values of liquid toluene are com-
pared against the Helmholtz EOS as shown in Fig. 11. Deviations from the EOS of our
derived data are A pp=1% and Ayarp=3.5%. Derived values of isothermal com-
pressibility available in the literature are also compared against the EOS. The data of
Eastel et al. [41] between T=(278.15 and 323.14) K at pressures up to 275 MPa show
very high deviations of up to 44% when compared to the EOS. These very high devia-
tions occur at the highest pressures. For clarity, the highest deviations of this dataset are
not included in Fig. 11. The derived isothermal compressibility of Shchamialiou et al.
[19] between T=(313.15 and 413.15) K and pressures up to 60 MPa varies by up to
0.9% from the EOS.
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8 Conclusions

Accurate measurements of the speed-of-sound liquid toluene in the tempera-
ture range between 283.15 K and 473.15 K were carried out at pressures up to
390 MPa using double-path pulse-echo method independently at UWA and ICL.
A comparison of the resulting data with the most accurate literature data avail-
able to date along with three different EOS was carried out. The standard uncer-
tainties of our experimental data are at most 0.06%, which fall well within the
reported EOS uncertainty of 2%. Comparison with recent and most accurate lit-
erature data shows good agreement, with maximum deviations of up to 0.08%. By
employing the method of thermodynamic integration, a range of thermodynamic
properties were derived and compared against the existing literature experimen-
tal and derived data as well as the Helmholtz EOS. Our derived properties show
better agreement with the EOS within the range of uncertainties as compared to
the most experimental and derived properties. In addition, a comprehensive error
propagation analysis was carried out, and uncertainties of derived properties were
evaluated empirically using a method previously employed for pure water. Tem-
perature derivatives of perturbations were evaluated by employing sum-of-sine
fit to capture accurate dynamic fluctuations of the perturbations in derived prop-
erties. Finally, we suggest that the highly accurate sound-speed measurements,
along with derived properties obtained here and recent literature data, could
potentially be used to improve the Helmholtz EOS for toluene.
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