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Abstract
In this paper, the molar specific heat capacity is theoretically predicted for stoichio-
metric UO2.00 in the temperature range from 0 K to 3000 K. The λ-phase transition at 
2670 ± 30 K and its transformation heat is predicted. Furthermore, the occurrence of 
a small discontinuity corresponds to the rapid and simultaneous magnetic, electrical, 
and structural transition to occurs at 30.5 K and unit cell change at 30.8 K have been 
reported. Debye temperature assumed for UO2.00 is Θ

D
≅ 900K . The Gibbs–Thom-

son coefficient applied to calculate the density of state is derived from considering 
the strain in the interior of the crystal due to the free surface of the solid grain. A 
new relation between surface tension and surface energy during solid–liquid nuclea-
tion is established, allowing calculating Gibbs–Thomson in terms of surface tension 
or surface energy. Theoretical predictions are plotted against experimental scatter.

Keywords  Density of state · Molar heat capacity of oxides · Molar specific heat of 
stoichiometric UO2.00 · Non-equilibrium nucleation

1  Introduction

The specific heat capacity of uranium dioxide is influenced by several physical phe-
nomena such as �-phase transition, stoichiometry, Frenkel oxygen lattice disorder, 
Schottky defects, �-phase transition. An extensive review and thermophysical prop-
erties can be found in [1, 2]. Huntzicker and Westrum determined experimentally the 
molar specific heat from the temperature range from 5 K to 350 K [3], Grønvold et 
al. from 304 to 1006 [4], while Ronchi et al. measuring in the interval 1700–2900 K 
by applying laser flash technique with two shots of 1  ms and 10  ms through an 
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analytical solution confirmed by a good agreement between both datasets [5]. The 
authors compared their experimental data up to 2600 K, close to the interpolating 
curve by Fink and Petri [6]. According to Ronchi et al., the increase of molar heat 
capacity of stoichiometric UO2 could be interpreted as mainly due to Frenkel pair 
formation, which for the temperature range between 2600 K and 2700 K, promotes 
order–disorder �-transition in the anion sublattice. Above this range, the experi-
mental measurements are less precise [5]. Above 2700 K to the melting point Fink 
and Petri [6] handled as a constant heat capacity of 620 J.kg−1K−1 . Ronchi et al. 
considered increasing and linearly dependent on temperature. Another important �
-type transition occurs at 28.7 K observed by Jones et al. [3, 7], assumed from high-
temperature paramagnetic to low-temperature anti-ferromagnetic state transition. 
Lately, reported as two distinct phenomena: a simultaneous magnetic, electrical, and 
structural transition to occurs at 30.5  K (Mott Transition) and unit cell change at 
30.8 K [8]. Other properties of uranium dioxide have been observed such as piezom-
agnetism and magneto-elastic memory effect [9] and anisotropy of thermal conduc-
tivity [10]. Ferreira et al. proposed a model for predicting molar specific heat capac-
ity of phases and compounds by calculating the density of state based on the number 
of modes of the critical nucleus [11]. Lately, it was applied for pure elements and 
compounds [12] and transition metals [13].

In the present paper, the previously proposed model [11] is applied to stoichio-
metric uranium dioxide. Analytical predictions are plotted against experimental 
scatter.

2 � Numerical Approach and Analytical Models

One of the major steps in calculating molar specific heat is the determination of 
the Density of State. Ferreira et al. [11] metals, phases, and compounds, Fer-
reira et al. [12] pure metals and compounds and transition metals Ferreira [13] 
found the nucleation step plays the most important role in the determination of 
the Density of State as it establishes the number of modes for a certain degree of 
undercooling. The original derivation of nucleation formulation was based on the 
same assumptions applied to the liquid–gas transformation. But in the solid–liq-
uid transformation, once the critical nucleus is formed, surface stress gives rise 
to strain in the interior of the crystal as formulated by Gurtin and Murdoch [14]. 
As the critical nucleus radius decreases by a deviation from the equilibrium 
conditions, the internal strain is magnified. The region affected by this internal 
strain increases since this length scale depends only on the physical properties 
and geometry. Kim and Lee [15], while analyzing the dependency of the melting 
point of nanoparticles and wires, the size dependency of the surface, proposed 
a semi-empirical thermodynamic model. The authors extended the model for a 
wide range of elements such as FCC (Au, Pt, Ni), HCP (Mg), and BCC (W). They 
found good agreement with experimental data. Wu et al. [16] proposed a correc-
tion of the surface energy in the Gibbs–Thomson equation previously proposed 
by Kim and Lee. The surface energy should not vary with radius unless internal 
stress due to the free surface plays an important role. As radius decreases, stress 
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in the surface increases, following the observation of Gurtin and Murdoch [14]. 
Hence, the authors considered the surface stress tensor for the stress localized in 
the surface region and assumed physical properties in the neighborhood of the 
grain surface are different from those in the interior. The authors demonstrated 
the magnitude of the surface stress for a solid sphere of radius r is a uniform pres-
sure given by,

and,

where s is the isotropic surface stress, the � is the surface tension, � , �0 , � and �0 are 
the Lamé moduli.

The reason why the semi-empirical equation proposed by Kim and Lee [15] 
reasonably predicts the deviation of nucleation temperature by correcting the sur-
face energy could only be explained by the strain in the interior of the Crystal, 
which increases as the nucleation radius decreases. The correction proposed for 
surface-energy by the authors is written quantitatively in terms of the first near-
est neighbors’ atoms interatomic distance for crystalline materials under non-
equilibrium r , and the equilibrium rEq conditions. Wu et al. [16] corrected Kim 
and Lee’s final spherical nucleus radius, providing a better agreement with the 
experimental data. Nevertheless, as the equilibrium radius rEq = r + � ≡ constant , 
must remain constant for any given radius r. If the radius r decreases by a certain 
amount, � must increase by the same amount. Consequently, a new equation for 
correcting the surface energy as a function of � = f (r) must be proposed.

Figure  1 presents the schematic representation of nucleation under equilib-
rium and non-equilibrium conditions and the relation between the rEq , �(r) and r . 
Firstly, the new equation will be derived on the same basis as Kim and Lee [15] 
and Wu et al. [16], except for the equilibrium radius r = req that remains constant, 
and r is defined as r = req − �(r) , due to non-equilibrium nucleation. Secondly, a 
new derivation based on the surface stress tension and superficial energy will be 
shown.

2.1 � First Derivation

The relation between the equilibrium surface and non-equilibrium surfaces provides,

where 0 ≤ 𝛿 <
(
req − rMax

)
.

(1)s =
2�

r(1 + �)

(2)� =
2[� + 2

(
�0 + �0

)
]

r(3� + 2�)

(3)
Aequilibrium surface

Anon−equilibrium surface

=

r2
eq(

req − �
)2 =

1(
1 −

�

req

)2
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Now, rewriting Gibbs–Thomson with this view,

and, the surface energy in terms of �,

(4)Γ =
�0
SL(

1 −
�

req

)2

ΔS
∀

(5)�SL =
�0
SL(

1 −
�

req

)2

Fig. 1   Schematic representation of nucleation of critical grain regarding equilibrium and non-equilib-
rium conditions
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By calculating a mean value �SL for the surface energy,

Figure  2 shows the surface energy correction for non-equilibrium nucleation 
concerning dimensionless thickness �

rEq
 . This surface energy correction varies as 

1 ≤ (
1 −

�

req

)−2 ≤≈ 20.39 and 1 ≤ �

rEq
. ≤ �

4
 . Figure 3 presents a comparison among 

the mean surface energy for pure Al ( �0 = 0.154 [J ⋅m−2] ), considering 
�SL = 4.659 786�0

SL
= 0.7269 [J ⋅m−2] , and the surface tension, which is very close 

to the values of the surface tension of pure �Al
SL

= 0.914 [J ⋅m−1] , and that for the 
aluminum-based alloy Al-6wt%Cu-2.5wt%Si calculated by applying Butler’s for-
mulation, �Alloy

SL
= 1.0376

[
J ⋅m−1

]
 [17].

Canté et al. [18] and Jácome et al. [19] have always presented the Gibbs–Thom-
son coefficient in terms of surface tension for upward solidification kinetics, which 
according to Eq. 8 represents the mean surface energy. A secondary dendrite arm 
spacing model proposed by Rappaz and Boettinger [20] for equilibrium solidifi-
cation and lately modified by Ferreira et al. [17] for non-equilibrium conditions, 
the surface tension was applied instead of surface energy in the Gibbs–Thomson 
equation proving a good fit against the experimental scatter. There’s no adjustment 
parameter in both models, as only thermophysical properties, Liquidus tip growth, 
and solidification local time are provided as input. Concerning the calculation of 
the critical radius, the mean Gibbs–Thomson coefficient Γ was chosen to represent 

(6)�SL =
�0
SL

�

4
∫

�

4

0

�0
SL(

1 −
�

req

)2
d

(
�

req

)
= 4.65 978 581�0

SL

Fig. 2   Surface energy equilibrium/non-equilibrium factor as a function of the dimensionless �
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the solidification kinetics between the equilibrium and non-equilibrium conditions, 
being an essential step in determining the number of modes of the Density of State.

where n� is the ratio between surface tension and surface energy, � is a spatial 
parameter assumed as 1 [m] . That’s why our definition of Gibbs–Thomson uses sur-
face tension instead of surface energy [13].

2.2 � Second Derivation

The relation between the surface stress and surface tension [21–24] is given by,

where �ij is the Kronecker delta, eij is the elastic component of the strain [24]. In the 
case of isotropic surface stress,

where A is the surface area.

(7)Γ = n�
�0
sl

ΔS
∀

� =
�sl

�0
sl

�0
sl

ΔS
∀

� =
�sl

ΔS
∀

� ≅
4.65 978 581�0

SL

ΔS
∀

(8)fij = �ij� + ���eij

(9)f = � + A
d�

dA

Fig. 3   Surface energy of pure Al equilibrium/non-equilibrium factor as a function of dimensionless delta 
for Al compared with the surface tension for pure Al and an Alloy
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According to Müller et al. [25], surface energy and surface stress are equal for 
incompressible liquids and are usually merged under a single term of surface ten-
sion. The superficial energy dependency on the strain, for no change of heat and no 
change in the number of surface particles,

and,

where � is the surface energy, � is the strain. While the definition of surface stress s 
for isotropic surface gives,

Analyzing the limit case, Eqs.  9 and 12, by considering �(�)A(�) → 0 and 
d�

d�
→ 0,

By considering the schematic representation shown in Fig. 1,

and,

Rearranging Eq. 15

which �
�0

 is the surface tension/surface energy relation as a function of �. Calculat-
ing the mean integral of Eq. 16,

(10)Usurf
= �(�)A(�) =

(
�0 + �

��

��

||||�=0
)
A(�)

(11)�(�) = �0 + �
��

��

||||�=0

(12)s =

(
�(�)A(�) − �0A0

)
�A0

(13)� =
�0

−�

(14)∫
−�

0

d� = ∫
rEq−�

rEq−rEq

8�r

4�r2
Eq

dr =

(
1 −

�

req

)2

(15)
� =

�0(
1 −

�

req

)2

(16)
�

�0
=

1(
1 −

�

req

)2

(17)

−(
�

�0

)
=

1
�

4
∫

�

4

0

d
(

�

rEq

)

(
1 −

�

rEq

)2
= 4.65978581
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The surface energy as a function nucleation radius decrease � can be obtained by 
substituting Eq. 14, Eq. 3 into Eq. 12, provides,

where s is the surface stress. Making s = 0 in the Eq. 16 gives

The application of Eq. 17 to several elements is presented in Table 1. Concerning 
the observed discrepancy for Fe, about the surface tension and surface energy and 
the mean surface energy, Morohoshi et al. [26] calculated surface tension of liquid 
Fe dependence on O2 activity aO2

 ranging from 1.8 N·m−1 to 1.0 N·m−1 and com-
pared to experimental data. The surface energy must be measured under the same 
conditions of the surface tension to achieve the same level of property comparison. 
The value of 1.0 N·m−1 divided by 4.65 978 581 provides 0.214 J ⋅m−2 , which is 
close to 0.204 J ⋅m−2 found by Jian et al. [27]. The predictions of Eq. 17 compared 
with the data found in Morohoshi et al. are presented in Fig. 4. It suggests the sur-
face energy of Fe is higher for lower activity values of activity of O2, considering 
a solution for surface energy found in Kaptay [28], which also could explain the 
abnormal behavior of the molar heat capacity of Fe, as observed by Ferreira [12] 
from the data set found in Valencia and Quested [30].

Based on the general model of partial interfacial energy of a component, it is cal-
culated as the change in chemical potential of a given component accompanying the 
transport of the same component from bulk phase to the interfacial region about the 
molar interfacial area of the same component. In the case of Fe and O,

(18)
�(�) =

�0(
1 −

�

rEq

)2
− s

(19)
�(�) =

�0(
1 −

�

rEq

)2

Table 1   Comparison between 
surface energy predictions by 
Eq. 19 and literature

*See Figs. 4 and 5

Element � atT
m
[N ⋅m−1] Predicted 

�0[J ⋅m−2]

Literature �[J ⋅m−2]

Al 0.914 [29] 0.196 0.157 [28]
Fe 1.0 [26]* 0.214 0.204 [27]
Cu 1.285 [29] 0.276 0.252 [28]
Ag 0.903 [29] 0.194 0.172 [28]
Au 1.140 [29] 0.245 0.195 [28]
Ni 1.778 [29] 0.382 0.351 [28]
Pd 1.500 [29] 0.322 0.287 [28]
Pt 1.800 [29] 0.386 0.323 [28]



1 3

International Journal of Thermophysics (2021) 42:148	 Page 9 of 16  148

(20)

�Fe = �0
Fe
+

RT

�Fe

ln

⎡⎢⎢⎢⎣

1 − xO,S∕L��
1 − xO,S

���
1 − xO,L

��
⎤⎥⎥⎥⎦
+

2ΔGE
Fe,S∕L

− ΔGE
Fe,S

− ΔGE
Fe,L

2�Fe

Fig. 4   Calculation of Fe’s absolute surface stress and surface energy as a function of the dimensionless 
nucleation radius

Fig. 5   Surface energy prediction by Eq. 17 as a function of the activity of O2 dependence
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Figure 5 presents the absolute surface stress of Fe Eq. 1 and the surface energy 
Eq.  18, considering the limit values found in Morohoshi et al. [26] as a function 
of the nucleation radius. As can be seen, mean surface tension crosses the surface 
energy close to its mean value.

The density of state D
(
�Comp

)
 for a grain of a compound of volume V  , with a cer-

tain critical nucleation radius, is given by,

where �Comp is the frequency, � is the speed of sound in the solid. For a total number 
of atoms N in the volume V  and a correspondent density of atoms n provides,

The first Brillouin zone is exchanged by an integral over a sphere of radius kD , 
which contains precisely N wave vectors allowed. As a volume of space k by wave 
vector, it requires,

Then, the density of atoms n can be obtained as

The compound fundamental frequencies are expressed as

where ΘD,Comp is the compound Debye’s temperature, kB and ℏ are the constant of 
Boltzmann and Planck, respectively.

The undercooling for a critical nucleus of volume V  can be written for solid–liq-
uid non-equilibrium nucleation as a function of � = rEq − r, where r < rEq , written 
in terms of Eq. 18,

and,

(21)DComp

(
�Comp

)
=

V�2
Comp

2�2�3

(22)N = nV

(23)(2�)3

V
N =

4�k3
D

3

(24)n =
k3
D

6𝜋2
=

1

6𝜋2

(
kBΘD,Comp

ℏ𝜈

)3

(25)𝜔D,Comp =
kB ⋅ ΘD,Comp

ℏ

(26)Γ
Comp

=
�(�)

ΔS
Comp

∀

=

�0 − s
(
1 −

�

rEq

)2

ΔS
Comp

∀

ΔS
Comp

∀

(
1 −

�

rEq

)2

(27)ΔT
(
rC
)
=

2ΓComp

rC
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Gibbs–Thomson equation, Eq. 26, can be written to express the mean nucleation 
kinetic through the application of Eq. 17.

The element i electronic contribution cve is written in terms of the phonon energy 
cVib
v

 as,

where Zi is the valence of element i , Tbulk
m,i

 is the melting temperature of element i [K] 
and T  is the absolute temperature [K].

The rotational energy for each element i , can be given as [11–13],

where Ji is the rotational level corresponding to integer J = 0, 1, 2, 3,… , ri and Mi 
are the atomic radius and the molar mass of element i , respectively. The due to rota-
tion is given by,

where R is the universal gas constant 
[
J⋅mol

−1
⋅K

−1
]
 , �D,Comp is the maximum admis-

sible frequency known as Debye’s frequency.
The obtained final equation molar heat capacity of a compound, which contem-

plates all contributions is given by,

(28)
cve,i

cVib
v

=
5

24�3
Zi

Θ
3
D,i

T2Tbulk
m,i

(29)ERot,i =
5

4
ℏ2

Ji
(
Ji + 1

)

Mi ⋅ r
2

i

[J]

(30)cRot
v

=
5

4

R ⋅ ℏ3
⋅

k2
B
𝜔D,Comp

(
T + ΘD,Comp

)2
n∑
i=1

xi ⋅ Ji
(
Ji + 1

)

Mi ⋅ r
2

i

[
J ⋅ mol−1 ⋅ K−1

]

Table 2   Thermophysical properties of elements

Properties Unit Value

Uranium dioxide solid phase density at the melting point—�
S,UO2 kg ⋅m−3 9578

Uranium dioxide latent heat—ΔH
UO2 [ORNL/TM-2000/351] [2] J ⋅m−3 259 300

Uranium atomic radius—r
U

pm 190
Valence of Uranium—Z

U
–  + 4

Uranium dioxide Debye’s temperature—Θ
D,U02

 [36] K 900.0
Planck constant - h J ⋅ s 6.626 × 10−34

Boltzmann constant-k
B J ⋅ K−1 1.380 658 × 10−23

Gas constant - R J·mol−1·K−1 8.31 451
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3 � Results and Discussion

The thermophysical properties used for the calculation of the molar heat capacity 
are provided in Table 2.

Before assessing the model theoretical prediction of stoichiometric UO2 molar 
specific heat capacity some critical considerations must be posed beforehand. A 
�− transition in solid UO2 at 2670 K was suggested by Bredig [31, 32], and it is 
found to take place at the temperature range given by 2670 ± 30 K in stoichiomet-
ric UO2 [33]. They also noticed that The authors explained the high creep rate in 
terms of the high concentration of oxygen vacancy. Leibowitz et al. observed plas-
ticity above 2500 K [34]. Ronchi et al., based on the experimental data explained 
all the physical contributions to the molar heat capacity. From room temperature 
to 1000 K the molar heat capacity is governed by harmonic lattice vibration. From 
1000 K to 1500 K, the molar heat capacity increases due to non-harmonic lattice 
vibrations. The highlight of their conclusions in the temperature range from 1500 K 
to 2670 K is that the increase in the molar heat capacity is provided by the formation 

(31)

cv =
(
1.0 + DComp

(
�Comp

))
9NakB

(
T

ΘD,Comp

)3

T

ΘD,Comp

∫
0

x4ex

(ex − 1)
2
dx
(
1 + cve

)

+ (n + 1∕2)

[
9.0cRot

v
+

(
1 −

√
Ei�Dia

EDia�i

)
RT3

ΘD,AlloyT
2

L

]

Fig. 6   Comparison of the molar heat capacity of stoichiometric UO2 and the experimental scatter for low 
temperature [3, 4] and high temperatures [5]
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of electronic defects and the lattice (Frenkel defects). On the other hand, the increase 
in the electrical conductivity indicates the contribution from the electronic defects 
and that electron–hole interactions are minor due to Frenkel defects. Above �-phase 
transition temperature to the melting point, the Schottky defects become important 
[35].

Figure 6 represents the molar specific heat capacity of stoichiometric UO2.00 
predictions Ferreira et al. model [11] from 0  K to 2980  K, considering the 
Debye temperature found in Devyatko et al.Θ

D,UO2
≈ 900K  [36]. The �-phase 

transformation heat predicted by the model is ΔH�,U02 ≈ 28,1612 J ⋅ mol−1 ⋅ K−1 . 
Both experimental sets of Ronchi et al. [4] are equally distributed around the 
predicted curve for n = 7 , due to the thermally induced Frenkel oxygen lat-
tice disorder. From 2670 ± 30 K to 3000 K, where Schottky defects become are 
more pronounced, making n = 11 , the model agrees well with the experimental 
data. This behavior agrees well with a quasi-linear nature of the curve section 
as described by Ronchi et al. [4]. A polynomial curve found in [1] seems to 
fit the data recognizing the lattice disorder, but it fully neglects the �− transi-
tion at 2670 ± 30 K. No simulation was driven considering a non-stoichiomet-
ric UO2+x. A sample curve for unit cell transition at 30.8 K [8] is provided for 
n = 1 305 000, further detailed in the next figure. Figure 7 shows a comparison 
between Ferreira et al. [11] model and the experimental data found in Huntz-
icker and Westrum [3]. High values of n corresponding due to the lattice transi-
tion kinetic are expected until the limit for molar heat capacity greater than 10 
J·mol−1·K−1 when it reaches the transformation curve at 30.365 K [3]. Between 
the limits of the integer range of n, for the experimental data of Huntzicker et 

Fig. 7   Low-temperature anti-ferromagnetic high-temperature paramagnetic transition of UO2
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al., from 250 000 to 905 000, there are integer numbers inside it which make the 
model agree precisely.

By considering the theoretical predictions for n = 7 and n = 11 a curve fit is 
proposed for the molar specific heat capacity of uranium dioxide in terms of 
polynomial curve found in [1] and the approximate linear behavior after �− tran-
sition as found in Ronchi et al. [4].

For R2 = 0.9997 and 30 K ≤ T ≤ 2670 ± 30K

and, for R2 = 0.9999 and 2670 ± 30K < T ≤ 3138.15K

where

Figure 8 presents the proposed curve fit for uranium dioxide. As the R-square 
are very high for the two branches of the curve, it agrees well with the theoreti-
cal calculations.

(31a)
c
v
= 92.89 588 792 − 19.16 459 797� + 13.55 200 344�2 − 138.3 100 784exp(−4.90 237 897�)

(31b)cv = 188.37 506 432 − 106.35 673 004� + 36.91 714 405�2

(31c)� =
T

1000

Fig. 8   Comparison of the molar heat capacity experimental, theoretical calculations and the proposed 
curve fit
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4 � Conclusion

The theoretical calculations of the molar specific capacity for stoichiometric ura-
nium dioxide succeed in predicting the temperature ranges’ experimental data. 
The polynomial curve fitted the experimental scatter, where Frenkel oxygen lat-
tice disorder is pronounced. On the other hand, it neglected the λ transition at 
2670 ± 30 K completely. Furthermore, the experimental points are equally distrib-
uted about the theoretical curve for n = 7 . In the case of the anti-ferromagnetic 
to paramagnetic transition, very large values of n must be given. With this point 
of view, there are a set of large integer numbers in the corresponding interval 
that simulates the change of specific heat capacity due to this transition. Finally, 
a quasi-linear behavior was theoretically predicted for temperatures above the � 
transition according to what is found in the literature.
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