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Abstract
A complete theoretical analysis of the fluid and solid dynamics of the torsional 
quartz crystal viscometer is presented which for the first time, establishes a firm 
theoretical basis for two working equations whereby the viscosity of a fluid may 
be determined from measurements of the resonant frequency of the crystal and the 
width of the resonance when immersed in the fluid. Modern instrumentation means 
that it is possible to achieve higher resolution in the measurement of these two quan-
tities than hitherto and the new theory opens the way to securing a concomitant 
accuracy in the determination of viscosity.
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1 Introduction

The use of quartz-crystal devices for the measurement of the viscosity of fluids has 
a long tradition. The systematic study of such devices was begun by Mason [1–3] 
in the 1940′s. He, and others [4–7] reported applications of a variety of devices to 
the task over a period of 20 years with both the theory and the instrumentation of 
the devices becoming increasingly sophisticated. Gradually, one device emerged as 
superior to others for measurements of the viscosity of a range of fluids and that was 
the torsional quartz-crystal viscometer which was adopted by those with an interest 
in the properties of fluids rather than those interested in the devices themselves or 
those seeking applications for quartz transducers. The advantages of the piezoelec-
tric material quartz for these devices were its ready availability and the extensive 
expertise for its preparation as a viscosity sensor among those who sought applica-
tions for quartz crystals. Among the early adopters of the technique interested in the 
thermophysical properties of fluids were Collings and McLaughlin at Imperial Col-
lege in London [8], the National Bureau of Standards in Boulder USA, specifically 
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Diller [9] and then Haynes, Laesecke and their colleagues [10–12]. Other notable 
early users were De Bock and others [13], D’yachenko in the Soviet Union [14] 
and Barlow and his colleagues [15]. More recently the device has been employed 
by Meier and his colleagues for high-precision measurements on a series of fluids 
[16–18].

For reasons probably connected with its origins, the detailed mechanical and fluid 
dynamic theory of the device and the conditions within which its operation should 
be constrained were never fully explored. Rather, the device was treated as a generic 
oscillator that was loaded by a viscous fluid with non-zero density to produce a more 
highly damped oscillation whose bandwidth reflected a combination of these two 
properties. This led investigators to adopt a working equation for the viscometer 
based upon bandwidth measurements alone and empirically to study the conditions 
under which it could be employed successfully [8–18].

The precision with which it is now possible to measure the resonant frequency of 
oscillators means that there is interest in seeking to exploit additionally an equation 
based upon the effect of viscosity on the resonant frequency of the oscillator. On 
the one hand this gives another means of deriving the fluid viscosity from measure-
ments on the same sensor and, on the other hand, it allows the opportunity for an 
examination of the premise that the device operates in accord with the theoretical 
description of it. This was not hitherto possible.

In this paper we present a rigorous analysis of solid and fluid dynamics for the 
torsional quartz-crystal viscometer and derive two working equations for its applica-
tion. The conditions under which these working equations should be valid are estab-
lished to guide design of the instrument. Subsequently, in Part II of this paper [19], 
we employ original experimental data acquired in several different viscometers of 
this type to examine the extent to which existing instruments conform to the theory.

2  Physical Model of the Viscometer

The torsional quartz-crystal viscometer consists of an X-cut right-circu-
lar cylinder of radius R and length L and of density �c , with elastic constants 
c11, c12, c13, c14, c33 and c44 as well as piezoelectric constants d11 and d14 and permit-
tivities �1 and �3 . The crystal is forced to vibrate torsionally at a (radian) frequency 
ω with angular amplitude � . The crystal is suspended by a mechanism which exerts 
no force upon it other than to oppose gravity and is immersed in an incompressible 
Newtonian fluid of viscosity � and density �.

A diagram of the quartz crystal is contained in Fig. 1, which also illustrates the 
coordinate system that we shall employ and indicates the positions of the four elec-
trodes used to excite motion. In order to build a mathematical model of the crystal 
oscillations we employ a right-handed coordinate system. For a quartz crystal, rec-
tangular coordinates {X,Y,Z} are conventionally used such that the X-direction is 
aligned along the binary axis of the crystal and the Z-direction is aligned along its 
trigonal axis. An X-cut quartz cylinder is one such that the X-direction is aligned 
with the axis of the cylinder. It is also appropriate to use a system of cylindrical 
polar coordinates {r,θ,z} with its origin at the center of the one end of the cylinder 
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and the z-direction aligned along its axis towards its other end. Thus z = X and it is 
convenient to let r = Y when θ = 0 so r = Z when � = �∕2.

The electric field that is applied to force torsional vibrations of the crystal has been 
contrived by a variety of mechanisms [8–18]. In one scheme, it is induced by four 
electrodes plated along the length of the surface of the crystal. The first electrode is 
in the quadrant 𝛷 < 𝜃 < 𝛷 + 𝜋∕2, the second in 𝛷 + 𝜋∕2 < 𝜃 < 𝛷 + 𝜋, the third in 
𝛷 + 𝜋 < 𝜃 < 𝛷 + 3𝜋∕2, and the fourth in 𝛷 + 3𝜋∕2 < 𝜃 < 𝛷 + 2𝜋. Here, � is the 

Fig. 1  The Oscillating Quartz 
Crystal, the coordinate system 
and its electrodes
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angle about the z-axis through which the crystal is twisted: � has the same sense as θ 
and is of the form

where i =
√
(−1) and t denotes time. Note that the quadrants spanned by the elec-

trodes depend on � because the electrodes twist with the crystal. The first and third 
electrodes are at a potential +V0 exp (i�t) and the second & fourth at a potential 
−V0 exp (i�t) . Electrical connections are made to the electrodes by wires attached 
at the mid-plane (z = L∕2) : these wires also serve to support the quartz crystal. 
Although other methods have been used to generate the forcing electric field the 
consequences for the analysis that follows are identical.

While in principle, the quartz crystal could be made in a variety of sizes it is 
typically 50–100  mm long and 5–10  mm in diameter. These dimensions together 
with the elastic constants of quartz constrain the magnitudes of some of the vari-
ables for the instrument and it is useful to summarize them and a variety of quanti-
ties that we introduce in the analysis early in the discussion. Thus, Table 1 lists the 
main quantities of interest and the values they have in a typical instrument. Each 
quantity is defined in the text. Table  2 lists of some of the dimensionless groups 

(1)�(z, t) = �(z) exp(i�t)

Table 1  Typical values of the design characteristic of a quartz-crystal viscometer and the fluids studied

Quantity Magnitude Quantity Magnitude

R/m 10−2 d11/m V−1 3 × 10−12

L/m 10−1 d14/m V−1 7 × 10−13

L*/m 10−1 dtypical/m V−1 10−12

lr/m 10−7 V0/V 10
� 10−8 � ∼ dtypical

(
V0∕R

)
L∕R

e 10−3

ω0R/rad  s−1
2.2 × 105

t*/s 1.0
ΔT*/K 10−2

Quartz
ρc/kg ⋅m−3 2.6 × 103

Working Fluid C6 at 0.1 MPa C6 at 10 MPa C1 at 0.1 MPa C1 at 10 MPa

μ/Pa·s 2.9 × 10−4 3.2 × 10−4 1.1 × 10−5 1.4 × 10−5

ρ / kg ⋅m−3 6.5 × 102 6.6 × 102 6.4 × 10−1 7.5 × 101

(1∕�)|��∕�T|∕K 9.0 × 10−3 8.8 × 10−3 2.7 × 10−3 7.2 × 10−4

|∂ρ/∂T|/ρ/K 1.5 × 10−3 1.3 × 10−3 3.3 × 10−3 5.7 × 10−3

|∂μ/∂p|/μ/Pa 1.2 × 10−8 1.1 × 10−8 9.2 × 10−9 4.5 × 10−8

|∂ρ/∂p|/ρ/Pa 1.3 × 10−9 1.7 × 10−9 1.0 × 10−5 1.1 × 10−7

λ/W ⋅m−1
⋅ K−1 1.1 × 10−1 1.2 × 10−1 3.4 × 10−2 4.3 × 10−2

c/m s−1 1.1 × 103 1.1 × 103 4.5 × 102 4.4 × 102
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that are important in the analysis, their typical values for a representative instrument 
and for two fluids of the type that are studied in such instruments. We consider for 
these purposes an organic fluid with six carbon atoms (C6) and one with one car-
bon atom (C1) at two different pressures. We include values for the dimensionless 
groups that the theory developed here uses and the constraints that it places on them 
for its validity. The latter constraints are expressed as inequalities and the equation 
or table number that follows each in the column labeled “Desired Value” indicates 
where they arise in the analytic treatment that follows.

2.1  Fluid Mechanics

We consider the situation in which the crystal is driven into oscillation continuously 
so that any transients associated with the initiation of oscillation have decayed and it is 
surrounded by a Newtonian fluid of density � and viscosity � . Then, provided the radial 
dimension of the region in which there are significant spatial variations of flow varia-
bles is much less than the axial dimension of the cylinder and provided the twist on the 
cylinder varies weakly with axial position, that is, provided 𝜀R ≪ L , the flow is planar, 
so the velocity field � and the pressure field p do not vary significantly with axial posi-
tion z, and u has no z-component. Together with axisymmetry, this implies that

where �� is a unit vector in the θ-direction. The form of Eq. (2) automatically ensures 
that mass is conserved. Provided that the flow is laminar, which is assured if the 
Reynolds number Re = 𝜌𝜔𝜀R2∕𝜇 ≪ 1 or ∼ 1 (the latter because the flow is nearly 
non-accelerating), the momentum conservation equation yields

so that p = p∞ + �

r∫
∞

(u2
�
∕r) dr and

subject to the boundary conditions

We now introduce dimensionless variables so that

where

Equation (4) then becomes

(2)� = u�(r, t)�� , p = p(r, t)

(3)− �
u2
�

r
= −

�p

�r

(4)
�
�u�

�t
= �

�

((
1

r

)
�(r u�)

�r

)

�r

(5)u� = i��R exp(i�t) at r = R, u� → 0 as r → ∞

(6)u� = ��R exp(i� t)f (�)

(7)� = r∕R.
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with

and,

The solution of Eq. (8) is

where  bern( ),  bein( ),  kern( ) and  kein( ) are n-th order Kelvin functions. It follows 
from Eq. (9) that

The shear stress �r� in the fluid is given by

Using the properties of Kelvin functions [20] we find that on the cylinder surface, 
at r = R (σ = 1)

Using the values drawn from practical examples of the application of the tech-
nique given in Tables  1, 2 

√
𝛺 >> 1 which means physically that there is a very 

thin shear layer near the surface of the cylinder in which there are significant spatial 
velocity variations. We also note that 

√
𝛺 >> 1 implies that the flow is planar.

Again, from the properties of Kelvin functions [20]

Thus,

(8)d2f∕d�2 + (1∕�)df∕d�−
(
1 ∕ �2

)
f−i�f = 0

(9)f = i at � = 1, f → 0 as � → ∞

(10)� =
��R2

�
.
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�
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or since 
√
𝛺 >> 1

If d is the thickness of the shear layer then, because �r�|R ∼ ���R∕d , and from 
Eq. (18) �r��R ∼ ���

√
� ; it follows that d ∼ R∕

√
� which shows that the shear 

layer is indeed thin if 
√
𝛺 >> 1.

The force F’ per unit length of cylinder exerted by the fluid on the cylinder is 
given by F�=−2�R �r�|R so the moment, M′ , per unit length of cylinder exerted by 
the fluid on the cylinder is given by

or

But −�2 � exp(i�t) is the angular acceleration, �2�∕�t2 , of the cylinder and 
i�� exp (i�t) is its angular velocity, ∂Φ/∂t so that we can write

where

For a cylinder of finite length L, as well as the stress on the cylindrical circular 
surface there is drag at each of its ends (z = 0 and z = L). To leading order, the veloc-
ity field u near the ends has no radial component or axial component and its angular 
component u�(r, z, t) is determined by the solution of

assuming that velocity variations are confined to a thin shear layer so that gradients 
with respect to r are insignificant compared with those with respect to z. The bound-
ary conditions after the initial transient on start-up of the flow has decayed are

If we consider just the end at z = L and write

(17)�r�|R = ��� exp(i�t)

[
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√
1

2
�−2 i + O(1)

]

(18)�r�|R = (1− i)

√
1

2
���� exp(i� t).

(19)M� = −2�R2(1− i)

√
1

2
� ��� exp(i�t)

(20)M� =
2� R2�

�

√
1

2
�
[
−�2 � exp(i�t) + i�� exp(i�t)�

]
.

(21)M� = k
�2�

�t2
+ �k

��

�t

(22)k = 2�R3

√
� �

2�
.

(23)�
�u�

�t
= �

�2u�

�z2

(24)u� = i�� r exp (i�t) at z = 0 or z = L, u� → 0 as |z| → ∞.
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then Eqs. (23) and (24) become

The solution of Eq. (26) subject to (27) is

so that the shear stress, �z� = �
�u�

�z
 can be shown to be

Thus, the shear stress �z�|L exerted on the fluid by the end of the cylinder at z = L 
(ζ* = 0) is given by

and the moment M|L exerted by the fluid on the end of the cylinder is

or

and by symmetry

2.2  Effects in the Fluid that Are Rendered Negligible

So far we have considered the major effects of the fluid on the oscillation of the 
quartz crystal but for completeness of the analysis we need to look at other fluid 
effects that may affect the operation of any instrument and its accuracy. First, 
we have so far assumed that the fluid is isothermal throughout and remains at an 
equilibrium temperature with the crystal. However, in principle, heat generation 

(25)u� = �� rexp(i�t)F(�∗), �∗ = (z−L)∕R

(26)
d2F

d�∗2
− i� F = 0

(27)F = i at �∗ = 0,F → 0 as �∗ → ∞.

(28)F = i exp
�
− �∗

√
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�
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�
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2
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�
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�
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√
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�
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√
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.



1 3

International Journal of Thermophysics (2021) 42:120 Page 11 of 40 120

by viscous dissipation causes a local rise in temperature T in the fluid. This rise 
has a negligible effect on the viscosity of the fluid provided the Nahme number

where λ is the thermal conductivity of the fluid and |��∕�T| is evaluated at the ambi-
ent temperature of the fluid. Table 2 shows that in a typical realization of the instru-
ment Na < 10−14 so that the condition for the neglect of viscous heating is easily 
fulfilled.

We have also assumed that the fluid is incompressible for our analysis of fluid 
flow. Compressibility effects vary as the square of the Mach number

where c is the speed of sound and so their neglect is justified so long as Ma « 1. For 
practical instruments, Table 2 shows that Ma < 5 × 10−8 so that it is legitimate to 
treat the fluid as incompressible.

3  Solid Mechanics

We now consider the crystal itself and its response to the fluid behavior surround-
ing it. The crystal motion is driven by the converse piezoelectric effect which 
involves application of an electric field to produce a stress. If an electric field, 
E acts on the quartz crystal, the components of the resultant stress field, σ, are 
related to those of E and the strain e as follows

where

The strain components are defined in terms of displacements ξ, η and ζ in the 
X-, Y- and Z-directions, respectively, as follows

(34)Na = 𝜔2 𝜀2R2|𝜕𝜇∕𝜕T| ∕𝜆 ≪ 1

(35)Ma = ��R∕c

(36)
�XX = c11eXX + c12eYY + c13eZZ + 2 c14eYZ− c11d11EX + c12d11EX + c14d14EX

(37)
�YY = c12eXX + c11eYY + c13eZZ− 2 c14eYZ− c12d11EX + c11d11EX− c14d14EX

(38)�ZZ = c13eXX + c13eYY + c33eZZ

(39)�YZ = c14eXX− c14eYY + 2 c44eYZ− 2 c14d11EX + c44d14EX

(40)�XZ = 2 c44eXZ + 2 c14eXY + c44d14EY + 2 c14d11EY

(41)�XY = 2 c14eXZ + 2 c66eXY + c14d14EY + 2 c66d11EY

(42)c66 = 1∕2
(
c11− c12

)
.
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The electric field E is solenoidal (i.e. �·E = 0) and is given by the negative gradi-
ent of the potential V (E = – � V), so V is harmonic (i.e. it satisfies Laplace’s equa-
tion:∇2 V = 0). If 𝜀R ≪ L then E is planar; it has no z-component and does not vary 
in the z-direction. Thus

For the disposition of electrodes discussed earlier the boundary conditions are

The solution of Eq. (44) subject to (45) is

or transforming to {X,Y,Z} coordinates

But cos � = 1 and sin � = 0 to leading order since є « 1 and so

Here we note that EX = – ∂V/∂X = 0 and EY = – ∂V/∂Y, while EZ = – ∂V/∂Z is 
irrelevant to the stress in the crystal. It then follows from Eqs. (36) to (41) inclu-
sive that the direct effect of the electric field E occurs because its Y-component, 
EY induces shear strains eXZ and eXY and hence shear stresses �XZ and �XY We now 
assume there is no shear strain in a plane normal to the X-axis so that eYZ = 0. Then, 
�YZ = 0 and �XYand �XZ are given by

(43)

eXX = ��∕�X, eYY = ��∕�Y , eZZ = ��∕�Z,

eXY = 1∕2 ((��∕�X) + (��∕�Y)),

eXZ = 1∕2 ((��∕�X) + (��∕�Z)),

eYZ = 1∕2 ((��∕�Y) + (��∕�Z)).

(44)((�(r �V∕�r)∕�r)∕r) +
((
�2V∕��2

)
∕r2

)
= 0.

(45)

V = + V0 exp (i𝜔t) at r = R for 𝛷 < 𝜃 < 𝛷 + 𝜋∕2 and 𝛷 + 𝜋 < 𝜃 < 𝛷 + 3𝜋∕2

V = − V0 exp (i𝜔t) at r = R for 𝛷 + 𝜋∕2 < 𝜃 < 𝛷 + 𝜋 and 𝛷 + 3𝜋∕2 < 𝜃 < 𝛷 + 2𝜋

(46)V = (2∕�)V0 exp(i�t) tan
−1(4R2r2 cos(�−�) sin (�−�)∕

(
R4−r4

)
)

(47)V = (2∕�)V0 exp (i�t) tan
−1

⎡
⎢
⎢
⎢⎣

4R2(Y cos� + Z sin�)(Z cos�−Y sin�)
�
R4 −

�
Y2 + Z2

�2�
⎤
⎥
⎥
⎥⎦

.

(48)V = (2∕�)V0 exp(i�t) tan
−1

⎡
⎢
⎢
⎢⎣

4R2Y Z�
R4−

�
Y2 + Z2

�2�
⎤
⎥
⎥
⎥⎦

(49)
�XY = 2 c66eXY + 2 c14eXZ +

(
2 c66d11 + c14d14

)
EY

�XZ = 2 c14eXY + 2 c44eXZ +
(
2 c14d11 + c44d14

)
EY .
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The normal strain components eXX , eYY and eZZ are not assumed to vanish and in 
general they do not do so. Thus, the normal stress components �XX , �YYand �ZZ do 
not vanish either. It follows that it is appropriate to transform from {X,Y,Z} coordi-
nates to {X,X1,X2} coordinates where the X1- and X2-directions are aligned with the 

principal axes of the symmetric matrix 
(
c66 c14
c14 c44

)
 the eigen-values of which are 

�1 and �2 . Then

where � is �1 or �2 . It follows that

and so, arbitrarily assigning �1 and �2 and hence the X1- and X2-directions

so that

If λ is the angle between the Y- and X1-directions, and hence also between the Z- 
and X2-directions, and λ has the same sense as θ then

The two diagonal components of Eq. (54) merely reproduce Eq. (53); the two off-
diagonal components are the same and yield

For quartz,  c14 ≈ –18 GPa,  c66 ≈ 40 GPa and  c44 ≈ 58 GPa [21] so λ ≈ + 0.55 rad.
If �, �1 and �2 are the displacements in the X-, X1- and X2-directions, respectively, 

then for torsion through a small angle Φ (i.e. for є « 1)

where Φ is independent of X1 and X2, ∂Φ/∂X is the twist and �
(
X1,X2

)
 is the torsion 

function, which accounts for distortion of cross-sections that are planar and normal 
to the X-axis in the untwisted crystal. Thus

(50)det

(
c66 − � c14
c14 c44 − �

)
= 0

(51)� = 1∕2
�
c44+c66

�
± 1∕2

√�
c2
44
+ 2 c44c66 + c2

66
−4 c44c66 + 4 c2

14

�

(52)
�1 = 1∕2 (c44 + c66) + 1∕2

√
((c44−c66)

2 + 4c2
14
)

�2 = 1∕2 (c44 + c66) −1∕2
√
((c44−c66)

2 + 4c2
14
)

(53)�1 + �2 = c44 + c66, �1�2 = c44c66− c2
14
.

(54)
(

cos � sin �

−sin � cos �

)(
c66 c14
c14 c44

)(
cos � − sin �

sin � cos �

)
=

(
�1 0

0 �2

)
.

(55)� = 1∕2 tan−1
(
2 c14∕

(
c66− c44

))
.

(56)� = � ��∕�X, �1 = −X2�, �2 = +X1�

(57)eXX1
= 1∕2

((
��1∕�X

)
+

(
��∕�X1

))
= 1∕2 (��∕�X)

((
��∕�X1

)
−X2

)
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and

In the absence of the electric field, when EY = 0 then Eqs. (49) yield

on transformation to {X,X1,X2} coordinates and so, using Eqs. (57) and (58)

If we now introduce the stress function �
(
X1,X2

)
 such that

then it follows that

and

At the surface of the crystal (r = R), no force is exerted in the X-direction if 
the crystal is in vacuo: an insignificant force is exerted in the X-direction if the 
crystal is immersed in a fluid provided 𝜀R ≪ L . Thus, there is no force in the 
X-direction per unit area normal to the r-direction and hence �Xr = 0 at r = R . 
Now putting

and transforming coordinates, we have

so that

Since �Xr = 0 at r = R , it follows that χ is independent of γ and hence constant 
at r = R. Thus, to within an arbitrary integration constant,

(58)eXX2
= 1∕2

((
��2∕�X

)
+

(
��∕�X2

))
= 1∕2 (��∕�X)

((
��∕�X2

)
+ X1

)

(59)eXX = ��∕�X = � �2�∕�X2 ≠ 0.

(60)�XX1 = 2 �1eXX1 and �XX2 = 2 �2eXX2

(61)
�XX1 = �1(��∕�X)

((
��∕�X1

)
−X2

)
and �XX2 = �2(��∕�X)

((
��∕�X2

)
+ X1

)
.

(62)
��∕�X2 = + 1∕2

�
�1∕

√
�1�2

�
((��∕�X1)−X2)

��∕�X1 = − 1∕2
�
�2∕

√
�1�2

�
((��∕�X2) + X1)

(63)�1(�
2�∕�X2

1
) + �2(�

2�∕�X2
2
) = −

√
�1�2

(64)
�XX1

= + 2
√
�1�2(��∕�X) (��∕�X2)

�XX2
= − 2

√
�1�2(��∕�X) (��∕�X1).

(65)� = � − �

(66)
�Xr = + �XX1

cos � + �XX2
sin �

�X� = − �XX1
sin � + �XX2

cos �

(67)
�Xr = 2

√
�1�2(��∕�X)

��
��∕�X2

�
cos � −

�
��∕�X1

�
sin �

�

= 2
√
�1�2(��∕�X)(1∕r) (��∕��).
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The solution of Eq. (63) subject to Eq. (68) is

which is independent of γ. Thus ��∕�� = 0 for 0 ≤ r ≤ R and so �Xr = 0 every-
where in the cylinder and not just on its surface. Provided 𝜀 ≪ 1 , convective inertial 
effects are insignificant compared with transient inertial effects and the two trans-
verse components of the momentum conservation equation yield

Substitution of Eq. (56), Eq. (64) and Eq. (69) into Eq. (70) yields

Since Φ is independent of X1 and X2 and hence of r and � , it follows that the 
equation of motion is

provided there is no resistance to twisting at the surface of the cylinder, i.e. provided 
the crystal is not surrounded by fluid. Here, the polar second moment of area I is 
given by

and the moment of compliance Cm is given by

so

It follows from Eqs. (66) and (69) that

which is independent of γ.
The internal moment on a cross-section of cylinder is given by

(68)� = 0 at r = R.

(69)
� = 1∕2(

√
�1�2∕(�1 + �2))

�
R2−X2

1
−X2

2

�

= 1∕2(
√
�1�2∕(�1 + �2))

�
R2− r2

�

(70)
�c�

2�1∕�t
2 = ��XX1

∕�X,

�c�
2�2∕�t

2 = ��XX2
∕�X.

(71)�c�
2�∕�t2 = 2

(
�1�2∕

(
�1 + �2

))
�2�∕�X2.

(72)�cI �
2�∕�t2 =

(
1∕Cm

)
�2�∕�X2

(73)I = 1∕2� R4

(74)1∕Cm = 2 (�1�2∕(�1 + �2))

R

∫
0

r22�r dr

(75)Cm = ((�1 + �2) ∕(�1�2))∕�R
4 =

((
c44 + c66

)
∕
(
c44c66− c2

14

))
∕�R4.

(76)
�X� = −2

√
�1�2(��∕�X) (��∕�r)

= 2 r (�1�2∕(�1 + �2)) (��∕�X)
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It follows from Eqs. (62) and (69) that

Hence,

and so, assuming without loss of generality, that there is no displacement in the 
X-direction of the axis 

(
X1 = 0 = X2

)
 of the crystal

For quartz,  c14 ≈ –18 GPa,  c66 ≈ 40 GPa and  c44 ≈ 58 GPa [21] so ψ ≈ + 0.41 X1X2.
Clearly, 𝜓 > 0 where the product X

1
X
2
> 0 i.e. for𝜋∕2 < 𝛾 < 𝜋 and 3𝜋∕2 < 𝛾 < 2𝜋 

and 𝜓 < 0 where the product X1X2 < 0 i.e. for𝜋∕2 < 𝛾 < 𝜋 and 3𝜋∕2 < 𝛾 < 2𝜋.
Because � ≠ 0 except where the product X1X2 = 0 (i.e. where X1 = 0 and/or 

X2 = 0 ) and because ��∕�X ≠ 0 at X = 0 or X = L , the distortion causes the ends 
of the crystal to ripple. Here we note that although Φ is a maximum with respect to 
X at X = 0 and X = L , its gradient with respect to X does not generally vanish there 
because of the non-zero moments M||0 andM||L exerted by the fluid on the ends of the 
cylinder and, as will be seen shortly in Eq. (90), an additional piezoelectric contribu-
tion to those moments. These ripples in the ends of the crystal induce pressure fluc-
tuations in the fluid of order ��2�2R2 . It follows from Eqs. (18) and (30), however, 
that the shear stress components in the fluid are of order ���

√
� = ��2�2R2∕

√
�Re. 

Because Re « 1 or ~ 1 and є « 1, the effect of the ripples on the dynamics of the fluid is 
insignificant. Of course, for an isotropic solid where c14 = 0 , c44 = c66 = G , where 
G is the shear modulus, � = 0 and there is no distortion.

In the case where there is an electric field and EY ≠ 0 then Eqs. (49) yield

on transformation to 
{
X,X1,X2

}
 coordinates, where �1 and �2 are directly pro-

portional to EY , linear functions of d11 and d14 and non-linear functions of 

(77)
M = −

R

∫
0

r�X�2�r dr

= −
(
�1�2∕

(
�1 + �2

))
�R4(��∕�X) = − (1∕Cm) (��∕�X).

(78)

��∕�X2 = −X2

�√
�1�2∕

�
�1 + �2

��
= +1∕2

�
�1∕

√
�1�2

�
((��∕�X1)−X2)

��∕�X1 = −X1

�√
�1�2∕

�
�1 + �2

��
= −1∕2

�
�2∕

√
�1�2

�
((��∕�X2) + X1).

(79)
��∕�X1 =

((
�1− �2

)
∕
(
�1 + �2

))
X2

��∕�X2 =
((
�1− �2

)
∕
(
�1 + �2

))
X1

(80)
� =

((
�1− �2

)
∕
(
�1 + �2

))
X1X2

= (

√
((c44−c66)

2 + 4c2
14
)∕(c44 + c66))X1X2.

(81)
�XX1

= 2 �1eXX1
+ �1

�XX2
= 2 �2eXX2

+ �2
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c14, c44 and c66 : EY varies with position, i.e. with X1 and X2 . Thus Eq. (60) must be 
modified to yield

and so Eq. (61) becomes

Equations (62) and (63) are unchanged while Eq. (64) becomes

Transforming coordinates using Eq. (65) and putting

means that Eqs. (66) are unchanged while Eq. (67) becomes

It follows from the symmetry of the location of the electrodes that EY is anti-sym-
metric about the plane � = � + �∕2 ± �∕2 . Thus, at r = R , the average value of EY 
is zero and so, again at r = R the average value of �r is zero. Since �Xr = 0 at r = R , 
it follows that Eqs. (68) and hence Eq. (69) still hold in an average sense. The fact that 
they only hold in an average sense is consistent with the different functional depend-
ence of �1 and �2 on X1 and X2 from that of eXX1

and eXX2
 : the electric field does not 

induce pure torsion in the crystal. Equation (70) is unchanged and so, because EY and 
hence �1 and �2 are independent of X, Eqs. (71) to (75) inclusive are unchanged though 
Eqs. (71) and (72) hold only in an average sense. Again, in an average sense, Eq. (76) 
becomes

Note that, in the same average sense, both �X� and �� are independent of γ. 
Thus, the first of Eqs. (77) is unchanged while the second becomes

where the actual dependence of �� on r is acknowledged. Because �1 and �2 are 
directly proportional to EY and hence to the applied potential V, it follows from Eq. 
(85) that �� is directly proportional to V. It is convenient, therefore, to introduce an 
effective moment piezoelectric constant Dm given by

(82)
�XX1

− �1 = 2 �1eXX1

�XX2
− �2 = 2 �2eXX2

(83)
�XX1

− �1 = �1(��∕�X)
((
��∕�X1

)
−X2

)

�XX2
− �2 = �2(��∕�X)

((
��∕�X2

)
+ X1

)
.

(84)
�XX1

− �1 = +2
√
�1�2(��∕�X)

�
��∕�X2

�

�XX2− �2 = −2
√
�1�2(��∕�X)

�
��∕�X1

�
.

(85)
�r = �1 cos � + �2 sin �

�� = −�1 sin � + �2 cos �

(86)�Xr− �r = 2
√
�1�2(��∕�X) (1∕r) (��∕��).

(87)�X�− �� = 2r
(
�1�2∕

(
�1 + �2

))
(��∕�X).

(88)M = −
(
1∕Cm

)
(��∕�X)−

R∫
0

2�∫
0

r��r d�dr
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so that

Now, the components of the electric displacement D are given by

The surface charge per unit area is given by the outward normal component 
Dn of D at the surface of the crystal: thus Dn = −DX at X = 0 , Dn = +DX at X = L 
and Dn = +Dr at r = R . It follows from Eqs. (36), (43), (46) and (56) that

where ψ is given by Eq. (80) and

But

so

since σXr|R = 0.
Substitution from Eq. (87) yields in an average sense

where �� |R,�−� implies that �� is to be evaluated at r = R and γ = θ – λ.
The total surface charge Q on the crystal is given by

(89)Dm = −(1 ∕V)

R

∫
0

2�

∫
0

r��r d�dr

(90)M = −
(
1∕Cm

)
(��∕�X) + DmV

(91)DX = �1EX + 4�
(
d11�XX−d11�YY + d14�YZ

)

(92)DY = �1EY + 4�
(
− d14�XZ−2 d11�XY

)

(93)DZ = �3EZ

(94)DX
||0 = 4�d11�XX

||0 = 4�d11c11�
(
�2�∕�X2

)
|0

(95)DX
||L = 4�d11�XX

||L = 4�d11c11�
(
�2�∕�X2

)
|L

(96)
D
r
|
R
= D

Y
|
R
cos � + D

Z
|
R
sin� = 4�(−d14�XZ |R− 2 d11�XY |R) cos �+

(
�1EY

|
R
+ �3EZ

|
R
sin �

)
.

(97)
�XY = �Xr cos � − �X� sin �

�XZ = �Xr sin � + �X� cos �

(98)
Dr|R = 4�

(
−d14 cos � + 2d11 sin �

)
�X�

||R cos � +
(
�1EY |R cos � + �3EZ|R sin �

)

(99)

D
r
|
R
= 4�

(
− d

14
cos � + 2d

11
sin �

)[(
2R

(
�
1
�
2
∕
(
�
1
+ �

2

))
(��∕�X)

)
+ �� |R,�−�

]
cos �

+
(
�
1
E
Y
||Rcos� + �

3
E
Z
||R sin �

)
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It follows from Eqs. (94) and (95) that

Integration with respect to θ over the range 0 to 2π is the same as integration 
with respect to � = � −� over the range 0 to 2 π. Hence it follows from Eq. (80) 
that

since X1 = rcos� and X2 = rsin� and so

Thus, there is no net contribution to the total charge, Q, from the ends (z = 0 
and z = L) of the cylinder. This is true despite the fact that Eq. (87) holds only in 
an average sense: symmetry means that, although there is rippling of the ends of 
the crystal, there is no net strain in either end, which in turn means that there is 
no net stress on either end and hence no net electric displacement at either end. It 
follows, therefore, that Eq. (100) yields, in an average sense

Thus, again in an average sense

(100)Q =

R

∫
0

2�

∫
0

(
−DX|0 + DX|L

)
rd�dr + R

L

∫
0

2�

∫
0

Dr|Rd� dX.

(101)

R

∫
0

2�

∫
0

(
−D

X
||0 + D

X
||L
)
rd�dr = 4�d

11
c
11

[(
�2�∕�X2

)|||L−
(
�2�∕�X2

)|||0
] R

∫
0

2�

∫
0

�rd�dr.

(102)

R

∫
0

2�

∫
0

�rd�dr =

[ (
�1−�2

)
(
�1 + �2

)

] R

∫
0

r3dr

2�

∫
0

cos � sin � d�

(103)

R

∫
0

2�

∫
0

(
−DX

||0 + DX
||L
)
rd�dr = 0.

(104)

Q = 8�R2
[

�1�2

(�1+ �2)

] L∫
0

(��∕�X) dX
2�∫
0

(
− d14 cos � + 2 d11 sin �

)
cos � d�

+ 4�R
L∫
0

dX
2�∫
0

(
− d14 cos � + 2 d11 sin �

)
cos � �� |R,�−�d�

+ R

L

�
0

dX

2�

�
0

(
�1EY

||R cos � + �3EZ
||R sin �

)
d�.
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It follows from Eqs. (57), (58) and (81) that (�|L−�|0) is directly proportional 
to V, provided є « 1. Because τγ is also directly proportional to V, it follows that 
τγ is directly proportional to (�|L−�|0) . It is convenient, therefore, to introduce 
another effective moment piezoelectric constant Em given by

The capacitance C of the crystal is given by

or since є « 1

where EY = − �V∕�Y  , EZ = −�V∕�Z and V is given by Eq. (48).
We can write Eq. (105) as

(105)

Q = 8�R2
(

�1�2

(�1+ �2)

)
(�|L−�|0)

2�∫
0

(−d14 cos � + 2d11 sin �) cos �d�

+ 4�RL
2�∫
0

(−d14 cos � + 2d11 sin �) cos � �� |Rd�

+RL

2�

�
0

(�1EY |R cos � + �3EZ|R sin �)d�

(106)

Em = 8�R2

(
�1�2(

�1 + �2
)

) 2�

∫
0

(−d14 cos � + 2d11 sin �) cos �d�

+

(
4�RL

(�|L−�|0)

) 2�

∫
0

(−d14 cos � + 2d11 sin �) cos ��� |Rd� .

(107)

C =
�
RL

V

�

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

�+�∕2

∫
�

�
�1EY

��R cos � + �3EZ
��R sin �

�
d� −

�+�

∫
�+�∕2

�
�1EY

��R cos � + �3EZ
��R sin �

�
d�

+

�+3�∕2

∫
�+�

�
�1EY

��R cos � + �3EZ
��R sin �

�
d� −

2�

∫
�+3�∕2

�
�1EY

��R cos � + �3EZ
��R sin �

�
d�

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

(108)

C =
�
RL

V

�

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

�∕2

∫
0

�
�
1
E
Y
��R cos � + �

3
E
Z
��R sin �

�
d�−

�

∫
�∕2

�
�
1
E
Y
��R cos � + �

3
E
Z
��R sin �

�
d�

+

3�∕2

∫
�

�
�
1
E
Y
��R cos � + �

3
E
Z
��R sin �

�
d�−

2�

∫
3�∕2

�
�
1
E
Y
��R cos � + �

3
E
Z
��R sin �

�
d�

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

(109)Q = CV + Em

(
�||L−�||0

)
.
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The moment of compliance, Cm and the effective piezoelectric constants 
Dm and Em are defined by Eqs. (75), (89) and (106), respectively. They can, there-
fore, be determined, in principle, from the fundamental elastic and piezoelectric 
constants of the crystal as well as its dimensions (R and L). It is more conveni-
ent, however, to determine Cm, Dm and Em from the resonant and anti-resonant 
frequencies of the crystal in vacuo instead. The capacitance C is defined by Eq. 
(108) and can, therefore, be determined from the fundamental crystal constants 
(now also including �1 and �3 ) and the size of the crystal. It is more conveni-
ent, however, to determine C from the overall electrical properties of the crystal 
instead.

4  System Mechanics

For torsional motion of a cylinder in a fluid, Eq. (72) must be modified using Eq. 
(21) to yield

where M is given in Eq. (90).

Substitution of Eq. (1) into Eq. (110) yields

where

When the transient that occurs on start-up of the crystal has decayed, the solution 
of Eq. (111) is

where

so that

For practical viscometers, 
(
k∕𝜌cI

)
≪ 1 so ( b∕𝜔 a) =

(
k∕
(
𝜌cI+k

))
≪ 1 and so

(110)
(
�cI+k

)
�2�∕�t2 + � k ��∕�t =

(
1 ∕Cm

)
�2�∕�z2 = − �M∕�z

(111)d2�

dz2
+ a�2 �− i�b � = 0

(112)a = �cI Cm + k Cm, b = � k Cm

(113)� = � cosh (� z) + � sinh (� z)

(114)� = �r + i�i =

√(
−�2a + i� b

)

(115)�r =
√
(1∕2�2a (1 + (b2∕�2a2))1∕2− 1)

(116)�i =
√
(1∕2�2a (1 + (b2∕�2a2))1∕2 + 1),
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Now, at z = 0, Eqs. (1) and (113) yield

and Eq. (114) yields

Hence

and

The current, A, is given by A = dQ∕dt with Q given by Εquation (109) and so

Putting

using Eqs. (32) and (33). Then Eqs. (120) and (121) become

and

Thus, eliminating M|L and M|0

and so, eliminating (��∕�t)|L

(117)�r =
b

2
√
a
, �i = �

√
(a (1 + (b2∕ 4�2a2))1∕2) = �

√
a.

(118)i�� exp (i�t) = ��∕�t|0

(119)� exp (i� t) = −
(
Cm∕�

) (
M|0−DmV

)
.

(120)��∕�t = ��∕�t|0cosh(� z)−
(M|0 − DmV)(
�∕i�Cm

) sinh (� z)

(121)

(
M−DmV

)
=

(
M|0−DmV

)
cosh (� z) −

(
�∕i�Cm

) (
��∕�t|0

)
sinh (� z).

(122)A = i�CV + Em

{||||
��

�t

||||L
−
||||
��

�t

||||0

}
.

(123)
Z1 = �∕i�Cm, Z2 = +M|L∕(��∕�t)|L = −M|0∕(��∕�t)|0 = 1∕4(1 + i)k�R

(124)(��∕�t)|L = (��∕�t)|0 cosh(�L) −
((
M|0−

(
DmV

))
∕Z1

)
sinh(�L)

(125)
(
M|L−

(
DmV

))
=

(
M|0−

(
DmV

))
cosh(�L) − Z1(��∕�t)|0 sinh(�L).

(126)
(��∕�t)||L = (��∕�t)||0 cosh (� L) +

((
Z2∕Z1

)
(��∕�t)|0+

(
DmV∕Z1

))
sinh (� L)

(127)

(
Z
2

Z
1

(
��

�t

)||||L
−
(
D

m
V ∕ Z

1

))
= −

(
Z
2

Z
1

(
��

�t

)||||0
+

(
D

m
V

Z
1

))
cosh (� L)−

(
��

�t

)||||0
sinh (�L)
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while

Thus, the general equation for the current, Eq. (122), becomes

4.1  Crystal in Vacuo

For a crystal in vacuo, k = 0 and a = ρc I Cm, b = 0.
Thus,

and

Hence Eq. (130) becomes

or

Thus |A| → ∞ and resonance occurs when � = �0R where �0R is given by

which can, of course, be used to determine Cm. Also |A| → 0 and anti-resonance 
occurs when � = �0A where �0A is given by the solution of

(128)
(
��

�t

)
|0 = DmV

[(
−Z2∕Z1

)
+ cosech(� L) − coth (� L)

Z1 +
(
Z2
2
∕Z1

)
+ 2Z2 coth (� L)

]

(129)
(
��

�t

)||||L
= −

(
��

�t

)||||0
=DmV

[ (
Z2∕Z1

)
+ tanh (1∕2� L)

Z1 +
(
Z2
2
∕Z1

)
+ 2 Z2 coth (� L)

]
.

(130)A = i�CV + 2DmEmV

(
Z2∕Z1

)
+ tanh(1∕2�L)

(Z1 +
(
Z2
2
∕Z1

)
+ 2 Z2 coth(�L))

.

(131)�r = 0, �i = �
√
�cI Cm

(132)Z1 =

√(
�cI∕Cm

)
, Z2 = 0.

(133)A = i�CV + 2DmEmV
tanh(1∕2 i�L

√
�cI Cm)√

�cI Cm

(134)A = i V
�C + 2DmEm tan(1∕2�L

√
�cI Cm))√

�cI Cm

.

(135)�0R =
�

L
√
�cI Cm
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If we let

then

The use of trigonometric relationships leads to

In practice, Δ𝜔0 ≪ 𝜔0R so, since tan (x) = x for x ≪ 1

thus, Eq. (136) yields

whence, because Δ𝜔0 ≪ 𝜔0R

which can be used to determine the product DmEm . We note that, although 
Dm and Em are not determined separately, it is only their product that is of relevance. 
We also note that it follows from Eq. (142) that Δ𝜔0 > 0 so that 𝜔0A > 𝜔0R.

4.2  Cystal in a Fluid

If there is fluid around the crystal, substitution of Eq. (142) into Eq. (130) yields

Now we can assume that near resonance in the fluid, � ∼ �0R so that 
𝛤r ≪ 𝛤i ∼ 𝜋∕L . Expanding tanh (1∕2� L) yields

Since 𝛤r ≪ 𝛤i ∼ 𝜋∕L it follows that

(136)�0AC + 2DmEm

tan(1∕2 i�0AL
√
�cI Cm)√

�cICm

= 0.

(137)�0A = �0R + Δ�0

(138)tan(1∕2�0AL
√
�cI Cm) = tan(1∕2�0RL

√
�cI Cm)(1 + (Δ�0∕�0R)).

(139)tan(1∕2�0AL
√
�cI Cm) = − 1 ∕ tan

�
�Δ�0

2�0R

�
.

(140)tan(1∕2�0AL
√
�cI Cm) = −(2∕�) (�0R∕Δ�0)

(141)�0R(1 + (Δ�0∕�0R))C = 4DmEm�0R∕ (
√
(�cI∕Cm)�Δ�0)

(142)DmEm = 1∕4�
√
(�cI∕Cm)CΔ�0 = 1∕4�2

�
C∕CmL

�
(Δ�0∕�0R)

(143)

A = V

{
i�C+ 1∕2�2

(
C ∕C

m
L
)
(Δ�

0
∕�

0R
)

[ (
Z
2
∕Z

1

)
+ tanh(1∕2�L)

(Z
1
+

(
Z
2

2
∕Z

1

)
+ 2 Z

2
coth(�L))

]}
.

(144)

tanh(1∕2�L) = tanh(1∕2 (�r + i�i)L) =

[
tanh(1∕2�rL) + i tan(1∕2�iL)

]
[
1 + i tanh(1∕2�rL) tan(1∕2�iL)

] .
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But Eqs. (112), (117) and (135) yield

so, if

it follows that

Thus Eq. (145) yields

and, since 𝛤r ≪ 𝛤i ∼ 𝜋 ∕L, |Δ𝜔|∕𝜔0R ≪ 1 and
(
k∕𝜌cI

)
≪ 1

expanding tanh(�L)

since tan (� + x) = tan (x).

Now, because 𝛤r ≪ 𝛤i ∼ 𝜋∕L, |Δ𝜔|∕𝜔0R ≪ 1 and
(
k∕𝜌cI

)
≪ 1

and so, to leading order

Thus Eq. (143) becomes

where

(145)

tanh(1∕2�L) =
i

(cot(1∕2�iL) + i tanh(1∕2�rL))
=

1

(tanh(1∕2�rL) − i cot(1∕2�iL))
.

(146)�iL = � L

√(
�cI Cm + k Cm

)
= �

(
� ∕�0R

)√(
1 +

(
k ∕�cI

))

(147)� = �0R + Δ�

(148)tan(1∕2�iL) = −1
/
tan

[
�

2
((Δ�∕�0R) + 1∕2 (k ∕�cI))

]
.

(149)tanh(�L∕2) =
1

tanh(�rL∕2) + i tan((�∕2)((Δ�∕�0R) + (k∕�cI)∕2))

(150)

tanh(�L) = tanh((�
r
+ i�

i
)L) =

tanh(�
r
L) + i tan(�

i
L)

1 + i tanh(�
r
L) tan(�

i
L)

=
tanh(�

r
L) + i tan(�((Δ�∕�

0R
) + 1∕2 (k ∕�

c
I)))

1 + i (tanh(�
r
L) tan(�(1 + (Δ�∕�

0R
))
√
(1 + (k ∕�

c
I))))

(151)coth(�L) =
1− i�

r
L�((Δ�∕�

0R
) + 1∕2 (k ∕�

c
I))

�
r
L + i�((Δ�∕�

0R
) + 1∕2 (k ∕�

c
I))

(152)coth(�L) =
�rL− i�((Δ�∕�0R) + 1∕2 (k ∕�cI))

(�rL)
2 + (�((Δ�∕�0R) + 1∕2 (k ∕�cI)))

2
.

(153)A = V
[
i�C + (�2

/
2)
(
C∕CmL

) (
Δ�0∕�0R

)
Ξ
]



 International Journal of Thermophysics (2021) 42:120

1 3

120 Page 26 of 40

It follows from Eq. (123) that

 and from Eq. (146) that 𝛤r ≪ 𝛤i ∼ 𝜔∕
(
𝜔0RL

)
so Z2∕Z1 ∼ k𝜔2RCm∕

(
𝜔∕

(
𝜔0R∕L

))
. 

But � ∼ �0R so, using Eq. (135), it follows that Z2∕Z1 ∼ kR ∕
(
�cIL

)
. Hence, 

because k∕
(
𝜌cI

)
≪ 1 and R∕L ≪ 1 or ∼ 1 in practice, it follows that Z2∕Z1 ≪ 1. 

Thus, to leading order

and so

Put

where from Eq. (123)

Because Z1 = 𝛤i∕
(
𝜔Cm

)
since 𝛤r ≪ 𝛤i ∼ 𝜋∕L , it follows that Z1 is real to lead-

ing order and hence

For an electrical circuit comprising a capacitance, C1, in parallel with a series 
combination of a resistance R2, an inductance, L2 and a capacitance C2, an applied 
potential V = V0 exp (i�t) gives the total current A through the whole electrical cir-
cuit as

Comparison of Eqs. (153) and (160) with Eq. (161) reveals the following 
equivalences

(154)Ξ =

(
Z2∕Z1

)
(�rL + i�((Δ�∕�0R) + 1∕2 (k ∕�cI))) + 2

(
Z1 +

(
Z2
2
∕Z1

))
((�rL + i�((Δ�∕�0R) + 1∕2 (k ∕�cI)))) + 2 Z2

.

(155)Z2∕Z1 = 1∕4 (1 + i) k�R∕
((
�r + i�i

)
∕i�Cm

)

(156)Ξ = 1∕
[
Z2 + 1∕2 Z1

(
�rL + i�

((
Δ�∕�0R

)
+ 1∕2

(
k∕�cI

)))]

(157)A = V
i�C + ((�2∕2)

(
C ∕CmL

)
(Δ�0∕�0R)

(Z2 + 1∕2Z1(�rL + i�((Δ�∕�0R) + 1∕2 (k ∕�cI)))))
.

(158)Z2 = Z2r + i Z2i

(159)Z2r = Z2i =
1∕4k�R.

(160)
Ξ = 1 ∕[(Z2r + 1∕2 Z1�rL) + i(Z2i + 1∕2 Z1�((Δ�∕�0R) + 1∕2 (k∕�cI)))].

(161)A = V [i�C1 + (1∕(R2 + i(�L2− (1∕�C2))))].

(162)C1 ≡ C

(163)R2 ≡ (Z2r + 1∕2 Z1�rL)∕(1∕2�
2(C∕CmL)(Δ�0∕�0R))
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If we let

then the impedance, Z , is

and finally

If the crystal in the fluid is balanced in a bridge circuit by a variable resistance R* 
in parallel with a variable capacitance C* then an applied potential V gives a current 
V/R* in the resistance and a current V i ω C* in the capacitance. Thus, the imped-
ance Z* is given by

If the bridge is balanced, then Z∗ = Z and so Eqs. (167) and (168) yield

and

whence

Thus,

or

and

or

(164)�L2 − (1∕�C2) ≡ [Z2i + 1∕2Z1�((Δ�0∕�0R) + 1∕2(k∕�cI))]

[1∕2�2(C∕CmL)(Δ�0∕�0R)]
.

(165)� = � L2−
(
1∕�C2

)

(166)
Z = 1 ∕ [i�C1 + (1 ∕ (R2 + i�))

]
= 1∕

[
i�C1 + ((R2− i�) ∕ (R2

2
+ �2))]

(167)Z = [R2− i (�C1R
2
2
+ �C1�

2−Σ)
]
∕
[
(1−�C1�)2 + (�C1R2)

2].

(168)Z∗ = 1∕((1 ∕R∗) + i�C∗) = (R∗− i�C∗R∗2) ∕
(
1 + (�C∗R∗)

2
)
.

(169)R∗∕(1 + (�C∗R∗)2) = R2∕((1−�C1�)2 + (�C1R2)
2)

(170)
�C∗R∗2∕(1 + (�C∗ R∗)2) = [(�C1R

2
2
) + (�C1�

2) −�
]
∕
[
(1−�C1�)2 + (�C1R2)

2]

(171)�C∗R∗ = ((�C1R
2
2
) + (�C1�

2) −�)∕R2.

(172)
R∗ = R2[1 + (((�C1R

2
2
) + (�C1�

2) −�)2∕R2
2
)
]
∕
[
(1−�C1�)2 + (�C1R2)

2]

(173)R∗ = R2(1 + (�2∕R2
2
))

(174)C∗ = [(�C1R
2
2
) + (�C1�

2) −�
]
∕
[
�R2

2
(1 + (�2∕R2

2
))]
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Note that the minimum value of the resistance, R*, with respect to frequency ω 
occurs when

and then

It follows from Eq. (165) that Σ vanishes at a frequency 𝜔 = �̃� given by

If 𝜔 ≪ �̃� or 𝜔 ≫ �̃� then |𝛴| ≫ R2 and it follows from Eqs. (173) and (175) 
that R∗

→ ∞ and C∗ = C1.

When the crystal is immersed in a fluid, resonance is, in practice, defined to occur 
not when |A| is a maximum but when the balancing resistance R∗ in the bridge circuit 
is a minimum. Using Eqs. (164), (165) and (175), it follows that resonance occurs 
when � = �1R = �0R + Δ�1 where Δω1 is given by

or

which shows that Δ𝜔1 < 0 , so that 𝜔1R < 𝜔0R . Also, since 
k∕
(
𝜌cI

)
≪ 1 and (R∕L) ≪ 1 or ∼ 1 in practice, it follows that |Δω1| /ω0R ≪ 1, as 

assumed originally, thus proving consistency. Substituting for k using Eq. (22) and 
for I using Eq. (73) yields

The term (1 + (R∕L)) in Eq. (181) is a result of the two contributions to viscous 
drag on the crystal: the first from its curved surface at r = R and the second, a factor 
(R/L) of the size of the first, from its ends at z = 0 and z = L.

5  Working Equations for a Viscometer

In order to use the torsional quartz crystal as a viscometer it is necessary to explic-
itly relate the viscosity of the fluid surrounding the crystal to parameters of the reso-
nance that can be measured with a small uncertainty and to the measurable physical 
characteristics of the crystal. When the idea of the viscometer was first proposed by 
electrical engineers, it was possible to attain the greatest relative precision in the 

(175)C∗ = C1−
[
� ∕

(
�R2

2

(
1 +

(
�2∕R2

2

)))]
.

(176)� = 0

(177)R∗ = R2, C
∗ = C1.

(178)�̃� = 1 ∕
√
L2C2.

(179)Δ�1 = −�0R[(2∕�)
(
Z2i∕Z1

)
+ (1∕2 k∕(�cI))]

(180)Δ�1 = −�0R(1 + (R ∕L))k∕
(
2�cI

)

(181)
Δ�1 = −

�
�R3∕

�
�cI

��√
1∕2 � ��0R(1 + (R ∕L))

= −
�
2 ∕

�
�cR

��√
1∕2 � ��0R(1 + (R ∕L))
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measurement of the width of the resonant peak. However, we should also recognize 
that with modern instrumentation it is possible to achieve exceedingly high preci-
sion in the measurement of the resonant frequency itself so that we also consider 
first that quantity in devising a working equation for the viscometer. Subsequently 
we return to the bandwidth measurement to find a second working equation.

5.1  Working Equation for the Resonant Frequency with Only Viscous Losses

It follows from Eq. (181) and using Eq. (73) that the viscosity of the fluid, assuming 
that there are no losses in the system except viscous losses is given by

5.2  Working Equation for a Real Crystal

In a real crystal, there is bound to be non-viscous damping resulting from internal 
losses. In addition, there will inevitably be losses such as those arising from the 
crystal support.

As a result, Eq. (110) must be replaced by

where all non-viscous losses are accounted for in the damping coefficient, K, and all 
viscous losses are accounted for in k. The presence of non-viscous damping means 
that ω0R given by Eq. (135) is a theoretical quantity that cannot be measured directly 
and also cannot be determined from Eq. (135) since Cm is unknown. Thus �0R is 
not the resonant frequency of the real crystal in vacuo: instead, resonance in vacuo 
must be defined to occur when the balancing resistance R∗ in the bridge circuit is a 
minimum, just as it is for a crystal in a fluid. Henceforth, it is assumed that the crys-
tal is a real one so that K ≠ 0 and, for clarity, all frequencies for the real system are 
denoted with a superscript *.

For the real crystal in vacuo then k = 0 and it follows by analogy with Eq. (180) 
that

where �0R is given by Eq. (135) and it follows that

(182)� =
�2
c
R2(�0R−�1R)

2

2[��0R(1 + (R ∕L))2]
.

(183)
(
�cI+k + K

) �2�

�t2
+ �(k+K)

��

�t
=

(
1∕Cm

) �2�

�z2
= −

�M

�z

(184)�∗
0R

= �0R

{
1−

[
1∕2(1 + (R ∕L))K ∕(�cI)

]}
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If the crystal is in a fluid, then k ≠ 0 and it follows by analogy with Eq. (180) that

where �0R is again given by Eq. (135) and it follows that

Because any well-designed viscometer would ensure that K ≪ or ∼ k , it fol-
lows that K∕

(
𝜌cI

)
≪ 1 and so it follows from Eqs. (184) and (186) that �∗

0R
 is 

slightly lower than �0R and that in turn, �∗
1R

 is slightly lower than �∗
0R

 It follows 
from Eqs. (185) and (187) that

from which it follows using Eqs. (22) and (73) that

This cannot be used as a working equation for the viscometer as it stands because 
it still contains �0R which cannot be measured directly.

No electrical power is dissipated in the capacitance C∗ in the bridge circuit pro-
vided it is a pure capacitance: the power, P, is dissipated only in the resistance R∗ 
and is given in terms of the root-mean-square voltage Vrms and root-mean-square 
current Arms by

and it follows from Eq. (45) that

At resonance, R∗ is given by Eq (177) and so the electrical power at resonance 
when the crystal is in vacuo P0R or in a fluid P1R is given by

where the value of the resistance, R2 is, of course, different when the crystal is in 
vacuo from when it is in a fluid.

The bandwidth B∗
0
 for the crystal in vacuo is the difference between the two 

frequencies 𝜔∗
0+

(
> 𝜔∗

0R

)
and 𝜔∗

0−

(
< 𝜔∗

0R

)
 where the power is (arbitrarily but 

(185)K =
2(�0R − �∗

0R
)�cI[

�0R(1 + (R ∕L))
] .

(186)�∗
1R

= �0R

{
1−

[
(1 + (R ∕L))K

2(�cI)

]
−

[
(1 + (R ∕L)) k

2(�cI)

]}

(187)k + K =
2(�0R−�

∗
1R
)�cI

�0R(1 + (R ∕L))
.

(188)k =
2
(
�∗
0R

−�∗
1R

)
�cI

�0R(1 + (R ∕L))

(189)� =
�2
c
R2�∗

1R
(�∗

0R
−�∗

1R
)2

2��2
0R
(1 + (R ∕L))2

.

(190)P = V2
rms

∕R∗ = A2
rms

R∗

(191)P = 1∕2V2
0
∕R∗.

(192)P0R = P1R = 1∕2V2
0
∕R2
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conventionally) P0R

/
2 : it is related to the quality factor Q∗

0
 , where it is assumed 

that Q∗
0
≫ 1 , by

Similarly, the bandwidth B∗
1
 for the crystal in a fluid is the difference between 

the two frequencies 𝜔∗
1+

(
> 𝜔∗

1R

)
and 𝜔∗

1−

(
< 𝜔∗

1R

)
 where the power is P1R∕2 : it is 

related to the quality factor Q∗
1
, where it is assumed that Q∗

1
≫ 1 , by

Thus, if P = P0± = 1∕2P0R when �∗ = �∗
0+

or �∗ = �∗
0−

 and 
P = P1± = 1∕2P1R when �∗ = �∗

1+
or �∗ = �∗

1−

and so

and the current Arms is a factor of 
�
1
�√

2
�
 smaller than its value at resonance. 

Hence, using Eq. (173)

For notational convenience, let �∗
0±

 denote �∗
0+

or �∗
0−

 and let Δ�∗
0±

 denote 
Δ�∗

0+
or Δ�∗

0−
 where

and

so that, combining Eqs. (198) and (199)

Then, using Eqs. (164) and (165) with k replaced by K because k = 0 when the 
crystal is in vacuo,

Using Eqs. (135) and (146) with k replaced by K and noting that 𝛤r ≪ 𝛤i , it 
follows from Eq. (155) that

(193)B∗
0
= �∗

0+
−�∗

0−
= �∗

0R
∕Q∗

0
.

(194)B∗
1
= �∗

1+
−�∗

1−
= �∗

1R
∕Q∗

1
.

(195)P0± = P1± = 1∕4V2
0
∕R2

(196)R∗ = 2R2

(197)� = ±R2.

(198)Δ�∗
0+

= �∗
0+

− �∗
0R

(199)Δ�∗
0−

= �∗
0−

− �∗
0R

(200)Δ�∗
0±

= �∗
0±

− �∗
0R
.

(201)± 1 =

(
Z2i∕Z1

)
+ 1∕2�{(Δ�∗

0±
∕�∗

0R
) + 1∕2(K∕�cI)}

(
Z2r∕Z1

)
+ 1∕2�rL

.

(202)
Z2

Z1
=

(1 + i)�(K ∕�cI) (�
∗
0±

∕�∗
0R
) (R ∕L)

4
√
(1 + (K ∕�cI))
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so, using Eq. (73) and since K ∕
(
𝜌cI

)
≪ 1

Using Eqs. (112), (117) and (73) with k replaced by K

whence, using Eq. (135)

Thus, since �∗
0±

= �∗
0R

 to leading order

and

Thus Eq. (201) becomes, using Eq. (73)

whence

so Δ𝜔∗
0±

≤ 0 and
|||Δ𝜔

∗
0±

||| ∕𝜔
∗
0R

≪ 1 since K∕
(
𝜌cI

)
∼ K∕

(
𝜌cR

4
)
≪ 1 so 

�∗
0±

= �∗
0R

 to leading order (proving consistency). It follows that

which can be rearranged to give

which can be used to determine K. Note that it follows from Eq. (193) and Eq. (211) 
that Q∗

0
∼ 𝜌cR

4∕K ≫ 1 , as assumed (proving consistency).
If the crystal is immersed in a fluid, then K is replaced by (k + K), B∗

0
 is replaced 

by B∗
1
 and �∗

0R
 is replaced by �∗

1R
 in Eqs (210) and (211). Hence

(203)Z2r∕Z1 = Z2i∕Z1 = 1∕2 (K∕�cR
4) (�∗

0±
∕�∗

0R
) (R∕L).

(204)�rL = 1∕2�∗
0±
KCmL∕

��
�cI Cm

�
= 1∕2�∗

0±
K
√
CmL∕

��
�c

1∕2� R4
�

(205)
�rL = 1∕2�∗

0±

(
KL ∕

√(
�c

1∕2� R4
))(

�∕

(
�∗
0R
L

√(
�c

1∕2� R4
)))

=
(
�∗
0±
∕�∗

0R

) (
K∕�cR

4
)
.

(206)Z2r∕Z1 = Z2i∕Z1 = 1∕2 (K∕�cR
4)(R∕L)

(207)�rL =
(
K∕�cR

4
)
.

(208)±1 =
{[1∕2 (K∕�cR

4) ((R∕L) + 1)] + 1∕2�(Δ�∗
0±
∕�∗

0R
)}

[1∕2 (K∕�cR
4) ((R∕L) + 1)]

(209)Δ�∗
0±

= −�∗
0R
(1−(± 1))(K∕��cR

4)(1+(R∕L))

(210)B∗
0
= 2�∗

0R

(
K∕��cR

4
)
(1 + (R∕L))

(211)K =

(
B∗
0
∕�∗

0R

)
��cR

4

2(1 + (R∕L))

(212)B∗
1
= 2�∗

1R

(k + K)

��cR
4

[
(1 + (R ∕L))

]
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and

whence, eliminating K using Eq. (211)

It follows from Eq. (214) using Eq. (22) that to leading order

Note that Eq. (215) is, like Eq. (182), similar in form to Eq. (189). However, 
unlike Eq. (182), Eq. (215) is a practical working equation for viscosity since it 
does not involve the experimentally inaccessible �0R : all parameters on the right-
hand side of Eq. (215) can be measured directly. An alternative form of Eq. (215) 
can be obtained by noting that the mass of the crystal, Mc , is given by

and the total surface area of the crystal (including its ends) Sc is given by

Thus, it follows from Eq. (215) that

Note that it follows from Eqs. (194) and (214) using Eq. (22) that 
Q∗

1
∼ �cR ∕

√
� � ∕�∗

0R
 so the fact that Δ𝜔0

/
𝜔0R ≪ 1 and Δ𝜔1∕𝜔1R ≪ 1 implies 

that the resonant frequencies of the crystal in vacuo and in a fluid are not very 
different and in turn that Q∗

1
≫ 1, as assumed (proving consistency). Moreover, it 

is clear that Q∗
0
> Q∗

1
so Q∗

0
≫ 1 , as assumed (again proving consistency). As a 

result, it follows that the conditions under which Eq. (218) holds are precisely the 
same as those under which Eq. (189) holds. In addition, however, in order not to 
compromise the accuracy with which viscosity can be measured, it is necessary 
that:

Note that K can be eliminated between Eqs. (185) and (211) using Eq. (73) to 
yield

so ω0R can be eliminated from Eq. (189) to yield

(213)k + K = (B∗
1
∕�∗

1R
)

��cR
4

2(1 + (R ∕L))

(214)k =
[(B∗

1
∕�∗

1R
) − (B∗

0
∕�∗

0R
)]

2(1 + (R ∕L))
��cR

4.

(215)� =
�2
c
R2�∗

1R

[
(B∗

1
∕�∗

1R
) − (B∗

0
∕�∗

0R
)
]2

8�(1 + (R ∕L))2

(216)Mc = �c�R
2L

(217)Sc = 2�RL (1 + (R∕L)).

(218)� = 1∕2�∗
1R

(
Mc∕Sc

)2
[(B∗

1
∕�∗

1R
) − (B∗

0
∕�∗

0R
)]2∕�.

(219)
(
B∗
1
∕𝜔∗

1R

)
≫

(
B∗
0
∕𝜔∗

0R

)
.

(220)�0R = �∗
0R
∕
(
1− 1∕2

(
B∗
0
∕�∗

0R

))
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or 

This is a working equation for the viscosity in terms of resonant frequencies in 
which all terms on the right-hand side can be measured directly.

6  Effects of Departures from the Ideal Model of the Viscometer

We have already considered the major departure of the viscometer from the ideal 
model of it by allowing there to be losses in the crystal itself and its support. How-
ever, there are several other possible effects which we should consider in order either 
to be able to apply a correction to the working equations for the viscometer or to 
render them negligible by design.

6.1  Ellipticity

It is always possible that the quartz crystal departs from the exact cylindrical shape 
assumed. Thus, we suppose the quartz crystal is a right cylinder of (weakly) ellipti-
cal (as opposed to circular) cross-section with major (or respectively minor) radius A 
and minor (or respectively major) radius B (thus A = R = B if the crystal is of circular 
cross-section). In cylindrical polar coordinates {r,θ,z}, the surface of the crystal is 
defined by

where the radius A is oriented at an angle Θ to the Y-direction.
We define the ellipticity, e, as

where |e| « 1 and e = 0 corresponds to a crystal of circular cross-section. Now con-
sider two identical crystals of (weakly) elliptical cross-section, the first with B < A 
and

so that

(221)� =
�2
c
R2�∗

1R
(�∗

0R
−�∗

1R
)2(1−1∕2(B∗

0
∕�∗

0R
))2

2��∗2
0R
(1 + (R ∕L))2

(222)� =

(
M

c

S
c

)2
2�∗

1R
(�∗

0R
−�∗

1R
)2(1−1∕2(B∗

0
∕�∗

0R
))2

��∗2
0R

.

(223)
(
r2∕A2

)
cos2(�−�) +

(
r2∕B2

)
sin2(�−�) = 1

(224)e = 1− (B ∕A)

(225)B∕A = 1− e∗

(226)e = e∗
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and the second (the same as the first but with the major and minor radii rotated 
by ± ½ π) with A < B and

so that

If the two crystals are surrounded by the same fluid with all conditions identi-
cal, other than the reciprocal orientations of the major and minor radii, then the two 
systems are entirely equivalent and have identical resonant frequencies �∗

0R
and �∗

1R
. 

Since |e| « 1, we assume that �∗
#R

 (where # = 0 or 1) can be expanded in a power 
series as follows

Clearly, �0R0 = �0R and �1R0 = �1R for a crystal of circular cross-section. 
Expanding �∗

#R
 using Eq. (226) yields

and expanding �∗
#R

 using Eq. (228) yields

whence, equating coefficients of like powers of e∗ , Eqs. (230) and (231) together 
yield

This implies that ellipticity (ie non-circularity) has no effect on the resonant fre-
quencies to first order, i.e. O(e): the only effect of ellipticity is at higher order. Note 
that, conventionally, the eccentricity ecc of an ellipse is defined as

where B < A to give a real value of ecc. Clearly, ecc is related to e as follows

but use of the ellipticity instead of the eccentricity greatly simplifies the reciprocity 
argument. It is generally possible to arrange that the ellipticity of a crystal is such 
that its effect can be rendered negligible.

(227)A∕B = 1− e∗

(228)e = − e∗ − e∗2 − e∗3 + O
(
e∗4

)
.

(229)�∗
#R

= �#R0 + e�#R1 + e2�#R2 + e3�#R3 + O
(
e4
)
.

(230)�∗
#R
(e∗) = �#R0 + e∗�#R1 + e∗2�#R2 + e∗3�#R3 + O

(
e∗4

)

(231)
�∗
# R

(
− e∗− e∗2− e∗3 + O

(
e∗4

))
= �# R0−

(
e∗ + e∗2 + e∗3

)
�# R1

+
(
e∗2 + 2e∗3

)
�# R2 − e∗3�# R3 + O

(
e∗4

)

(232)
�#R1 = 0

�#R3 = �#R2.

(233)ecc =

√(
1−

(
B2∕A2

))

(234)ecc =
√
(2 e)

�
1− 1∕4 e + O

�
e2
��

≈
√
2 e.
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6.2  Surface Roughness

Various causes, such as the crystal production or the way the electrodes are attached 
to the crystal, may mean that the surface of the crystal is not perfectly smooth. If the 
surface roughness is characterized by a linear dimension lr (where lr ≪ R ) then, in 
order that roughness does not have a significant effect on the behavior of the crys-
tal, it is necessary that the roughness is insignificant compared with the shear layer 
thickness d, i.e.

It is a matter of manufacture and design to ensure that this condition is 
met. Table  2 shows that if the roughness is at the level of optical wavelengths 
( 0.5�m ), then for typical crystals used and for the fluids usually studied to date 
lr
√
(��0R)∕� ∼ 10−1 − 10−2.

6.3  Containing Vessel

The crystal is immersed in a fluid, the viscosity of which is to be determined 
and the fluid must be held within a vessel (perhaps pressurized). If L∗ denotes 
the typical distance between the wall of the containing vessel and all surfaces 
of the crystal ( at r = R and at z = 0 and at z = L ) then the presence of the walls 
of the containing vessel does not significantly interfere with the behavior of the 
crystal if the thickness, d, of the shear layer is very small compared with L∗ i.e. if 
d∕L∗ ∼ (R∕L∗)∕

√
𝛺 ≪ 1 i.e.

since 
√
𝛺 ≫ 1 . This can readily be achieved by a suitable design.

6.4  Variable Fluid Properties

The viscosity, μ, and density, ρ, both vary with pressure, p, and temperature, 
T. As already noted, the flow induces pressure fluctuations in the fluid of order 
��2�2R2 so the effect of pressure variations on the measured viscosity, μ, is neg-
ligible provided

and the effect of pressure variations on the density is negligible provided that

and provided the Mach number Ma « 1, as already noted.
For an imposed (or adventitious) temperature difference ΔT* in the system, the 

effect of temperature variations on the viscosity is negligible provided that

(235)lr ≪ d ∼ R ∕
√
𝛺 =

√
𝜇∕(𝜌𝜔0R).

(236)R∕L∗ ≪ 1 or ∼ 1

(237)𝜌𝜔2
0R
𝜀2R2|𝜕𝜇∕𝜕p|∕𝜇 ≪ 1

(238)𝜌𝜔2
0R
𝜀2R2|𝜕𝜌∕𝜕p| ∕𝜌 ≪ 1
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and the effect of temperature variations on the density, ρ, is negligible provided that

Here, |��∕�p|, |��∕�p|, |��∕�T| and |��∕�T| are all evaluated at the ambient 
temperature of the fluid. Table 2 shows these conditions are easily satisfied.

6.5  Decay of Initial Transient

In order for the transient that occurs on start-up of the flow to decay sufficiently 
for Eq. (5) to hold, a time t* must elapse that is much larger than the characteris-
tic time, (d2 ρ/μ) for a shear wave to propagate through the shear layer of thick-
ness d. Since d ∼ R∕

√
� where Ω is given by Eq. (10), the start-up transient has 

decayed sufficiently if

Again, this is a condition easily satisfied in practice as Table 2 shows.

6.6  Edges

The moments M||L andM||0 exerted on the ends of the crystal by the fluid are given 
by Eqs. (32) and (33) respectively, assuming that rippling of the ends of the crystal 
at z = 0 or z = L has a negligible effect. An additional correction should, however, be 
made in the vicinity of what might be termed the edges of the cylinder where r = R 
and z = 0 or z = L. The shear stress exerted by the crystal on the fluid σrθ is given by 
Eq. (18) in the region where 0 ≤ z ≤ L and r = R. The shear stress exerted by the crys-
tal on the fluid σzθ is given by Eq. (30) in the region where z =L and 0 ≤ r ≤ R. At the 
edge at z = L and r = R, Eqs. (18) and (30) can be combined to give

where n denotes the outer normal to the surface of the crystal. Clearly, Eq. (242) 
also holds at the other corner at z = 0 and r = R. Thus, the shear stress σnθ|R,L giv-
ing rise to the moment and hence the loading by the fluid on the cylinder is con-
tinuous over the entire the surface of the cylinder, though its gradient is discontinu-
ous at the edges. Moreover, �n��R,L ∼ ���

√
� so the thickness of the shear layer 

d ∼ R∕
√
𝛺 ≪ 1 everywhere on the crystal. Thus, although nothing has been 

deduced about the matching region that must exist in the vicinity of the edges, the 
extent of that matching region must be O(d) in both the r- and z-directions. Thus, the 
overall effect of the corners is negligible provided d ≪ R and d ≪ L which is guar-
anteed if 

√
𝛺 ≫ 1 and R∕L ≪ 1 or ∼ 1.

(239)ΔT ∗ |𝜕𝜇∕𝜕T|∕𝜇 ≪ 1

(240)ΔT∗|𝜕𝜌∕𝜕T|∕𝜌 ≪ 1.

(241)1∕t∗𝜔0R ≪ 1.

(242)�n��R,L = (1− i)
√
(1∕2�)� �� exp (i�t)
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6.7  Standing Waves

Standing (acoustic) waves can arise if any of the overall dimensions of the system 
( 2R, L and L∗ ) is an integer multiple of half of the wavelength �′ of the torsional 
oscillations of the crystal. Now �� = 2� c∕�1R (where c is the speed of sound) so, if 
L′ denotes 2R, L and L∗ , standing waves can be avoided if, for all integer n

But �1R = �0R + Δ�1 so, substituting from Eq. (181) for Δω1, standing waves 
can be avoided if, for all integer n

Careful operation can secure this condition.

6.8  Viscous Dissipation

The power dissipated by viscous action Pv is given by the time-average over a 
cycle of oscillation of the integral over the total surface area of the crystal of the 
product of the real part, denoted R() , of the speed uθ of the cylinder and the real 
part of the shear stress exerted by the fluid on the cylinder –σrθ on the curved 
surface of the cylinder or –σzθ on the two planar ends of the cylinder. Over the 
curved surface of the cylinder 0 ≤ z ≤ L and r = R, it follows from Eq. (18) that

and it follows from Eq. (24) that

Similarly, over the planar surface of the cylinder at 0 ≤ r ≤ R and z = 0 or z = L, 
it follows from Eq. (24) that

and it follows from Eq. (30) that

Thus, the time-varying power Pv(t) is given by

(243)n�c∕�1R ≠ L�.

(244)
L��1R∕(�c) = [L��0R∕(�c)] [1− (2 ∕(�cR))

√
(1∕2��∕�0R) (1 + (R ∕L))] ≠ n.

(245)R(u�|R) = R(i��R exp(i�t)) = −��R sin(�t)

(246)
R(�r��R) = R((1− i)

√
(1∕2�)��� exp(i�t)) =

√
(1∕2�)��� [cos(�t) + sin(�t)].

(247)R(u�|0) = R(u�|L) = R(i��r exp(i�t)) = −�� r sin(�t)

(248)
R(�z��0) = R(�z��L) = R

�
(1− i)

√
(1∕2�)��� (r∕R) exp(i�t)

�

=
√
(1∕2�)��� (r∕R)[(cos(�t) + sin(�t)].

(249)

Pv(t) = �� sin (� t)
√
(1∕2�)���(cos(�t) + sin (�t))

�
2�R2L + (2∕R)

R∫
0

2�r3dr

�

=
√
(1∕2�)��2�22�R2L

�
1 + R∕2L

�
sin (�t) [cos (�t) + sin (�t)]
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so the time averaged power is

The term 
[
1 + 1∕2 (R ∕L)

]
 in Eq. (250) is a result of two contributions to the 

viscous dissipation at the surface of the crystal: the first from its curved surface at 
r = R and the second, a factor ½ (R/L) of the size of the first, from its ends at z = 0 
and z = L. For typical crystals the total dissipation amounts to ∼ 10−9 W.

To obtain an upper limit of the effect of this power it can be assumed that this 
amount is dissipated in the thin fluid shear layer of thickness d at the surface of 
the cylinder and nowhere else. In which case, the temperature rise of the fluid per 
unit time, (dT∕dt)visc in that layer caused by this amount of heat is given approxi-
mately by

This amounts to approximately 2 × 10−7K s−1 for liquid Hexane in a typical 
installation. For the dilute gas state of Methane, the equivalent calculation leads 
to a rate of temperature rise of 3 × 10−6 K s−1 . In neither case would such a rise 
lead to significant changes in the properties of the fluid being measured.

7  Conclusions

The rigorous analysis of the torsional quartz crystal viscometer presented here has 
enabled us to derive two working equations for the measurement of the viscosity of 
a fluid surrounding the crystal from parameters that can be determined with high 
precision using modern instrumentation. The first equation which uses measured 
bandwidths, B∗

j
 and resonant frequencies, �jR

has often been employed [1–17]. The second equation, which uses resonant frequen-
cies only, is

Both working equations are valid subject to a number of clear criteria which can 
be satisfied by appropriate and practical design of the instrument. In Part II of this 
work [19] we examine the two working equations with respect to the detailed and 
careful experimental work of three groups who have employed the torsional crys-
tal oscillator for measurements of the viscosity of fluids in both gaseous and liquid 
states.

(250)Pv = 1∕2
√
(1∕2�)� �2�22� R2L (1 + 1∕2 (R ∕L)).

(251)(dT∕dt)visc ≈
Pv

2�RdL�Cp

.

(252)� = 1∕2�∗
1R

(
Mc∕Sc

)2
[(B∗

1
∕�∗

1R
) − (B∗

0
∕�∗

0R
)]2∕�

(253)� =

(
M

c

S
c

)2
2�∗

1R
(�∗

0R
−�∗

1R
)2(1− 1∕2 (B∗

0
∕�∗

0R
))2

��∗2
0R

.
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