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Abstract

A new acoustic gas thermometry (AGT) system, which introduces a 1-L quasi-
spherical resonator (QSR) made of oxygen-free copper, was built at the National
Metrology Institute of Japan (NMIJ/AIST). The inner surface of the new QSR was
machined using a diamond-turn tool. Improvement in the pressure measurement was
introduced to allow direct measurement of the gas pressure in the resonator. The
new AGT system was evaluated based on the measurement of the speed of sound in
argon at the triple point of water and the melting point of gallium under the pressure
range from 700 kPa down to 50 kPa. Based on these speed of sound measurements,
the thermodynamic temperatures at the melting point of gallium were determined.
The speed of sound measurements at isotherms of 283.15 K and 293.15 K were also
conducted, and the related thermodynamic temperatures were determined. Based
on the measured thermodynamic temperature 7, the values of difference between T
and the temperature Ty, based on the International Temperature Scale of 1990 (ITS-
90), (T—T,,), along with the associated uncertainties, were calculated. The (T — Ty,)
obtained in the present work were 1.3+0.7 mK, 2.7+0.8 mK, and 4.1 +0.8 mK for
Ty, of 283.15 K, 293.15 K, and 302.9146 K, respectively. These values were found
to be in agreement within the estimated uncertainty with the currently reported val-
ues that exist in temperature range overlapping with the present work.
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1 Introduction

In May 2019, new definition of some base units of the International System of Units
(SD) has been effective by fixing the numerical values of fundamental constants [1].
For thermodynamic temperature, the unit kelvin has come to be defined based on
the Boltzmann constant. Acoustic gas thermometry (AGT) is one of the methods for
measuring thermodynamic temperature, which utilizes the dependence of the speed
of sound on thermodynamic temperature in a dilute gas. Moldover et al. [2] first
reported in detail the development of a spherical acoustic resonator for the speed
of sound measurement in argon, and determined the Boltzmann constant based on
measurements at the triple point of water. Since in principle, based on the fixed
Boltzmann constant, the AGT can accurately measure the thermodynamic tempera-
ture, it was then also applied for thermodynamic temperature measurements [3—10].
Recent reports consistently evidenced systematic differences between thermody-
namic temperature 7 and the temperature T, based on the International Temperature
Scale of 1990 (ITS-90) [11]. Since the International Temperature Scale was defined
in 1990 as the best approximation to thermodynamic temperature at that time, the
evaluation of the difference (T—T,,) by using state-of-the-art technique becomes
important to improve practical temperature measurements based on the ITS-90 [12].

Taking into account the importance of thermodynamic temperature measurement,
we built a new AGT system at the National Metrology Institute of Japan (NMLJ).
This new system is a continuation of our work on developing a prototype acous-
tic gas thermometry (AGT) system, as already reported elsewhere [13]. The new
AGT system introduces a 1-L quasi-spherical resonator (QSR) made of oxygen-free
copper (OFC) fabricated using a diamond-turn finishing of its internal surface. A
new mounting configuration of the resonator, intended to reduce the deformation
caused by the suspension of the cavity under its own weight, was evaluated by rela-
tive measurements of the thermodynamic temperature based on the ratio of speed of
sound at several temperatures.

In the following sections, we report about the design and the construction of
our new AGT system including the improvement of the performance, which was
achieved compared to our earlier system. We also consider two different QSR
assemblies, and the corresponding measured thermodynamic temperatures as well
as their measurement uncertainty are evaluated. The comparison of the results with
the previous existing determinations of (T'—Ty,) at the overlapping temperature
range are also evaluated.

2 Measurement Apparatus
The AGT system developed in this work consists of a QSR, a gas-handling system,
an acoustic measurement system, and a microwave measurement system. The set-up

of the AGT system is shown schematically in Fig. 1. Each part is described in the
following subsections.
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Fig. 1 Measurement system set-up

2.1 Resonator

The resonator developed in this work was an assembly of two half quasi-spheres,
each made of oxygen-free copper by employing a diamond-turn tool. The inner
shape of the QSR was designed to be an ellipsoid as expressed by the follow-
ing equation, where a is the nominal radius, and €, and €, are the deformation
parameters.

2 2 2
— L — -t 1)
a2(1+¢) @ a(1+¢)

The QSR is illustrated in Fig. 2. The nominal values of a, €, and €, are 62 mm,
0.0005, and 0.001, respectively, and the wall thickness of the QSR is 15 mm. These
specifications were the same as in the design by Underwood et al. [14]. The equato-
rial part of the QSR was made like a belt shape, where stainless steel bolts for align-
ing and fixing the hemispheres, and capsule-type standard platinum resistance ther-
mometers (cCSPRTs) were placed. Six ports through the wall of the QSR were made
to accommodate OFC plugs used to hold two microphones, two antennas, and two
tubes allowing gas to flow through. The plug for transmitter microphones was set at
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Fig.2 Quasi-spherical resonator

angle 39.2° from the plug for receiver microphones set on the south end. This set-
ting was following the design proposed by Mehl et al. [15] in order to have the best
possible separation of (0,2) acoustic radial mode from the neighboring (3,1) acous-
tic non-radial mode. Plugs for gas-flowing tubes were set on the upper (or north)
hemisphere at angular position 45° from the north end. One port for an antenna was
placed in the upper hemisphere at the angle position 45° from north end, and one
port for another antenna in the lower hemisphere at the angle position 45° from the
south end. In the north end, two holes were drilled as housing of cSPRTs. The same
holes were also made in the south end.

The QSR was enclosed in a stainless steel pressure vessel by fixing it to the cap
of the vessel with three rods. Figure 3 illustrates two alternative fixing configura-
tions that were evaluated in this work. In the first configuration, shown in Fig. 3a,
an OFC circular plate was fixed to the lower surface of the belt-shaped equator, and
three stainless steel long bolts (6 mm OD) connected the plate to the pressure vessel
cap. In this configuration, as shown in Fig. 3a, the QSR was in the ‘hung at the equa-
tor’ position (called hereafter the ‘hung’ position). Small heaters (Sakaguchi E.H
VOC, MS-3, 10x 10 mm, max 40 W) for controlling the temperature of the QSR
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Fig. 3 Fixing configuration of the resonator (up) and fixing plate (down): (a) ‘Hung’ configuration, (b)
‘Sit” configuration

were attached on the surface of the circular plate and the fixing rods. In the second
configuration, shown in Fig. 3b, an OFC made star-shaped plate was fixed on the flat
surface at the south end of the QSR, and three OFC rods (15 mm OD) connected
the plate to the pressure vessel cap. In this configuration, the QSR was in the ‘sit on
plate’ position (called hereafter the ‘sit’ position). A small heater (Sakaguchi E.H
VOC, MS-M5, 5 x5 mm, max 15 W) was attached on each rod.

2.2 Gas System

A gas-handling system was built to maintain argon gas flowing through the QSR,
as an attempt to minimize the effect of impurities from outgassing. Two argon gas
samples of 99.9999 % purity (Japan Fine Product, G1) were used. All tubes used in
the gas-handling system were made of electro-polished stainless steel. The inlet and
outlet tubes connected directly to the gas port of the QSR were 1/16-in. nickel tube
with length of 1.1 m. A filter for reducing oxygen content (Nikka Seiko, GC-RX)
and a filter for reducing water content (Nikka Seiko, DC-A4) were installed in the
upstream side of the gas-handling system. Two mass flow controllers (MFC, Fujikin,
FCST1005MZFC) were used to set a constant desired flow rate. Flow rates for both
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mass flow controllers fixed at 2 sccm for the ‘hung’ position and 5 sccm for the ‘sit’
position were used in this work. One was installed in the upstream side (MFC1),
while the other in the downstream side (MFC2). A pressure gauge (Paroscientific,
Model 745, max 1.4 MPa) was installed in the upstream side (identified as P1) and
the same model pressure gauge was in the downstream side (identified as P2). Before
being installed in the handling system, the pressure gauge P2 was calibrated in the
range up to 700 kPa by the Pressure Standard Laboratory at NMIJ/AIST, while the
pressure gauge P1 was calibrated by comparison with the pressure gauge P2. A third
pressure gauge (Paroscientific, Model 2100A, max 700 kPa, identified as P3) was
introduced and also calibrated by comparison with the pressure gauge P2. The pres-
sure gauge P3 was once installed at the entrance of the gas line into the liquid bath
(62 cm above the gas inlet into the QSR) in order to measure the gas pressure at
this point under the flow rate of 2 sccm and 5 sccm. The relation between the pres-
sure P3 the pressure P1 is shown in Fig. 4, implying that the effect of the flow on
the indicated pressure is small. The pressure gauge P3 was then removed from the
upstream gas line and directly connected to the pressure vessel (62 cm above the gas
outlet from the QSR). The installation of the pressure gauge P3 here was intended to
measure pressure inside the pressure vessel. The pressure head and the pressure drop
induced by the gas flow, which was calculated based on the Hagen—Poiseuille law,
were added as corrections to the pressure measured by pressure gauges P1 and P3,
to have an average value of pressure inside the QSR.

2.3 Temperature Measurement System

The temperature of the QSR was measured by employing four cSPRTs. As shown in
Fig. 2, one cSPRT was placed at the north end, one at the south end, and two around
the equator. The cSPRT at the south end was Fluke 5686-B (S/N HS225), and the
rest cSPRTs were Chino R800-0 (S/N RS913-2, RS143-02, and RS143-03). These
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Fig.4 Pressure difference under gas flow
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cSPRTs were calibrated before use at the triple point of water and the triple point of
gallium (302.9166 K). Three of them (HS225, RS913-2, and RS143-03) were addi-
tionally calibrated at the triple point of mercury (234.3156 K) and the triple point
of argon (83.8058 K). Two of them (HS225 and RS913-2) have been used for a
long time since our earlier work [13], the stability of which was evaluated using the
maintenance system in NMIJ/AIST [16] to estimate a maximum long-term change
within +0.15 mK. The measurement of the resistance of the cSPRTSs in this work
was conducted by employing a resistance measuring device (Fluke, 1595A Super-
Thermometer) coupled with a temperature-controlled 100-ohm standard resistor
(Tinsley, 5685A). The resistance measurements for cSPRTs were compensated for
the self-heating effect. For maintaining the temperature of the QSR, the temperature
at the south end was used as the reference point.

2.4 Microwave Measurement System

Speed of sound measurements in the QSR require an accurate value of the radius of
the QSR. To obtain this value at various temperatures and pressures, the microwave
resonance method [7] was adopted in this work. The microwave measurement was
conducted by employing two loop antennas, each of which was fixed to the related
plug using an epoxy adhesive (stycast) that filled the gap between tip part of the
antenna and the plug, as described in earlier report [13]. These antennas were con-
nected to a vector network analyzer (Agilent Technology, ENA5071C) by coaxial
cables through hermetic connectors. The vector network analyzer was synchronized
to a rubidium clock (Stanford Research Systems, FS725), which served as frequency
reference.

2.5 Acoustic Measurement System

Speed of sound measurements in argon within the QSR were performed by employ-
ing two free-field externally polarized microphones (G. R. A. S., 40BF), whose
diameter was 1/4 in.: one for exciting and one for detecting the acoustic field. A pre-
amplifier (G. R. A. S., 26 AC) was directly connected to the receiver microphone. A
signal generator (Agilent Technology, 33220A) was employed for generating sinu-
soidal signals. The signal generator referred to the same rubidium clock as the vec-
tor network analyzer so that the ratio between the acoustic and microwave frequency
measurement could be accurate. An actuator amplifier (G. R. A. S., 14AA) ampli-
fied and provided this signal to the source microphone. Then the transmitted signal
was detected by the receiver microphone and amplified by the conditioning ampli-
fier (Briiel and Kjer, 2690 OS1). A lock-in amplifier (Stanford Research Systems,
SR830) was used to measure the signal detected by the receiver microphone.

2.6 Measurement Set-up and Procedures

As illustrated in Fig. 1, the QSR was enclosed in the pressure vessel. The pressure
vessel was immersed in a liquid bath, which maintains a temperature slightly lower
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than that to measure. As aforementioned in Sect. 2.1, small heaters were employed
to adjust the temperature of the QSR to the target temperature. A liquid-circulating
chiller (Julabo, FP50) was used to adjust the temperature of the liquid bath. Four
cylindrical rods hold the pressure vessel at the cap plate of the liquid bath. The pres-
sure vessel was surrounded by an aluminum basket with a punched wall, so that the
effect from liquid flow was minimized. A connection tube was used as a feedthrough
of the cables. A vacuum pump was employed to pump out the argon gas for realizing
a continuous flow.

In this work, thermodynamic temperature was determined by implementing the
method of relative acoustic gas thermometry, which is based on the evaluation of the
ratio between the speed of sound at the temperature 7T of interest and the speed of
sound at TPW [3, 4]. We adopted 273.16 K as the value of the TPW and 0.1 mK as
its standard uncertainty on the basis of the Appendix 2 of SI Brochure—9th edition
[17]. The measurements at the TPW were conducted at first, preceding those at other
temperatures. For one isotherm, microwave resonance frequencies (based on the
S-parameter S,;) were first measured under vacuum, then series of the microwave
and the acoustic resonance frequency were measured at pressures from 700 kPa
down to 50 kPa, and terminated by measurement of the microwave resonance fre-
quencies under vacuum. At each pressure, a series of acoustic and microwave reso-
nance frequency measurements were repeated three times. In one series, the acoustic
resonance frequencies for radial modes (0,n) with n=2 to 8 were measured, and the
microwave resonance frequency for transverse magnetic modes TM 1/ and transverse
electric modes TE1k with /=1 to 4 and k=1 to 3.

At first, the abovementioned procedures were done with the QSR in the ‘hung’
configuration at the TPW and the melting point of gallium. The argon gas used in
the first trial was identified as Sample 1 in this work. The QSR configuration was
then made to the ‘sit’ configuration described in Sect. 2.1. The change in the QSR
configuration was performed very carefully so that changes in the QSR alignment,
plugs, and tubes position were minimized. We needed, however, to remove tempo-
rarily the receiver microphone at the south-end when installing the star-shaped plate
(see Sect. 2.1). The microphone was reinstalled to the same port with the original
condition. The same measurement procedures were then executed with the QSR in
the ‘sit’ configuration at the TPW, 283.15 K, 293.15 K, and the melting point of
gallium. The argon gas used in this ‘sit’ configuration was different from that at the
‘hung’ configuration, and was identified as Sample 2.

3 Measurement Results

3.1 Microwave Measurement

The measured microwave frequencies at each TM or TE mode were fitted to the
resonance function reported in [18] introducing linear and quadrature backgrounds
to have three resonance frequencies and their half-widths for each mode. These reso-

nance frequencies were then corrected for the effects from the microwave penetra-
tion length [18] and from the waveguide [14]. The second-order shape correction
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proposed by Mehl [19] was applied to derive the deformation parameters, €, and ¢,
in Eq. 1, as well as the nominal radius of the QSR, a. The values of the refractive
index of argon used for these derivations were calculated using the method in [18]
(Eq. 15 truncated after the second term). From values a obtained at various tempera-
tures and pressures, the nominal radius of the QSR can be expressed by the follow-
ing relation [20].

K
a(T,P) =ay|1 - ?PP+(T—273.16)K , )

where K and K in Eq. 2 were empirically determined as the slopes of the depend-

ence of a on pressure P and temperature, respectively. These may refer to isother-
mal compressibility and thermal expansion coefficient of the QSR, respectively. The
values of K in Eq. 2 at the TPW were 1.05 X 10~ Pa~!, while K was 1.66 X 107
K~!. g, in Eq. 2 represents the nominal radius of the QSR at T=273.16 K and zero
pressure, which was the average of the extrapolated values at P=0 of mode TM12 to
TM14 and TE11 to TE13, as shown in Fig. 5 by a dotted line for ‘hung’ configura-
tion and a dashed line for ‘sit’ configuration. The discrepancy in a, between the two
configurations was 1.2 ppm. In both configurations, inconsistency of mode TM11
was estimated to be 2.6 ppm. The deformation parameters €, and €, obtained from
the microwave measurements at various modes are summarized in Fig. 6, where a
slight discrepancy was observed between the ‘hung’ and ‘sit’ condition. We found
that e, and e, were significantly smaller than designed. It is likely that this leads to an
imperfect lift of the threefold degeneracy of TM1/ and TE1k modes, whose triplet
peaks appeared in a narrow range of frequency, f, as shown in Fig. 7, where the ver-
tical axis is S,; parameter.
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Fig.5 Effective radius of the resonator for various modes
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3.2 Acoustic Measurement

In the ‘hung’ position, the resonance frequencies of several acoustic modes were
measured at pressures from 700 kPa down to 50 kPa at the TPW, and from 500 kPa
down to 60 kPa at the melting point of gallium. In the ‘sit’ configuration, on the
other hand, the measurements at all isotherms were performed in the pressure range
from 500 kPa down to 60 kPa. The measured acoustic frequencies at each radial
mode were fitted to the resonance function reported in [18] by introducing linear
background to derive the resonance frequency and its half-width for each mode.
The derived resonance frequencies were corrected for the effects from the thermal
boundary layer and the acoustic transducer perturbation following the method com-
piled in [18]. The thermal accommodation coefficient, 4, was assumed as h=1 for
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Fig. 7 Microwave resonance at mode TM11: (a) measured data and correlation, (b) residuals of the fit

the thermal boundary correction here [6]. They were also corrected for the duct per-
turbation coming from the inlet and outlet gas tubes, by employing the model pro-
posed by Gillis et al. [15, 21].

Contribution of the thermal boundary layer and bulk dissipation to the resonance
half-width were calculated following [18], and the calculation for the contribution
of the inlet and outlet gas tubes to the resonance half-width was following [15]. The
difference between the frequency half-width and the above-calculated contributions,
which is called the excess half-width hereafter, is depicted in Fig. 8. It is obvious
from Fig. 8 that at frequencies around 14 kHz, the excess half-width, especially at
the TPW, became quite large. This frequency was near the acoustic mode (0,6). This
large excess half-width is related to the existence of resonance frequency of the QSR
itself, which is often called the breathing frequency of the QSR, f,,. This frequency
should be determined and compensated for. Moldover et al. [3] derived a method to
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determine the breathing frequency using only the properties of the material of the
QSR. When this method was applied to our QSR, the f, was 15.2 kHz, which was
not near the mode (0,6), which was around 13.6 kHz. Pitre et al. [22] proposed a
method for determining f,,. by optimizing the acoustic frequency that produces sec-
ond acoustic virial coefficient independent on the observed radial modes, and in this
work, this strategy was adopted. The speed of sound, w, was derived from the reso-
nance frequency, by introducing a and K determined from the microwave resonance
frequencies measured at the respective isotherms for mode TM12 to TM14 and TE11
to TE13. The speed of sound measured at the TPW for modes (0,2) to (0,8), with
exception of the mode (0,6), was fitted to the following equations, A, to A, are the fit-
ting parameters, and A; is 1.45X 107 m%s~2kPa~3 for the TPW as reported in [3, 6].

W — AP = Ay + AP + A,P? 3)
2ra

w === (fon — &f)- )
0,n

Af'is the sum of corrections to the unperturbed resonance frequency f; ,, and 7 ,
is the eigenvalue of acoustic mode (0,n). The following correction for the resonance
frequency due to the shell effect is adopted [22], where p,; and w,,,, are the density
of and the speed of sound in the resonator material (copper), and ¢ is the thickness of
the wall of the resonator.

%_ Sa 1

f(),n B 6tpwallwilall 1— (&)2 (5)
f'bl'

Adopting the method proposed in [22] gives the value of f;, to be 13.5 kHz. This
value is shown in Fig. 8 as a vertical broken line.
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The speed of sound obtained at the TPW, 283.15 K, 293.15 K, and the melting point
of gallium, after the correction of resonance frequency described above, was fitted to
Eq. 3 to obtain the value of A, which corresponds to the square of the speed of sound at
the limit condition of P=0, w%. For fitting the data at the TPW, the value of A; reported
in [3, 6] was introduced. For the other temperatures, value of A; was obtained from
quadratic fitting of those reported in [23] to obtain the values of 1.09 X 107°,7.9%10719,
and 5.4x 10719 m?.s~2kPa~> for 283.15 K, 293.15 K, and 302.9146 K, respectively. Fig-
ure 9 summarizes the obtained data, w, from Eq. 3, w,,,,, for selected modes and con-
figurations at aforementioned temperatures. Most of the data agreed with Eq. 3 within
+2 ppm, except those at lower pressures below 150 kPa, which showed a large scat-
ter. At a dilute gas condition, electrical noise occurred more frequently than at a dense
gas condition, and the determination of the resonance frequency became erratic. For the
mode (0,2) at the TPW, as shown in Fig. 9a, c, even at higher pressures the scatter was
larger than+2 ppm. This may be caused by the effect from the neighboring non-radial
mode (3,1) (see [3]), which was not completely suppressed by the present system.

3.3 Discussion

From the speed of sound extrapolated to the limit P =0 described above, the thermo-
dynamic temperature, T, was determined by employing the following relationship.

lim w?(P, T) WA(T)
T = Tp— = Tor—— )
Il}_r}lo Wz (P7 Tref) W% (Tref)

As T4, we adopted the TPW, that T,.,=273.16 K, the value based on the Appen-
dix 2 of SI Brochure—9th edition [17], and its uncertainty was 0.1 mK, correspond-
ing to a relative uncertainty 3.7 X 1077 [17, 24]. Figure 10 represents temperatures
calculated using Eq. 4 for four isotherms based on the speed of sound obtained by
each mode. The numerical value of T for each Ty, is summarized in Table 1. T in
Table 1 is the average value of those of related acoustic modes. Also listed in Table 1
are the difference between T and Ty, (T— Ty,) and its uncertainty, u(T — Ty).

In Fig. 10c, the results obtained at the gallium melting point under the ‘hung’
configuration are compared with those under the ‘sit’ configuration. The T values
obtained under the ‘hung’ configuration for various acoustic modes scattered within
similar temperature range to those under the ‘sit’ configuration. This implies that
under the present system, the difference between the ‘hung’ and ‘sit’ configurations
was not significant. The results of the isotherm 293.15 K, as shown in Fig. 10b,
seemed not to depend on the acoustic mode.

The uncertainty of (T'— Ty,), namely u(T — T,), is mainly due to the contributions
of temperature, pressure, microwave, and acoustic measurements. We estimated
u(T—T,,) based on the categories and components as listed in Table 2. The uncer-
tainty of the pressure measurements affects both the microwave and acoustic meas-
urements, so it is included in both the microwave and acoustic categories.

The uncertainty related to the determination of Ty, is the combination of sev-
eral contributions from the cSPRTs and the imperfect temperature uniformity and
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Fig.9 Residual speed of sound: (a) at 273.16 K under ‘Hung’ configuration, (b) at 302.91 K under
‘Hung’ configuration, (c) at 273.16 K under ‘Sit’ configuration, (d) at 283.15 K under ‘Sit’ configuration,
(e) at 293.15 K under ‘Sit’ configuration, (f) at 302.91 K under ‘Sit’ configuration; small-sized symbols
for data excluded in fitting

stability of the cavity within the QSR. The uncertainty of the cSPRTs includes the
calibration uncertainty at the TPW and at the gallium melting point, the long-term
stability, which was estimated from the change in the resistance at the TPW, and the
non-uniqueness. The non-uniqueness was estimated following the report by White
and Strouse [25] and White et al. [26]. The uncertainty of the temperature realiza-
tion within the QSR is the combination of the stability of temperature realized and
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Fig.9 (continued)

the temperature inhomogeneity across the QSR. Figure 11 represents the tempera-
ture measured by four cSPRTs, described in Sect. 2.3, under the ‘hung’ position and
the ‘sit’ position. As shown in Fig. 11, the effect of heating from the pre-amplifier,
attached at the south end microphone, in the ‘hung’ configuration was not satisfacto-
rily compensated, resulting in a temperature inhomogeneity across the QSR within
+0.6 mK. On the other hand, in the ‘sit’ configuration, the effect of heating from the
pre-amplifier was satisfactorily compensated and the temperature of the QSR was
uniform within +0.3 mK.
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Fig. 10 Thermodynamic temperatures at various modes: (a) at 283.15 K, (b) at 293.15 K, (¢) at 302.91 K

Table 1 Results of (T— Ty)

@ Springer

Topr K T,K (T=Ty), mK  u(T—Ty), mK
283.15 283.15127* 13 0.7
293.15 293.15268° 2.7 0.8
3029146 30291865 4.1 0.8
3029146 302.91854° 39 0.9

 ‘sit” position

® ‘hung’ position
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Table 2 Estimated uncertainty of (7'—Ty)

Category Contribution, mK
Component 2832K* 293.2K* 3029146 K*  302.9146 K®
Determination of Ty,
cSPRT long-term drift 0.08 0.08 0.08 0.08
TPW determination 0.21 0.21 0.21 0.21
c¢SPRT calibration 0.37 0.37 0.37 0.37
Temperature inhomogeneity of the resonator 0.17 0.17 0.17 0.35
Temperature stability 0.02 0.02 0.02 0.02
Non-uniqueness 0.11 0.20 0.28 0.28
Microwave measurements
Mode inconsistency 0.07 0.07 0.07 0.07
Pressure 0.03 0.03 0.03 0.03
Acoustic measurements
Acoustic measurements at TPW 0.04 0.04 0.04 0.06
Mode inconsistency at TPW 0.45 0.47 0.48 0.61
Acoustic measurements at 7' 0.09 0.12 0.07 0.06
Mode inconsistency at 7' 0.19 0.36 0.29 0.30
Pressure 0.03 0.03 0.03 0.03
Thermal accommodation 0.03 0.06 0.04 0.04
Combined uncertainty 0.7 0.8 0.8 0.9

 ‘sit’ position

® ‘hung’ position

The uncertainty related to the microwave measurements includes the mode inconsist-
ency, the observed deviation of the thermal expansion, and compression of the radius
from the calculations of the simplified model in Eq. 2 and the uncertainty of pressure
measurement propagated to the microwave resonance frequency. The mode inconsist-
ency was estimated from the discrepancy of a of the modes TM12 to TM14 and TE12
to TE13, represented in Fig. 5, from the average of a. This component may relate to
effects that have not been completely compensated, namely a possible oxide layer on the
inner surface of the QSR, slits, grooves, and holes formed due to misalignment of micro-
phones, antennas, and hemispheres. Concerning the deviations of the effective radius
from Eq. 2, these effects were included in the uncertainty for the acoustic measurements,
so it is not listed in Table 2. The pressure effect was estimated based on the observed
variation of the resonance frequency caused by the variation of the argon gas flow.

The uncertainty of our speed of sound determinations was combined from the
acoustic frequency measurements at both TPW and 7, including the mode dis-
crepancy and the fitting uncertainty of the virial expansion for extrapolating to the
limit zero pressure. Residuals from these fits are shown in Fig. 9, while the con-
tribution from the discrepancies among different modes was calculated based on
the speed of sound extrapolated to the limit zero pressure, w% in Eq. 4, for various
acoustic modes. As in the case of microwave measurements, the effect of pressure
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Fig. 11 Temperature stability and uniformity across the resonator at the TPW: (a) ‘Hung’ configuration,
(b) “Sit’ configuration

measurements on the uncertainty of the acoustic measurements was estimated based
on the difference in resonance frequency with and without argon gas flow.

In Sect. 3.2, it has been already stated that =1 was used for the thermal accom-
modation parameter in this work. Using the assessment method of the coefficient &
proposed in [22], we found / in the present system would be in the range between
0.7 and 1. Therefore, we consider the uncertainty due to & selection by comparing
the case of A=1 and 2=0.7.

The values of (T'—Ty) listed in Table 1 exist in an overlapping temperature range
including those reported by Moldover et al. [4], Ewing and Trusler [5], Benedetto
et al. [6], Underwood et al. [9] and Gavioso et al. [10]. Figure 12 is a plot of these
reported data in a range covering our results. The error bars show the standard uncer-
tainty of each data. To make a better view, the error bar for the uncertainty in Table 1
is arrowed. It is seen from Fig. 12 that T at the gallium melting point agrees within
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the estimated uncertainty with the data reported in [4, 5, 6, 9, 10]. T corresponding
to Ty, =283.15 K and T,,=293.15 K are both larger than those by Moldover et al. [3]
and by Underwood et al. [9]. These differences are within the estimated uncertainty.

4 Conclusions

A new acoustic gas thermometry (AGT) system was built based on a diamond-turn
QSR, where two different configurations for fixing the QSR were evaluated based
on the measurement of the speed of sound in argon at the triple point of water and
the melting point of gallium under the pressure range from 700 kPa down to 50 kPa.
It was found from the thermodynamic temperatures obtained from these speed of
sound measurements at the melting point of gallium that different QSR fixing con-
figurations exhibit no significant difference to the value of the thermodynamic tem-
perature determined. The speed of sound measurements at the isotherm of 283.15 K,
293.15 K, and 302.9146 K was also conducted and compared with the currently
reported values that exist in overlapping temperature range with the present work.
No significant difference was found between the present results and the reported val-
ues. They were in agreement within the estimated uncertainty.
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Appendix

See Table 3.
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