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Abstract
Anewmethod for deriving accurate thermodynamic properties of gases and vapors (the
compression factor and heat capacities) from the speed of sound is recommended.A set
of PDEs connecting speed of sound with other thermodynamic properties is solved as
a nonlinear least squares problem, using a modified Levenberg–Marquardt algorithm.
In supercritical domain, boundary values of compression factor are imposed along
two isotherms (one slightly above Tc and another several times Tc) and two isochores
(one at zero density and another slightly above ρc). In subcritical domain, the upper
isochore is replaced by the saturation line, the lower isotherm is slightly above the
triple point, and the upper isotherm is slightly below the critical point. Initial values
of compression factor inside the domains are obtained from the boundary values by
a cubic spline interpolation with respect to density. All the partial derivation with
respect to density and temperature, as well as speed of sound interpolation with respect
to pressure, is also conducted by a cubic spline. The method is tested with Ar, CH4
and CO2. The average absolute deviation of compression factor and heat capacities is
better than 0.002% and 0.1%, respectively.
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1 Introduction

The speed of sound is an intensive property whose value depends on the state of the
medium through which sound propagates [1]. Nowadays, speed of sound is measured
with exceptional accuracy and represents potential source of other (thermodynamic)
properties which are measured less accurately. However, in order to derive any other
property of the medium from the speed of sound it is necessary to solve a set of nonlin-
ear partial differential equations (PDEs) of the second order [2]. Instead of seeking for
a general solution, some researchers suggest various methods of numerical integration
for obtaining a particular solution [3–10]. A method which covers a wider domain of
solutions, with a fewer and less demanding initial/boundary conditions, may be con-
sidered more superior. For example, initial/boundary conditions of Dirichlet type are
less demanding than those of Neumann type. Similarly, those composed of volumetric
properties (density, compression factor) are less demanding than the ones composed
of caloric properties (heat capacity). Therefore, a method using only volumetric ini-
tial/boundary conditions of Dirichlet type is desirable. Although the problem is not
solvable by numerical integration using only volumetric initial conditions of Dirichlet
type, it can be solved using only volumetric boundary conditions of Dirichlet type
[11]. However, this approach is not based on numerical integration but rather on dis-
cretization. Namely, the set of PDEs is converted into the set of nonlinear algebraic
equations by approximating all the derivatives by finite differences. The main disad-
vantage of this approach is rather huge number of equations (of the order 104). In this
paper, an approach based on a cubic spline [12] is used to decrease the number of
equations, which are solved as a nonlinear least squares problem by a modified Lev-
enberg–Marquardt algorithm [13–15]. Since the values of thermodynamic properties
are only locally represented by cubic polynomials, there is no analytical equation of
state.

2 Theory

The adiabatic sound wave equation [1]

u2 �
(

∂p

∂ρ

)
s

(1)

connects the speed of sound u with thermodynamic properties of a medium through
which thewave propagates (p is the pressure, ρ is the density, and s is specific entropy).

Since entropy is not measurable quantity, it can be avoided with the help of the
following relation [1]

(
∂p

∂ρ

)
s

� cp
cv

(
∂p

∂ρ

)
T

(2)

where T is the temperature, cp is specific heat capacity at constant pressure and cv is
specific heat capacity at constant volume.
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Combining (1) and (2), one obtains

u2 � cp
cv

(
∂p

∂ρ

)
T

(3)

If cp in (3) is replaced by [1]

cp � cv +
T

ρ2

(
∂p

∂ρ

)−1

T

(
∂p

∂T

)2

ρ

(4)

one obtains

u2 �
(

∂p

∂ρ

)
T
+

T

ρ2cv

(
∂p

∂T

)2

ρ

(5)

If pressure in (5) is replaced by a less varying compression factor

Z � pM

ρRT
(6)

where M is the molar mass and R is the universal gas constant, after rearrangement
one obtains

cv � R

M

[
Z + T

(
∂Z

∂T

)
ρ

]2[
Mu2

RT
− Z − ρ

(
∂Z

∂ρ

)
T

]−1

(7)

If (7) is coupled with [16]

(
∂cv

∂ρ

)
T

� − T

ρ2

(
∂2 p

∂T 2

)
ρ

(8)

(3), (7) and (8)maybe solved forZ , cv and cp in a rectangularρ–T domain (supercritical
region), respectively. To perform that the values of cv obtained from (7) are partially
derived with respect to density, at constant temperature, by a cubic spline. Then, these
derivatives are calculated again, but this time from (8). The function which quantifies
difference between derivatives obtained in these two different ways is

f � − T

ρ2

(
∂2 p

∂T 2

)
ρ

−
(

∂cv

∂ρ

)
T

(9)

Finally, the objective function is calculated according to

g � 1

2

∑
f 2 (10)

The aim is to find such values of Z which minimize objective function g. Since
functions f are nonlinear with respect to Z , this problem may be solved as a nonlinear
least squares problem using a modified Levenberg–Marquardt algorithm.
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If p in (8) is replaced by Z , one obtains

(
∂cv

∂ρ

)
T

� − RT

Mρ

[
2

(
∂Z

∂T

)
ρ

+ T

(
∂2Z

∂T 2

)
ρ

]
(11)

If a new variable is introduced

φ � ρ

ρsat
(12)

where ρsat is density of saturated vapor at a given temperature, then, according to
calculus,

(
∂Z

∂T

)
ρ

�
(

∂Z

∂T

)
φ

−
(

∂Z

∂ρ

)
T

(
∂ρ

∂T

)
φ

(13)

and

(
∂2Z

∂T 2

)
ρ

�
[

∂

∂T

(
∂Z

∂T

)
ρ

]
φ

− ∂2Z

∂T ∂ρ

(
∂ρ

∂T

)
φ

(14)

So, (7) and (11) become

cv � R

M

{
Z + T

[(
∂Z

∂T

)
φ

−
(

∂Z

∂ρ

)
T

(
∂ρ

∂T

)
φ

]}2[
Mu2

RT
− Z − ρ

(
∂Z

∂ρ

)
T

]−1

(15)

and

(
∂cv

∂ρ

)
T

� − RT

Mρ

{
2

[(
∂Z

∂T

)
φ

−
(

∂Z

∂ρ

)
T

(
∂ρ

∂T

)
φ

]

+ T

⎧⎨
⎩

[
∂

∂T

(
∂Z

∂T

)
ρ

]
φ

− ∂2Z

∂T ∂ρ

(
∂ρ

∂T

)
φ

⎫⎬
⎭

⎫⎬
⎭ (16)

respectively. Now, (3), (15) and (16) may be solved for Z , cv and cp in a rectangular
φ–T domain (subcritical region), respectively. The procedure of solution is the same
as the one described for the supercritical region, with

f � − RT

Mρ

{
2

[(
∂Z

∂T

)
φ

−
(

∂Z

∂ρ

)
T

(
∂ρ

∂T

)
φ

]

+T

⎧⎨
⎩

[
∂

∂T

(
∂Z

∂T

)
ρ

]
φ

− ∂2Z

∂T ∂ρ

(
∂ρ

∂T

)
φ

⎫⎬
⎭

⎫⎬
⎭ −

(
∂cv

∂ρ

)
T

(17)
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and

g � 1

2

∑
f 2 (18)

2.1 Supercritical Domain

This domain is bounded by two isotherms and two isochores. It is practical, but not
necessary, that the lower isochore is in the limit of ideal gas, because along this iso-
chore the compression factor has unique value 1, and the heat capacities are obtained
from speed of sound measurements (extrapolated to zero pressure) directly. The tem-
perature and density ranges are divided into several isotherms and several isochores,
respectively. Pressures are calculated along each isochore from the Peng–Robinson
equation of state [17], and speed of sound values [18–20] are specified at these pres-
sures in the form of a less varying quantity F� Mu2/(RT ), which is more suitable for
interpolation. Several data points of compression factor [18–20] are specified along
the boundary of the domain. Initial values of compression factor inside the domain
are obtained from these boundary values, by a cubic spline interpolation with respect
to density.

2.1.1 Algorithm of Solution

1. For the specified set of isotherms and isochores, pressures inside the domain (Tmin
<T <Tmax and ρmin <ρ <ρmax) are calculated from compression factors, since
they are always known in advance in each iteration. (In the first iteration they
are obtained from the boundary values and in all other iterations from a modified
Levenberg–Marquardt algorithm.) In any case, this is done by rewriting (6) into

p � ρRT Z

M

2. Having calculated pressures at different temperatures along each isochore inside
the domain, with boundary pressures fixed at their specified values all the time,
partial derivatives (

∂p
/

∂T
)
ρ

are estimated from a cubic spline, inside the domain and along the boundary
(Tmin ≤T ≤Tmax and ρmin <ρ ≤ρmax), except along ρ � ρmin, since(

∂p

∂T

)
ρmin�0

� 0

3. Partial derivatives of compression factor, with respect to temperature at constant
density, are calculated directly from the following relation

(
∂Z

∂T

)
ρ

� M

ρRT

[(
∂p

∂T

)
ρ

− p

T

]
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which is obtained by analytical derivation of (6), inside the domain and along the
boundary (Tmin ≤T ≤Tmax and ρmin <ρ ≤ρmax), except along ρ � ρmin, since

(
∂Z

∂T

)
ρmin�0

� 0

4. Since speed of sound values are specified (in the formofF) at pressures calculated
from the Peng–Robinson equation of state for the specified set of isotherms and
isochores (because true pressures are not known in advance), they are interpolated
with respect to pressure using a cubic spline, to pressures from step 1.

5. Having values of compression factor at different densities along each isotherm,
partial derivatives

(
∂Z

/
∂ρ

)
T

are estimated from a cubic spline, inside the domain and along the boundary
(Tmin ≤T ≤Tmax and ρmin ≤ρ ≤ρmax).

6. Specific heat capacities at constant volume are calculated from (7)

cv � R

M

[
Z + T

(
∂Z

∂T

)
ρ

]2[
F − Z − ρ

(
∂Z

∂ρ

)
T

]−1

inside the domain and along the boundary (Tmin ≤T ≤Tmax andρmin <ρ ≤ρmax).
7. Having interpolated values ofF to pressures from step 1, values of speed of sound

squared are calculated from

u2 � FRT

M

8. Having values of density at different pressures along each isotherm, partial deriva-
tives

(
∂ρ

/
∂ p

)
T

are estimated from a cubic spline, inside the domain and along the boundary
(Tmin ≤T ≤Tmax and ρmin ≤ρ ≤ρmax).

9. Specific heat capacities at constant pressure are calculated from (3)

cp � cvu
2
(

∂ρ

∂p

)
T

inside the domain and along the boundary (Tmin ≤T ≤Tmax andρmin <ρ ≤ρmax).
10. Having values of pressure at different temperatures along each isochore, partial

derivatives
(
∂2 p

/
∂T 2

)
ρ
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are estimated from a cubic spline, inside the domain and along the boundary
(Tmin ≤T ≤Tmax and ρmin <ρ ≤ρmax), except along ρ � ρmin, since

(
∂2 p

∂T 2

)
ρmin�0

� 0

Having values of specific heat capacity at constant volume at different densities
along each isotherm, partial derivatives

(
∂cv

/
∂ρ

)
T

are estimated from a cubic spline, inside the domain and along the boundary
(Tmin ≤T ≤Tmax and ρmin ≤ρ ≤ρmax).

11. Having calculated derivatives in step 10, values of f are calculated from (9)

f � − T

ρ2

(
∂2 p

∂T 2

)
ρ

−
(

∂cv

∂ρ

)
T

inside the domain and along the boundary (Tmin ≤T ≤Tmax andρmin <ρ ≤ρmax),
except along ρ � ρmin � 0, because along this isochore, as already stated, the
compression factor has unique value 1, and the heat capacities are obtained from
speed of sound measurements (extrapolated to zero pressure) directly.

12. Values of f from step 11 are squared (in order to have positive sign) and summed,
and the objective function g is then calculated from (10)

g � 1

2

∑
f 2

13. If g >10−4, new values of compression factor are calculated using a modified
Levenberg–Marquardt algorithm [21], inside the domain (Tmin <T <Tmax and
ρmin <ρ <ρmax).

14. Steps 1 to 13 are repeated as many times as necessary to find such values of
compression factor for which g ≤10−4.

2.2 Subcritical Domain

This domain is bounded by two isotherms, one isochore and the saturation line. In
order to make this domain rectangular, density is replaced by quantity φ � ρ/ρsat .
The temperature range is divided into several isotherms and φ-range into several lines
of constant φ. Pressures are calculated along each φ again from the Peng–Robinson
equation of state, and speed of sound values are specified at these pressures again in the
form F� Mu2/(RT ). Initial and boundary values of compression factor are obtained
and specified, respectively, as in the case of the supercritical domain.
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2.2.1 Algorithm of Solution

1. For the specified set of isotherms and lines of constant φ, densities are calculated
from (12)

ρ � φρsat

inside the domain (Tmin <T <Tmax and φmin <φ <φmax).
2. For the specified set of isotherms and densities calculated in step 1, pressures

inside the domain (Tmin <T <Tmax and φmin <φ <φmax) are calculated from
compression factors, since they are always known in advance in each iteration.
(In the first iteration they are obtained from the boundary values and in all other
iterations from a modified Levenberg–Marquardt algorithm.) In any case, this is
done by rewriting (6) into

p � ρRT Z

M

3. Having values of compression factor at different temperatures along each line of
constant φ, partial derivatives

(
∂Z

/
∂T

)
φ

are estimated from a cubic spline, inside the domain and along the boundary
(Tmin ≤T ≤Tmax and φmin <φ ≤φmax), except along φ � φmin, since(

∂Z

∂T

)
φmin�0

� 0

Having values of compression factor at different densities along each isotherm,
partial derivatives

(
∂Z

/
∂ρ

)
T

are estimated from a cubic spline, inside the domain and along the boundary
(Tmin ≤T ≤Tmax and φmin ≤φ ≤φmax).
Having values of density at different temperatures along line φ � 1 (saturation
line), derivatives

d ln ρsat
/
dT

are estimated from a cubic spline.
4. Partial derivatives of density, with respect to temperature at constant φ, are cal-

culated directly from the following relation
(

∂ρ

∂T

)
φ

� φρ
d ln ρsat

dT
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which is obtained by analytical derivation of (12), inside the domain and along
the boundary (Tmin ≤T ≤Tmax and φmin <φ ≤φmax), except along φ � φmin,
since

(
∂ρ

∂T

)
φmin�0

� 0

5. Partial derivatives of compression factor with respect to temperature at constant
density are obtained from those at constant φ, according to calculus, as follows

(
∂Z

∂T

)
ρ

�
(

∂Z

∂T

)
φ

−
(

∂Z

∂ρ

)
T

(
∂ρ

∂T

)
φ

inside the domain and along the boundary (Tmin ≤T ≤Tmax and φmin <φ

≤φmax), except along φ � φmin, since
(

∂Z

∂T

)
ρmin�φmin�0

� 0

6. For the sake of clarity, it is convenient to introduce new variable a as follows

a �
(

∂Z

∂T

)
ρ

7. Having values of a at different temperatures along each line of constant φ, partial
derivatives

(
∂a

/
∂T

)
φ

are estimated from a cubic spline, inside the domain and along the boundary
(Tmin ≤T ≤Tmax and φmin <φ ≤φmax), except along φ � φmin, since

(
∂a

∂T

)
φmin�0

� 0

Having values of a at different densities along each isotherm, partial derivatives

(
∂a

/
∂ρ

)
T

are estimated from a cubic spline, inside the domain and along the boundary
(Tmin ≤T ≤Tmax and φmin ≤φ ≤φmax).

8. Partial derivatives of awith respect to temperature at constant density are obtained
from those at constant φ, according to calculus, as follows

(
∂a

∂T

)
ρ

�
(

∂a

∂T

)
φ

−
(

∂a

∂ρ

)
T

(
∂ρ

∂T

)
φ
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inside the domain and along the boundary (Tmin ≤T ≤Tmax and φmin <φ

≤φmax), except along φ � φmin, since

(
∂a

∂T

)
ρmin�φmin�0

� 0

9. Since speed of sound values are specified (in the formofF) at pressures calculated
from the Peng–Robinson equation of state for the specified set of isotherms and
lines of constant φ (because true pressures are not known in advance), they are
interpolated with respect to pressure using a cubic spline, to pressures from step
2.

10. Specific heat capacities at constant volume are calculated from (7)

cv � R

M

[
Z + T

(
∂Z

∂T

)
ρ

]2[
F − Z − ρ

(
∂Z

∂ρ

)
T

]−1

inside the domain and along the boundary (Tmin ≤T ≤Tmax and φmin <φ

≤φmax).
11. Having values of compression factor at different pressures along each isotherm,

partial derivatives

(
∂Z

/
∂ p

)
T

are estimated from a cubic spline, inside the domain and along the boundary
(Tmin ≤T ≤Tmax and φmin ≤φ ≤φmax).

12. Partial derivatives of density, with respect to pressure at constant temperature,
are calculated directly from the following relation

(
∂ρ

∂p

)
T

� M

ZRT

[
1 − p

Z

(
∂Z

∂p

)
T

]

which is obtained by analytical derivation of (6), inside the domain and along the
boundary (Tmin ≤T ≤Tmax and φmin ≤φ ≤φmax).

13. Having interpolated values ofF to pressures from step 2, values of speed of sound
squared are calculated from

u2 � FRT

M

14. Specific heat capacities at constant pressure are calculated from (3)

cp � cvu
2
(

∂ρ

∂p

)
T

inside the domain and along the boundary (Tmin ≤T ≤Tmax and φmin <φ

≤φmax).
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15. Having values of specific heat capacity at constant volume at different densities
along each isotherm, partial derivatives

(
∂cv

/
∂ρ

)
T

are estimated from a cubic spline, inside the domain and along the boundary
(Tmin ≤T ≤Tmax and φmin ≤φ ≤φmax).

16. Having calculated derivatives in steps 5, 8 and 15, values of f are calculated from
(17)

f � − RT

ρM

[
2

(
∂Z

∂T

)
ρ

+ T

(
∂a

∂T

)
ρ

]
−

(
∂cv

∂ρ

)
T

inside the domain and along the boundary (Tmin ≤T ≤Tmax and φmin <φ

≤φmax), except along φ � φmin � 0, because along this line, as already stated,
the compression factor has unique value 1, and the heat capacities are obtained
from speed of sound measurements (extrapolated to zero pressure) directly.

17. Values of f from step 16 are squared (in order to have positive sign) and summed,
and the objective function g is then calculated from (18)

g � 1

2

∑
f 2

18. If g >10−4, new values of compression factor are calculated using a modified
Levenberg–Marquardt algorithm [21], inside the domain (Tmin <T <Tmax and
φmin <φ <φmax).

19. Steps 1 to 18 are repeated as many times as necessary to find such values of
compression factor for which g ≤10−4.

3 Results and Discussion

In supercritical domain, a wide range of density/pressure and temperature is covered
(see Table 1). The density range exceeds critical point slightly, while temperature
range exceeds it several times. The number of isochores, isotherms, speed of sound
data points, boundary data points, calculated data points and iterations taken, as well
as initial data deviations, is given in Table 3. The speed of sound data points, boundary
data points and calculated data points do not include isochore at zero density. The
boundary data points consist only of the compression factor and no heat capacities, so
the number of calculated heat capacity data points is higher than that of compression
factor. The average absolute deviations (AADs) of the calculated data points, with
respect to corresponding reference data [18–20], are given in Table 5. Comparison
of figures for AAD from Table 3 for initial compression factors (obtained from the
boundary values by a cubic spline interpolation with respect to density) and those
from Table 5 shows that these last are three orders of magnitude smaller. Since the
figures from Table 5 are very small, the results obtained are practically in the limits of
experimental uncertainties of corresponding direct measurements. Relative deviations
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of calculated data points are presented graphically in Figs. 1, 2, 3, 4, 5 and 6 for argon,
Figs. 13, 14, 15, 16, 17 and 18 for methane and Figs. 25, 26, 27, 28, 29 and 30 for
carbon dioxide, as a function of density and temperature. From these pictures and
graphs, it can be seen that the deviations tend to increase rapidly when approaching
the critical point. This happens because derivatives are approximated less accurately in
the vicinity of critical point where thermodynamic surface has the highest curvature.
This can be mitigated by increasing the number of isotherms in this area. However, it
would demand more boundary data points and more equations to be solved.

In subcritical domain, almost a whole range of density/pressure and temperature is
covered (see Table 2). The density range includes the saturation line, while temperature
range practically extends from triple to critical point. The number of lineswith constant
φ, isotherms, speed of sound data points, boundary data points, calculated data points
and iterations taken, as well as initial data deviations, is given in Table 4. The average
absolute deviations (AADs) of the calculated data points,with respect to corresponding
reference data [18–20], are given in Table 6. Relative deviations of calculated data
points are presented graphically in Figs. 7, 8, 9, 10, 11 and 12 for argon, Figs. 19, 20,
21, 22, 23 and 24 for methane and Figs. 31, 32, 33, 34, 35 and 36 for carbon dioxide,
as a function of φ and temperature.

In order to see how uncertainties in both the boundary conditions and speed of
sound data propagate into the final solution, they are perturbed by ±0.1%, one at a
time, and the results obtained are given in Tables 7, 8, 9 and 10. Tables 5 and 6 show
thatmeanAADof Z without perturbations is 0.0014%.When the boundary conditions
and speed of sound data are perturbed, this figure increases to 0.0910% and 0.0041%,
respectively. In the case of cv, corresponding figures are 0.0320%, 0.3730% and
0.3113%, and in the case of cp, they are 0.0572%, 0.4124% and 0.2358%. Therefore,
uncertainties in the boundary conditions have more severe effect on the final solution
than those in the speed of sound. However, even these results are still in the limits
of experimental uncertainties of direct measurements of corresponding properties,
especially having in mind the ρ–T–p ranges covered in both the domains.

4 Conclusions

It is possible to solve the adiabatic sound wave equation in gaseous (vapor) phase as
a nonlinear least squares problem, on account of volumetric boundary conditions of
Dirichlet type only. When the density range reaches the critical point, the upper limit
of temperature range is bounded only by the maximum pressure at which the speed of
sound data are available. Although the domain of solution is very wide, the number of
equations to be solved is only of the order 102, because all the derivatives are obtained
from a cubic spline. Accuracy of the results obtained depends on the accuracy of the
derivatives estimation, which is in direct correlation with the number of boundary
data points. However, this number is rather moderate and experimentally viable, with-
out need for interpolation like in the case of finite differences approximations. This
approach is far less sensitive to the accuracy of initial data, in comparison with the
numerical integration. It finds solution with AAD of the order 10−3 even if initial data
AAD is of the order 100.
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Appendix

See Tables 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10.

Table 1 ρ–T–p ranges covered
in supercritical domain

Substance ρ (kg·m−3) T (K) p (MPa)

Min Max Min Max Min Max

Ar 0 550 180 600 0 93.235

CH4 0 180 220 620 0 78.599

CO2 0 500 320 1220 0 165.129

Table 2 ρ–T–p ranges covered
in subcritical domain

Substance ρ (kg·m−3) T (K) p (MPa)

Min Max Min Max Min Max

Ar 0 178.858 90 140 0 3.168

CH4 0 61.375 95 180 0 3.285

CO2 0 209.723 220 295 0 5.982

Table 3 Other data for supercritical domain

Substance ρ, T�
const.

u specified Z, cv, cp
specified

Z
calculated

cv, cp
calculated

Initial Z
AAD (%)

Iterations
takena

Ar 12/22 242 42/0/0 200 242/242 4.8173 604

CH4 10/21 180 37/0/0 152 180/180 6.4411 613

CO2 11/46 460 64/0/0 396 460/460 6.1956 1986

aWith error tolerance 10−4

Table 4 Other data for subcritical domain

Substance φ, T�
const.

u specified Z, cv, cp
specified

Z
calculated

cv, cp
calculated

Initial Z
AAD (%)

Iterations
takena

Ar 11/11 110 29/0/0 81 110/110 0.1405 165

CH4 11/18 180 36/0/0 144 180/180 0.1460 291

CO2 11/16 160 34/0/0 126 160/160 0.4301 382

aWith error tolerance 10−4

Table 5 Average absolute
deviation (AAD) in supercritical
domain

Substance AAD (%)

Z cv cp

Ar 0.0018 0.0170 0.0294

CH4 0.0014 0.0165 0.0770

CO2 0.0013 0.0156 0.0466
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Table 6 Average absolute
deviation (AAD) in subcritical
domain

Substance AAD (%)

Z cv cp

Ar 0.0014 0.0558 0.0608

CH4 0.0010 0.0260 0.0355

CO2 0.0012 0.0610 0.0940

Table 7 AAD in supercritical
domain when boundary
conditions are perturbed +
0.1%/− 0.1%

Substance AAD (%)

Z cv cp

Ar 0.0921/0.0896 0.2508/0.2553 0.3418/0.3589

CH4 0.0778/0.0765 0.3774/0.3827 0.4585/0.5146

CO2 0.0821/0.0803 0.3908/0.3896 0.4916/0.5133

Table 8 AAD in subcritical
domain when boundary
conditions are perturbed +
0.1%/− 0.1%

Substance AAD (%)

Z cv cp

Ar 0.0988/0.0977 0.3554/0.3024 0.3117/0.2824

CH4 0.0998/0.0988 0.4707/0.4337 0.4157/0.3881

CO2 0.1000/0.0989 0.4530/0.4138 0.4446/0.4281

Table 9 AAD in supercritical
domain when speed of sound
data are perturbed + 0.1%/−
0.1%

Substance AAD (%)

Z cv cp

Ar 0.0036/0.0032 0.2089/0.2054 0.1170/0.1201

CH4 0.0093/0.0085 0.3639/0.3580 0.3041/0.2946

CO2 0.0073/0.0061 0.4070/0.4090 0.3408/0.3374

Table 10 AAD in subcritical
domain when speed of sound
data are perturbed + 0.1%/−
0.1%

Substance AAD (%)

Z cv cp

Ar 0.0013/0.0015 0.2020/0.2589 0.1306/0.1610

CH4 0.0023/0.0021 0.3354/0.3697 0.2580/0.2759

CO2 0.0019/0.0015 0.2912/0.3262 0.2377/0.2522
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Argon in Supercritical Domain

See Figs. 1, 2, 3, 4, 5 and 6.
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Fig. 1 Relative deviation of Z versus ρ with respect to [18]
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Fig. 2 Relative deviation of Z versus T with respect to [18]
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Fig. 3 Relative deviation of cv versus ρ with respect to [18]
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Fig. 4 Relative deviation of cv versus T with respect to [18]
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Fig. 5 Relative deviation of cp versus ρ with respect to [18]
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Fig. 6 Relative deviation of cp versus T with respect to [18]
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Argon in Subcritical Domain

See Figs. 7, 8, 9, 10, 11 and 12.
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Fig. 7 Relative deviation of Z versus φ with respect to [18]
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Fig. 8 Relative deviation of Z versus T with respect to [18]
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Fig. 9 Relative deviation of cv versus φ with respect to [18]
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Fig. 10 Relative deviation of cv versus T with respect to [18]
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Fig. 11 Relative deviation of cp versus φ with respect to [18]
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Fig. 12 Relative deviation of cp versus T with respect to [18]
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Methane in Supercritical Domain

See Figs. 13, 14, 15, 16, 17 and 18.
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Fig. 13 Relative deviation of Z versus ρ with respect to [19]
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Fig. 14 Relative deviation of Z versus T with respect to [19]
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Fig. 15 Relative deviation of cv versus ρ with respect to [19]
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Fig. 16 Relative deviation of cv versus T with respect to [19]
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Fig. 17 Relative deviation of cp versus ρ with respect to [19]

240 280 320 360 400 440 480 520 560 600
Temperature, K

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

10
0×

(C
-C

)/
C

,%
p,

ca
l

p,
re

f
p,

re
f

Fig. 18 Relative deviation of cp versus T with respect to [19]
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Methane in Subcritical Domain

See Figs. 19, 20, 21, 22, 23 and 24.
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Fig. 19 Relative deviation of Z versus φ with respect to [19]
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Fig. 20 Relative deviation of Z versus T with respect to [19]
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Fig. 21 Relative deviation of cv versus φ with respect to [19]

100 110 120 130 140 150 160 170 180
Temperature, K

-0.2

-0.1

0.0

0.1

0.2

0.3

10
0×

(C
-C

)/C
,%

v,
ca

l
v,

r e
f

v ,
re

f

Fig. 22 Relative deviation of cv versus T with respect to [19]
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Fig. 23 Relative deviation of cp versus φ with respect to [19]
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Fig. 24 Relative deviation of cp versus T with respect to [19]
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Carbon Dioxide in Supercritical Domain

See Figs. 25, 26, 27, 28, 29 and 30.
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Fig. 25 Relative deviation of Z versus ρ with respect to [20]
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Fig. 26 Relative deviation of Z versus T with respect to [20]
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Fig. 27 Relative deviation of cv versus ρ with respect to [20]
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Fig. 28 Relative deviation of cv versus T with respect to [20]
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Fig. 29 Relative deviation of cp versus ρ with respect to [20]
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Fig. 30 Relative deviation of cp versus T with respect to [20]
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Carbon Dioxide in Subcritical Domain

See Figs. 31, 32, 33, 34, 35 and 36.
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Fig. 31 Relative deviation of Z versus φ with respect to [20]
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Fig. 32 Relative deviation of Z versus T with respect to [20]
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Fig. 33 Relative deviation of cv versus φ with respect to [20]

220 230 240 250 260 270 280 290
Temperature, K

-1.0

-0.5

0.0

0.5

10
0×

(C
-C

)/C
,%

v,
ca

l
v,

re
f

v,
re

f

Fig. 34 Relative deviation of cv versus T with respect to [20]
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Fig. 35 Relative deviation of cp versus φ with respect to [20]
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Fig. 36 Relative deviation of cp versus T with respect to [20]
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7. M. Bijedić, N. Neimarlija, Int. J. Thermophys. 28, 268 (2007)
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9. M. Bijedić, N. Neimarlija, Lat. Am. Appl. Res. 43, 393 (2013)
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