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Abstract In this paper, the possibilities of computational intelligence applications for
trace gas monitoring are discussed. For this, pulsed infrared photoacoustics is used
to investigate SFg—Ar mixtures in a multiphoton regime, assisted by artificial neural
networks. Feedforward multilayer perceptron networks are applied in order to recog-
nize both the spatial characteristics of the laser beam and the values of laser fluence ®
from the given photoacoustic signal and prevent changes. Neural networks are trained
in an offline batch training regime to simultaneously estimate four parameters from
theoretical or experimental photoacoustic signals: the laser beam spatial profile R(r),
vibrational-to-translational relaxation time Ty _7, distance from the laser beam to the
absorption molecules in the photoacoustic cell 7* and laser fluence ®. The results
presented in this paper show that neural networks can estimate an unknown laser
beam spatial profile and the parameters of photoacoustic signals in real time and with
high precision. Real-time operation, high accuracy and the possibility of application
for higher intensities of radiation for a wide range of laser fluencies are factors that
classify the computational intelligence approach as efficient and powerful for the in
situ measurement of atmospheric pollutants.
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1 Introduction

The development of numerous spectroscopic methods and techniques is a result of the
requirement for the fast, accurate and selective monitoring of atmospheric pollutants.
Photoacoustic spectroscopy (PAS) is a very successful detection technique for air
pollutants due to its universality, high sensitivity, high selectivity, wide dynamic range,
simple handling and fast data processing. PAS is a powerful technique for the infrared
linear and nonlinear absorption and relaxation processes of molecules in different gas
mixtures [1-3]. For the temporal shape analysis of the pulsed infrared photoacoustics
signal, we employed artificial neural networks to investigate SFg—Ar mixtures in a
multiphoton (MP) regime. Knowledge of the infrared absorption and nonradiative
relaxation of molecules in the atmosphere is important for different models of energy
transfer responsible for global warming and climate change. The SF¢ molecule is a
typical greenhouse gas with high infrared absorption and energy transfer potential
[4,5] which can have a significant impact on the climate in the future.

Many studies have been published on the multiphoton excitation (MPE) of
polyatomic molecules [4,5]. Multiphoton absorption (MPA) in various polyatomic
molecules in the gas phase can be characterized by the dependency of the average
energy absorbed by one molecule on radiation energy fluence ®. The functional depen-
dence of the MPA signal amplitude (intensity and shape) and other physical parameters
(spatial and temporal laser beam characteristics, excited molecules relaxation time)
on laser fluence & is the most commonly measured characteristic in experiments in
MPA. Small variations in ® could change well-known dependencies and mask the
real ratio between the absorption efficiency of the SFg and other trace gases within the
same experimental conditions [6-9]. In our investigation, Ar was used as the buffer
gas due to its simplest case collisional behavior and the absence of vibrational-to-
vibrational energy transfer between the absorbing molecule and buffer [4,7]. Using
pulse photoacoustic spectroscopy (PAS), the absorption and relaxation processes in
the gas mixture were analyzed based on features of the generated acoustic waves,
which are determined by the propagation medium and sound source temporal and
spatial characteristics.

Computational intelligence has proven itself as a practical and powerful collection
of techniques with successful applications in numerous fields. Artificial neural net-
works (ANNs) are a powerful tool which is complementary to conventional approaches
for classification, pattern recognition and prediction. Several important features includ-
ing high processing speeds and the ability to learn the solution to a problem from a
set of examples make ANNSs suitable for application in photoacoustics. One feature of
ANN:Ss is that they are capable of recognizing the shape of the PA signal and simultane-
ously in real time developing a spatial profile of the laser beam, in order to determine
the relaxation time of the excited molecule and the distance from the microphone
to the laser beam. Further development of the already successful implementation of
ANNSs in photoacoustics [10] is proposed here through the application of determining

@ Springer



Int J Thermophys (2017) 38:165 Page3of 12 165

the laser fluence ®. As mentioned above, in MPA experiments the laser fluence ® can
fluctuate between two consequent pulses, changing intensity / significantly. In order
to control and overcome such changes, artificial neural networks can be applied to
recognize the values of @ in real time, with improved accuracy. Since this method of
simultaneously determining the spatial characteristics of laser radiation, laser fluence
and relaxation time works in real time, it can be considered as a substitute for the
instruments used to measure spatial profiles for higher laser beam intensities.

In previous articles, we have shown that the three experimental parameters (relax-
ation time 7y _7, distance between the laser beam and microphone r*, and laser beam
spatial profile R(r)) can be calculated in real time simultaneously with the help of intel-
ligent photoacoustics methods. Now we show that the simultaneous calculation of four
independent parameters (ty 7, r*, R(r) and laser fluence ®) can be carried out in real
time using a more complex neural network, thereby combining our previous results
[10,11] and the results developed here. The agreement between the experiment and
simulation results is about as good as can be expected. The opportunity for expanding
the number of parameters that can be simultaneously calculated exists through know-
ing the relationship between the laser fluence and the intensity of the photoacoustics
signal (the concentration of the absorbing molecules and an instrumental “one point”
calibration factor as defined in [11]). We believe that this work appears promising as
a basis for developing a versatile and comprehensive instrument that can carry out
the real-time measurements of trace gas analysis, at the same time controlling some
instrumental parameters as well.

2 Theoretical Background

The intensity of the PA signal is directly proportional to the energy absorbed and
the concentration of the absorber. The shape of the PA signal is determined by the
relaxation characteristics of the gas mixture, and it also depends on the excitation
energy density (or spatial distribution of the absorbing molecules). Therefore, the
spatial profile of the laser beam should be investigated in more detail. The shape of
an acoustic wave generated by a given energy source can be calculated by solving the
nonhomogeneous linearized wave equation [12,13]:

3%8p(r, t
LD _ 2asp.n = S0 ()
ar?
where 8p (r, t) is the pressure discrepancy from its equilibrium state value, ¢ is
the speed of sound and S(r, ¢) is the source function. The source function S(r, )
is determined by means of its spatial and temporal characteristics. If the distribu-

tion of the excited molecules at location » and time ¢ is given by energy function
E(r,t) = R(r)T (t), then the source function is defined as [13]:
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where H (t) is the Heaviside step function and §(¢) is the Dirac delta function. The
spatial part R(r) of the energy density E(r,t) is determined by the geometrical charac-
teristics of the laser radiation and absorption properties of the medium. The temporal
part 7'(t) describes the evolution of the excitation energy, i.e., relaxation characteristics
of the excited molecules. It can be presented as:

T(t) =exp(—t/tv_r) 3)

Two of the methods used to solve the wave equations for a known source function
and defined initial and boundary conditions are: (a) Fourier transform and (b) Green’s
functions method. Green’s functions method allows us to calculate the photoacoustic
signal for an arbitrary laser beam profile and excitation energy decay. The general
solution of linearized wave equation (1) using Green’s functions method can be written
in the form:

SP(r,1) = /d3r’/dt/g(r,tlr’,t/)S(r’,t/), )

where g(r, t|r/, ') is Green’s function for a 2D wave equation. Green’s function can
be numerically averaged over the spatial part (e.g., the laser profile) in cylindrical
geometry. For the averaged Green’s function G (r, r— t’) in cylindrical geometry, an
acoustic wave takes the form:

2
SP(r, t):—@G(r, t)—/%G(r,t—t’)dt’ 5)

0

The acoustic wave obtained consists of two components: a positive-going condensation
peak of amplitude P, followed by a negative-going rarefaction peak of amplitude
P~ . The amplitude ratio P~ /P depends on the quantity &, defined as:

Tp rr

&= = , (6)
Ty—-T  CTy—_T

where rp, is the distance from the microphone to the center of the laser beam and c is
the speed of sound inside the experimental chamber for the given gas mixture.
Dimensionless parameter ¢ is suitable for calculations and used instead of the
relaxation time ty_7. Another useful dimensionless quantity reduced time ¢* can be
written as t* = t/ T, where 7 is the time and 7p, is the sonic transit time (tp = r1/c).
Based on Eq. 6, it can be concluded that for constant temperature (constant ¢) and
geometrical conditions (constant r1), it is only changes in a relaxation parameter that
change the value of parameter ¢. The shape and intensity of the photoacoustic signal
are changed too. The method for laser fluence recognition proposed in this paper
includes a constant value of parameter ¢ and shape of the PA signal. The intensity of
the PA signals P is directly proportional to the absorbed energy E,, and their ratio is
constant for the constant concentration of the absorbing molecules [11]. The PA signal
intensity varies with changes in the absorbed energy (the shape of the PA signal remains
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the same). Also, the intensity of the PA signal depends on the geometric parameters
of the system such as the radius of the laser beam ri, and the distance r between
the beam and the microphone. These experimental parameters define dimensionless
quantities 7* (r* = r/rr). Although changes in parameter r* (different positions of
the photoacoustic cell, blend, etc.) can substantially change the PA signal intensity, it
is not the case in our study.

We recently developed a method based on analysis of the photoacoustic signal tem-
poral shape which employs computational intelligence to simultaneously calculate
the symmetric laser beam spatial profile, vibrational-to-translational relaxation time
(ty—7) and distance from the laser beam to the absorption molecules (SF¢) within the
photoacoustic cell (r*) [10,14-16]. Previously, a mathematical algorithm developed
for photoacoustic tomography (PAT) was used for simultaneous determination of the
laser beam spatial profile and relaxation time [17], but practical usage of this method
is limited due to the long computational time. The main aim in our previous research
was to improve the existing experimental apparatus in order to avoid additional optical
instruments for measuring the spatial profile of the laser beam. Random variation of
the spatial profile of the laser beam increases the error in determining the important
parameters of MPA. Computational intelligence applied to the simultaneous calcula-
tion of the laser beam spatial profile and ty _ 7 values provides results for times ranging
around a few microseconds. The real-time operation provides exact knowledge of the
laser beam profile during two consecutive pulses and allows its correction [15-17].

3 Neural Network Laser Fluence Recognition

Artificial neural networks are highly parallel connectionist systems modeled on bio-
logical neurons [18]. Neural networks represent a computational paradigm in which
the solution to a problem is learned from a set of examples. Computational power in an
ANN is derived from the density and complexity of the interconnections. Here, feed-
forward multilayer perception networks were used, which were trained in an offline
batch training regime to recognize the values of laser fluence ®, and above-mentioned
quantities R (r), ty_r, and r* from the intensity and shape of the given PA signal. A
simple ANN is composed of several layers: the input layer, a number of hidden layers
and the output layer. Between the layers are connections containing weights. Deter-
mination of the weights is called learning or training. Neural networks used for laser
fluence recognition are trained by a supervised learning process in which the network
is supplied with input vectors (PA signals) together with corresponding target vectors
(characteristic parameters of the laser beam, i.e., & values). The weights are chosen
during the training process so as to minimize the error. Once the weights have been
fixed, new data can be processed by the network very rapidly, which is an obvious
advantage of ANNSs. A suitable error function is defined with respect to a set of data
points, and is usually defined as the squares of the individual errors summed for all
output units and for all patterns. For a multilayer perceptron, there is a computation-
ally efficient procedure for updating the connection weights based on the technique of
error backpropagation. Another important issue, generalization, shows the ability of
the network to perform with newly presented data which did not form part of the train-

@ Springer



165 Page 6 of 12 Int J Thermophys (2017) 38:165

ing set. To achieve successful generalization, we consider three data sets: the training,
test and validation sets.

The ANN developed for the simultaneous determination of R(r), ty_7, and r*,
had theoretical PA signals as training, validation and testing inputs. The PA signals
were calculated using the Fourier transform method and Green’s functions method
[10] for a specific laser beam profile and exponential excitation energy decay, in
accordance with the experimental conditions. With the aim to improve and compare
the experimental results in real time, an additional parameter had to be taken into
account: the photoacoustic signal intensity / and corresponding values of the laser
fluence @ (Fig. 1). The ANNs used in this study, presented in Fig. 1, had an input
layer, one or two hidden layers and an output layer. Structures with up to two hidden
layers were selected on the basis of numerous experiments and performance trials. The
architecture of the ANNs consisted of four neurons in the output layer (three output
neurons to be included by merging with our previously published results). The outputs
of the neural network were: value of ¢, value of r*, profile shape class and laser fluence
®. The Levenberg—Marquardt algorithm was used to train the feedforward multilayer
perception network. The mean squared error was used as a performance measure
during training. Three outputs of the neural networks were estimated values of ¢ and
r* (previously defined), and the profile shape class, which distinguished: Gauss, top
hat, Lorentz and Lorentz with the hole laser beam profiles [10]. Additional output of
the network estimated the value of ®.

In contrast to our previous results in which we introduced neural networks capable
of determining three parameters from a PA signal (ty_r, 1, R), the networks developed
here demonstrate that a fourth parameter, laser fluence ®, can be determined with the
same success. We therefore kept the sampling of the PA signal in 21 or 28 points,
maintaining compatibility with our previous results. This approach makes it possible
for the three previous parameters and the fourth parameter introduced here to be
estimated by two separate networks in a parallel fashion, or be combined into a single
network’s solution to estimate all four parameters, as illustrated in Fig. 1. A combined
solution is more elegant, but it demands a more complex network structure, while a
parallel solution is less elegant but clearly separates the additional results presented
here from our previously published results.

4 Experimental Results

A typical experimental photoacoustic device to investigate samples in the gaseous
phase and measure the relaxation time consists of a laser, photoacoustic cell and a
microphone. The TEA CO; laser with a 45-ns FWHM pulse was used as a nonfo-
cused beam source. The beam spatial profile was defined by the iris. The iris defines
a characteristic spatial profile consisting of concentric rings. The number of rings
depends on the iris size, wavelength and so on. Usually, we have had only one ring;
thus, this profile can be described by the Lorentz profile with the hole. The profile was
not quantified by other methods, but it was visualized by thermal tape or a graphite
plate. The stainless-steel photoacoustic cell was 18.5 cm long and had a diameter of
9.3 cm. We examined the gas mixture SFg—Ar. Measurements were carried out on the
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Fig.1 ANN trained to recognize laser fluence ® from PA signal intensity, with possibility of extension for
simultaneous determination of the profile shape class, vibrational-to-translational relaxation time (ty _7)
and distance from the laser beam to the absorption molecules (SFg) within the photoacoustic cell (r*)

mixture under a pressure of 100 mbar with a fluence range of 0.2 J.cm™2-1.5 J.cm™2.
The absorber pressure (SFg) was kept constant at 0.47 mbar. With such experimen-
tal conditions, we can assume that all of the irradiated molecules took part in the
excitation processes, allowing for the average number of absorbed photons and those
corresponding to the real excitation level of molecules to be calculated [4]. Also, our
experimental results confirmed that, for a fixed total SFg—Ar pressure, the variations
of ¢ (ty_r) as a function of the real excitation level are much smaller than those due
to noise deviations, especially at lower fluences [4,8]. The photoacoustic wave gen-
erated was detected by an appropriate microphone (Knowles Electronics Co., Model
2832), which was placed in the chamber. The experimental settings contained optical
(beam splitter, lenses) and additional instruments (joulemeter, photon-drag detector,
oscilloscopes), a vacuum system and a system for introducing gases.

Experimental PA signals were obtained for five different values of ® (0.2, 0.4,
0.6, 0.8, 1.0 and 1.4) J.cm™2. These values fulfill the conditions for the study of
MP processes in a gas mixture. The experimental PA signals obtained from the SFg—
Ar gas mixture for five different ® values are shown in Fig. 2. The theoretical PA
signals were calculated using Green’s function method for parameter ¢ = 3.6 for
the Lorentz with the hole profile shape, which corresponds to the experimental setup.
A comparison between the five experimental PA signals and a single theoretical PA
signal is presented in Fig. 2, revealing mainly satisfactory agreement. Still, there are
certain disagreements between theoretical and experimental PA signals. Discrepancies
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Fig. 2 Comparison of five experimental signals (obtained from SFg—Ar mixture for absorber pressures of
Psge = 0.47 mbar and pyoa; = 100 mbar) for laser fluences ® = (0.4, 0.6, 0.8, 1.0, 1.4) J-cm™2 and single
simulation signal for ® = 1.0J - cm ™2, The theoretical signal was calculated for the Lorentz with the hole
laser beam profile and for the parameter ¢ = 3.6. Signal intensity is shown in arbitrary units (a.u.), and the
x-axis values represent reduced time (¢*). Discrepancies between experimental and theoretical signals are
caused by well-known phenomena

Table 1 Results—training by simulation, guess of experimental data

Real & 1.4 1.0 0.8 0.6 04 MaxError AvgError

ANN estimate 1.4552 1.2650 0.9941 0.4967 0.3240
ANN error 3.94 % 26.50 % 24.26 % 17.22 % 19.00 % 26.50 % 18.18 %

between the signals are the result of variations in the laser beam profile (nonideal profile
in experiments). The difference between the theoretical spatial laser beam profile and
the real laser beam (experimental) profile leads to the difference between the theoretical
and experimental signal. In some cases, small deviations may occur due to different
deexcitation dynamics, particularly in the case of MP processes. The SFg—Ar mixtures
investigated under our experimental conditions for their pressure and fluence ranges
satisfy the exponential decay approximation. The influence of the laser beam spatial
profile and excitation energy decay on measuring the relaxation time and calibration
of the photoacoustic system has already been explained in detail [19].

In PAS experiments, the signal measured corresponds to the pressure change
detected by the microphone. Some deformations of a real signal may arise due to
pressure changes. We should note that the existing disagreements between the the-
oretical and experimental signal are caused by numerous factors, and this has some
influence on the accuracy of the computational intelligence method proposed in this
paper (Table 1).
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Fig. 3 ANN training dataset of 71 simulation PA signals for laser fluence & ranging from (0.2 to 1.5)
J-cm~2. Dataset of 71 PA signals was calculated using Green’s function method for Lorentz with the hole
spatial laser beam profile and parameter & = 3.6, which provide the best match with the experimental PA
signal

The average number of absorbed photons per molecule <n> is a function of fluence
@ . It was found that the average number of photons absorbed per molecule <n> is
proportional to ®2/3 [20]. Also, the intensity of the PA signal is a function of fluence
@ through the number of absorbed photons <n>. We define the PA signal intensity
I as the maximum value of the first peak Pt [11]. We measured the absorbed energy
based on the transmitted energy for a cell filled by the gas mixture and the transmitted
energy for the evacuated cell. Due to low absorption, the number of measurements
must be large enough for precise determination of the absorbed energy. The intensity
ratio for two PA signals (I1/1>) as well as the ratio of absorbed energy (Eo1/Eo2)
must follow the fluence ratio (®/®,) */3. This dependency was proven on a set of
theoretical and experimental PA signals. The validity of these relations has enabled
us to form an input set of theoretical PA signals for network training which contains
the necessary information about laser fluence, in order to achieve good generalization
in the network. Using this known relation between the signal intensity / and laser
fluence @, and based on comparison between the experimental and theoretical (for the
Lorentz with the hole profile shape) signal intensities, we defined a sufficient number
of PA signals for the network training.

Datasets for the network training, validation and testing were randomly selected
from the same dataset of 71 PA signals calculated using Green’s function method for
parameter ¢ = 3.6 and spatial laser beam profile Lorentz with the hole. The Lorentz
with the hole profile provides the best match with the experimental PA signal [10]. A
complete dataset of 71 theoretical (PA) signals for network learning is shown in Fig. 3.
In order to form a statistical model for network generalization, the dataset is divided
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Fig.4 ANN fit for five different laser fluence values, ® = (0.4, 0.6, 0.8, 1.0, 1.4) J-em™2. Solid line and

dotted line of the same color are experimental and ANN fit, respectively (signal intensity in arbitrary units
is a function of reduced time ¢*)

into: the training, test and validation sets. The training set, that contained 49 PA signals
with a corresponding pairs of input—output data, was presented to the network during
training. The ANN adjusted the weights during training in order to obtain a minimal
error. The validation sample (11 PA signals) was used to measure the network general-
ization during training. Error in the validation sample was monitored during training,
and the training was stopped when the ability to generalize stopped improving. The
testing sample of 11 PA signals had no effect on training and provided an independent
measure of network performance during and after training. To evaluate the error, a
test set was used. When the training of the network was completed, it was able to
process new experimental PA signals (with unknown parameters) in the application
phase and produce reasonable output instantaneously with sufficient accuracy. The
optimum number of neurons required in the hidden layer depends on the complexity
of the input and output data. The network inputs were 21 or 28 equidistant points,
which proved to be sufficient for efficient network operation. All the PA signals were
sampled at 21 or 28 equidistant points on the 7* axis.

The method was tested by five experimental PA signals with different ® values.
The estimated values of the parameter @ and errors in the percentages are shown at
Table 1. The error bars are lower for higher fluences because the signal-to-noise ratio
is the best at the highest fluence. The ANN fit for five different ® values is illustrated
in Fig. 4, which shows that the difference presented in Fig. 2 between the experimental
and simulation signals used for the ANN training is similar to the ANN results. We can
conclude that for the given task the ANN performed efficiently, but some differences
between the real and estimated & values occurred for reasons which have already been
discussed.
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5 Conclusion

ANNSs as a technique is currently having a vast practical impact in measurement
technology and many other fields. Feedforward neural networks are very suitable
for modeling nonlinear relationships and are particularly useful in solving problems
for which there are no suitable conventional mathematical models. Neural network
training can in some cases be computationally intensive and slow, but in the imple-
mentation phase feedforward networks have high speed parallel data processing as
an inherent feature. In this paper, we have focused our attention on artificial neural
networks applied to the problem of determining the values of ®, based on the intensity
of theoretical and experimental PA signals. One of the easily varied parameters in an
MPE experiment is laser fluence ®. Variations in fluence ® produce profound changes
in the absorption cross section and the dissociation probability. This could mask the
real ratio between the absorption efficiency of the SFg and other trace gases within
the same experimental conditions. To prevent such changes, neural networks can be
applied to recognize the values of @ in real time from the intensity of the PA signal.

The proposed method for the application of computational intelligence to pho-
toacoustic measurements was successfully tested by theoretical and experimental
PA signals. Trained networks were capable of recognizing four parameters simul-
taneously: the laser beam spatial profile, excited molecule relaxation time, distance
between the laser and the microphone and laser fluence. The networks were trained
using the calculated (theoretical) PA signals adjusted for our experimental setup. This
methodology can be used to efficiently find the parameters of unknown (experimental)
PA signals with acceptable precision. In the application phase, ANNs determine the
laser fluence and the aforementioned parameters practically instantaneously, providing
real-time operation. These advantages of the computational intelligence method allow
for its more efficient usage in trace gas monitoring with the possibility of its applica-
tion for higher intensities of laser radiation. Although the solution to the problem of
finding ® values from theoretical PA signals networks is satisfactorily precise, it is
necessary to improve the accuracy on a set of experimental PA signals. As explained,
there are several reasons which cause the differences between theoretical and exper-
imental signals, and consequently differences in the real and estimated values of ®.
Further directions of our research could be to improve precision in determining the
parameter @ on a set of experimental PA signals with the application of fuzzy systems
or by applying more complex hybrid neuro-fuzzy-genetic solutions. Also, as an impor-
tant research direction, along with the analysis of atmospheric pollutants considered
here, is to consider more practical applications and case studies for our methodology
in order to further prove its usability.

As we have mentioned before, we believe that this intelligent photoacoustic
approach could thoroughly establish the ground work to fulfill the goal of devel-
oping a versatile instrument capable of tracing and monitoring gas species with a
self-correction capability. Such an instrument could be a completely application-
oriented system, one that does not need any change in the experimental setup, and
all are just matter of modified software.
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