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Abstract This study investigates the heat transfer characteristics for Blasius and
Sakiadis flows over a curved surface coiled in a circle of radius R having constant
curvature. Effects of thermal radiation are also analyzed for nonlinear Rosseland
approximation which is valid for all values of the temperature difference between the
fluid and the surface. The considered physical situation is represented by a mathemat-
ical model using curvilinear coordinates. Similar solutions of the developed partial
differential equations are evaluated numerically using a shooting algorithm. Fluid
velocity, skin-friction coefficient, temperature and local Nusselt number are the quan-
tities of interest interpreted for the influence of pertinent parameters. A comparison of
the present and the published data for a flat surface validates the obtained numerical
solution for the curved geometry.

Keywords Blasius/Sakiadis flows · Curved surface · Numerical solution · Thermal
radiation

1 Introduction

Heat transfer analysis for the viscous flow has gained a significant attention due to
its wide range of practical applications in the fields of engineering and industry. Such
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applications include the extrusion of rubber and plastic surface, continuous casting
of metals, spinning of fiber, drawing of plastic films, cooling of continues strips or
filaments, crystal growing, glass blowing, paper production [1–4]. In these processes,
the drag force and rate of surface heat transfer play a critical role for the produced
quality of the final product as discussed in detail by Karwe and Jaluria [5]. One of the
typical problems in the theory of boundary layer flows is the flow past on a stationary
sheet caused by a uniform free stream velocity famously known as Blasius flow [6].
Abussita [7] analyzed the Blasius flow past on a flat plate and discussed the existence
of the solution. Asaithambi [8] used finite-difference technique to solve the Falkner–
Skan’s flow equation. For some recent investigations for the Blasius flow readers are
referred to the articles [9–15] and references therein.

Flow on a moving flat surface is theoretically investigated by Sakiadis [16] which
is another famous problem in the theory of boundary layer flows. The reduction of
governing partial differential equations for both Blasius and Sakiadis flows through the
respective similarity variables results in the same ordinary differential equation with
different boundary conditions. The discussion regarding the flow and heat transfer on a
moving sheet for experimental and theoretical results was presented by Tsou et al. [17].
The results of [17] provided an experimental setup for the existence of Sakiadis flow
and authenticated the numerical results in [16]. Based on the fact that a single ordinary
differential equation (namely, Blasius equation together with two set of boundary
conditions) governs both Blasius and Sakiadis flows, an inventive way of analysis for
these two types of boundary layer flows discusses both together. A literature survey
reveals that the literature is scarce in this direction [18–23]. However, different aspects
of flow phenomena have been discussed by several researchers separately. For details,
the interested readers are referred to the articles [24–33].

Influence of radiation on convective heat transfer process is significant in processes
involving high temperature. Examples of such processes include solar power technol-
ogy, nuclear power plant, gas turbine, electrical power generation, storage of thermal
energy, space vehicle re-entry. Raptis et al. [34] investigated the influence of radiation
on a hydromagnetic flow of a Newtonian fluid. Cortell [35,36] investigated the influ-
ence of thermal radiation in the Sakiadis and Blasius flows, respectively. The influence
of thermal radiation in the case of nonlinear Rosseland approximation in Sakiadis flow
was studied by Pantokratoras and Fang [37]. In another paper, Pantokratoras and Fang
[38] extended the same situation to discuss the Blasius flow. The study of heat transfer
in the flow of nanofluid by considering nonlinear thermal radiation was carried out
by Mushtaq et al. [39]. Naveed et al. [40] analyzed radiation effects for a viscous
fluid through a curved channel. Recently, Abbas et al. [41] discussed the Hall effects
on a viscous fluid through a semi-porous curved channel by invoking the nonlinear
Rosseland approximation.

Much attention in the above studies is given to the situation when fluid is flowing
on a flat plate and governing equations are given in Cartesian coordinates. Sajid et al.
[42] in a recent study proposed a mathematical model to study the flow problem over a
curved surface of constant curvature. Abbas et al. [43] studied the effects of magnetic
field and heat transfer through a curved stretching surface. Recently, Naveed et al.
[44] studied the effects of radiation in MHD micropolar fluid due to curved stretching
sheet. Rosca and Pop [45] have discussed the unsteady flow past a porous curved
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Fig. 1 Sketch diagram of the
curved surface

stretching/shrinking wall. The hydromagnetic flow over an unsteady curved stretching
wall was carried out by Naveed et al. [46]. Very recently, Abbas et al. [47] discussed
the hydromagnetic flow and heat transfer of nanofluid on a curved stretching wall by
considering the radiation and heat generation in the energy equation. The objective
of this study is to investigate the influence of nonlinear thermal radiation for Blasius
and Sakiadis flows over a curved surface. Numerical solutions are obtained by using
shooting method for the fluid velocity and temperature distribution. Numerical results
are in the form of graphs and tabular data. These representations of the results are
utilized to discuss the influence of pertinent parameters.

2 Mathematical Formulation

Consider the steady, incompressible and two-dimensional flow of a viscous fluid past
on a curved surface coiled in a circle of radius R (Fig. 1). The boundary layer equations
describing the flow phenomena are [43]:

∂
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The boundary conditions for the velocity field are

u = 0 = v at r = 0,

u → U∞ as r → ∞, (4)
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for the Blasius flow and

u = Uw, v = 0 at r = 0,

u → 0 as r → ∞, (5)

for the Sakiadis flow.
Here u and v are components of the velocity in s- and r -directions, respectively, ρ

is the density of the fluid, ν the kinematics viscosity, p the pressure, U∞ a constant
free stream velocity and Uw the surface velocity.

Introducing the similarity variables

u = U f ′ (η) , v = 1

2

√
Uν

s

R

r + R

[
η f ′ (η)

] − f (η) ,

η =
√

U

νs
r = r

s

√
Res, p = ρU 2P (η) , (6)

where η and f are the similarity variable and the nondimensional stream function,
respectively, and Res = Us/ν is the local Reynolds number. In Eq. 6 we set U = U∞
for Blasius flow and U = Uw for Sakiadis flow.

With the help of Eq. 6, Eq. 1 is satisfied and Eqs. 2–5 give

∂P

∂η
= f ′2

η + K
, (7)

f ′′′ + K

2 (η + K )
f f ′′ − K

2 (η + K )2

(
η f ′2 − f f ′)

+ ηK

2 (η + K )

∂P

∂η
+ f ′′

η + K
− f ′

(η + K )2 = 0, (8)

f (0) = 0, f ′ (0) = 0, f ′ (∞) = 1, (Blasius flow) (9)

f (0) = 0, f ′ (0) = 1, f ′ (∞) = 0, (Sakiadis flow) (10)

In order to eliminate pressure gradient using Eq. 7 in (8) we get

f ′′′ + K

2 (η + K )
f f ′′ + f ′′

η + K
− f ′

(η + K )2 + K

2 (η + K )2 f f ′ = 0, (11)

where K = RU/ν is the dimensionless radius of curvature. It is worth mentioning
here that by taking K → ∞, Eq. 11 reduces to classical momentum equation.

3 Transport Equation

The equation that governs the heat transport subject to nonlinear thermal radiation and
neglecting the viscous dissipation effect is
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v
∂T
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+ uR
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= α
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∂r
(r + R) qr , (12)

where α = k1/ρcp is the thermal diffusivity, k1 the thermal conductivity, cp the
specific heat at constant pressure, qr the radiative heat flux and T = Tw the surface
temperature, where Tw > T∞ with T∞ being the uniform temperature of the ambient
fluid.

The thermal boundary conditions for the energy Eq. 12 are

T = Tw at r = 0,

T → T∞ as r → ∞. (13)

Incorporating the Rosseland approximation for thermal radiation [48], the radiative
heat flux is given by

qr = −4σ ∗

3k∗
∂T 4

∂r
= −16σ ∗

3k∗ T 3 ∂T

∂r
, (14)

where σ ∗ is the Stefan–Boltzmann constant and k∗ the mean absorption coefficient.
The dimensionless temperature is defined as

θ (η) = T − T∞
T f − T∞

, (15)

with
T = T∞ [1 + (θw − 1) θ ] , (16)

and

θw = Tw/T∞ (temperature parameter).

The right-hand side energy Eq. 12 can be expressed as

α

(r + R)
(∂/∂r)

[{
1 + Rd (1 + (θw − 1) θ)3

}
(r + R)∂T /∂r

]
, (17)

here Rd = 16σ ∗T 3∞/3k1k∗ denotes the radiation parameter.
Substituting Eqs. 6 and 14–17, Eq. 12 takes the following form

1

Pr (η + K )

[(
1 + Rd (1 + (θw − 1) θ)3

)
(η + K ) θ ′]′ + K

2 (η + K )
f θ ′ = 0,

(18)

with boundary conditions
θ (0) = 1, θ (∞) = 0. (19)

where Pr = μcp/k1 is the Prandtl number.
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The energy Eq. 18 can be transformed to classical energy equation in the absence
of thermal radiation by taking Rd = 0. The physical quantities of interest are the skin-
friction coefficient and rate of heat transfer along the s-directions, which are given
as

C f = τrs

ρU 2 , Nus = sqw

k1 (Tw − T∞)
, (20)

where τrs is the shear stress at the surface and qw the heat flux at the surface in the
s-direction, which are given by

τrs = μ

(
∂u

∂r
− u

r + R

)∣∣∣∣
r=0

, qw = −k1
∂T

∂r

∣∣∣∣
r=0

+ (qr )w, (21)

Using Eqs. 6 and 21, Eq. 20 becomes

Re
1
2
s C f = f ′′ (0) − f ′ (0)

K

Re−1/2
s Nus = −

[
1 + Rdθ3

w

]
θ ′(0),

where Res = Us/ν is the local Reynolds number.

4 Numerical Solution

Numerical solution for the momentum Eq. 11 subject to either boundary conditions
(9) (i.e., for the Blasius flow) or the boundary conditions (10) (i.e., for the Sakiadis
flow) and energy Eq. 18 along with the boundary conditions (19) is obtained by using
shooting method along with the Runge–Kutta algorithm. For application of shooting
method, first we reduce the boundary value problems into initial value problems with
missing condition of f ′′(0) and θ ′(0) as follows

f ′ = z, z′ = q,

q ′ = −K f q

2 (η + K )
− q

η + K
+ z

(η + K )2 − K f z

2 (η + K )2 , (22)

θ ′ = g, g′ = − g

(η + K )
− 3Rd (θw − 1) (1 + (θw − 1) θ)2 g2

1 + Rd [1 + (θw − 1) θ ]3

− −PrK f g

2
(
1 + Rd (1 + (θw − 1) θ)3) (η + K )

, (23)

with boundary conditions.

f (0) = 0, z (0) = 0, θ (0) = 1, (Blasius flow) (24)

f (0) = 0, z (0) = 1, θ (0) = 1, (Sakiadis flow) (25)

For integration of Eqs. 22 and 23 as an initial value problem subject to any boundary
conditions (24) or (25), we need the value of q (0), i.e., f ′′(0) and θ ′(0), i.e., g(0),
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Table 1 Comparison of the Sakiadis momentum transfer solution with [22], ()∗ represents for the flat

surface by taking K → ∞, i.e.,
(
K = 105

)
, and ()∗∗ represents for the curved surface by taking K = 100

η f f ′ − f ′′

0.0 0.00 000, (0.00 000)∗ (0.00
000)∗∗

1.0000, (1.0000)∗ (1.0000)∗∗ 0.44 374, (0.44 374)∗ (0.44
201)∗∗

0.1 0.09 778, (0.09 778)∗ (0.09
779)∗∗

0.95 566, 0.95 566)∗ (0.95
586)∗∗

0.44 265, (0.44 265)∗ (0.44
051)∗∗

0.2 0.19 113, (0.19 113)∗ (0.19
118)∗∗

0.91 153, 0.91 153)∗ (0.91
197)∗∗

0.43 946, (0.43 946)∗ (0.43
695)∗∗

0.3 0.28 010, (0.28 010)∗ (0.28
020)∗∗

0.86 783, 0.86 783)∗ (0.86
853)∗∗

0.43 430, (0.43 430)∗ (0.43
150)∗∗

0.4 0.36 472, (0.36 472)∗ (0.36
491)∗∗

0.82 473, 0.82 473)∗ (0.82
572)∗∗

0.42 735, (0.42 735)∗ (0.42
432)∗∗

0.5 0.44 507, (0.44 507)∗ (0.44
537)∗∗

0.78 241, 0.78 241)∗ (0.78
372)∗∗

0.41 878, (0.41 878)∗ (0.41
558)∗∗

0.6 0.52 124, (0.52 124)∗ (0.52
168)∗∗

0.74 102, 0.74 102)∗ (0.74
265)∗∗

0.40 877, (0.40 877)∗ (0.40
547)∗∗

0.7 0.59 331, (0.59 331)∗ (0.59
394)∗∗

0.70 070, 0.70 070)∗ (0.70
266)∗∗

0.39 753, (0.39 753)∗ (0.39
418)∗∗

0.8 0.66 142, (0.66 142)∗ (0.66
225)∗∗

0.66 155, 0.66 155)∗ (0.66
385)∗∗

0.38 525, (0.38 525)∗ (0.38
190)∗∗

0.9 0.72 567, (0.72 567)∗ (0.72
675)∗∗

0.62 367, 0.62 367)∗ (0.62
631)∗∗

0.37 211, (0.37 211)∗ (0.36
881)∗∗

1.0 0.78 620, (0.78 620)∗ (0.78
756)∗∗

0.58 715, 0.58 715)∗ (0.59
011)∗∗

0.35 831, (0.35 831)∗ (0.35
509)∗∗

3.0 1.43 273, (1.4 3273)∗
(1.4438)∗∗

0.14 401, 0.14 401)∗ (0.14
937)∗∗

0.10 983, (0.10 983)∗ (0.11
050)∗∗

5.0 1.57 884, (1.5 7884)∗
(1.5985)∗∗

0.02 994, 0.02 994)∗ (0.03
297)∗∗

0.02 392, (0.02 392)∗ (0.02
512)∗∗

10 1.61 611, (1.61 611)∗
(1.6409)∗∗

0.00 053, 0.00 053)∗ (0.00
076)∗∗

0.00 043, (0.00 043)∗ (0.00
056)∗∗

20 1.6154, (1.6154)∗ (1.6420)∗∗ 0.00 000, 0.00 000)∗ (0.00
000)∗∗

0.00 000, (0.00 000)∗ (0.00
000)∗∗

but no such values are given. Since momentum and energy equations are uncoupled,
f ′′(0) is not influenced by the Prandtl number, radiation and temperature parameters.
The value of θ ′ (0) is computed for different combinations of Prandtl number Pr ,
temperature parameter θw and radiation parameter Rd. In order to validate the method
used in the present study and to analyze the accuracy of the present results, the missed
wall shear stress f ′′(0) is calculated for K → ∞ (for the flat surface case) which is
0.3320 and −0.4437 for the Blasius and the Sakiadis flows, respectively, as reported
by Bataller [22]. For the flow of Newtonian fluid over a flat surface, the shear stress
is more than that in Blasius flow. The same trend exists for the curved surface, i.e.,
for K = 100, the missed wall shear stress f ′′(0) is 0.2269 (for Blasius flow) and
−0.5400 (for Sakiadis flow). Tables 1 and 2 are made for the second validation test in
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Table 2 Comparison of the Blasius momentum transfer solution with [22], ()∗ represents for the flat surface

by taking K → ∞, i.e.,
(
K = 105

)
, and ()∗∗ represents for the curved surface by taking K = 100

η f f ′ f ′′

0.0 0.00 000, (0.00 000)∗ (0.00
000)∗∗

0.0000, (0.0000)∗ (0.0000)∗∗ 0.33 206, (0.33 206)∗ (0.361
27)∗∗

0.1 0.00 166, (0.00 166)∗ (0.00
180)∗∗

0.03 320, (0.03 320)∗, (0.03
610)∗∗

0.33 205, (0.33 205)∗ (0.36
090)∗∗

0.2 0.00 664, (0.00 664)∗ (0.00
722)∗∗

0.06 641, (0.06 641)∗ (0.07
217)∗∗

0.33 199, (0.33 199)∗ (0.36
044)∗∗

0.3 0.01 494, (0.01 494)∗ (0.01
624)∗∗

0.09 960, (0.09 960)∗ (0.10
820)∗∗

0.33 182, (0.33 182)∗ (0.35
990)∗∗

0.4 0.02 656, (0.02 656)∗ (0.02
885)∗∗

0.13 276, (0.13 276)∗ (0.14
415)∗∗

0.33 148, (0.33 148)∗ (0.35
915)∗∗

0.5 0.04 149, (0.04 149)∗ (0.04
506)∗∗

0.16 589, (0.16 589)∗ (0.18
002)∗∗

0.33 092, (0.33 092)∗ (0.35
813)∗∗

0.6 0.05 973, (0.05 973)∗ (0.06
485)∗∗

0.19 894, (0.19 894)∗ (0.21
577)∗∗

0.33 008, (0.33 008)∗ (0.35
680)∗∗

0.7 0.08 127, (0.08 127)∗ (0.08
821)∗∗

0.23 189, (0.23 189)∗ (0.25
137)∗∗

0.32 893, (0.32 893)∗ (0.35
509)∗∗

0.8 0.10 611, (0.10 611)∗ (0.11
512)∗∗

0.26 471, (0.26 471)∗ (0.28
677)∗∗

0.32 739, (0.32 739)∗ (0.35
295)∗∗

0.9 0.13 421, (0.13 421)∗ (0.14
556)∗∗

0.29 736, (0.29 736)∗ (0.32
194)∗∗

0.32 544, (0.32 544)∗ (0.35
032)∗∗

1.0 0.16 557, (0.16 557)∗ (0.17
950)∗∗

0.32 979, (0.32 979)∗ (0.35
682)∗∗

0.32 301, (0.32 301)∗ (0.34
715)∗∗

3.0 1.39 684, (1.39 684)∗
(1.4982)∗∗

0.84 605, (0.84 605)∗ (0.89
757)∗∗

0.16 135, (0.16 135)∗ (0.16
015)∗∗

5.0 3.28 332, (3.28 332)∗
(3.4752)∗∗

0.99 154, (0.99 154)∗
(1.0279)∗∗

0.01 590, (0.01 590)∗ (0.00
602)∗∗

7.0 5.27 933, (5.27 933)∗
(5.5245)∗∗

0.99 992, (0.99 992)∗
(1.0169)∗∗

0.00 022, (0.00 022)∗ (0.00
927)∗∗

8.82 7.09 920, (7.09 920)∗
(7.3598)∗∗

1.00 000, (1.00 000)∗ (1.00
000)∗∗

0.00 000, (0.00 000)∗ (0.00
918)∗∗

which a numerical comparison (for K → ∞) and the present study (for K = 100)

of the solution for f and its derivatives are given for both Sakiadis and Blasius flows,
respectively, with the results reported by Bataller [22]. It is evident from Table 2 that
the missed wall condition f ′′ (0) is the same for the Blasius flow over flat surface case
(i.e., K → ∞) but for the curved surface (i.e., K = 100) it is 0.36 127. The calculated
value of f ′ (∞) is compared with the given boundary condition f ′ (∞) = 1, and the
value of f ′′ (0) is adjusted by a root finding algorithm. For better approximation, here
we used Newton–Raphson method. The step size is taken as 
η = 0.005. Also, it is
noticed from these tables that the integrating domain for the Sakiadis flow is larger as
compared to the Blasius flow.
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Fig. 2 Variation of nondimensional radius of curvature K on functions f, f ′, f ′′ for Blasius flow

Fig. 3 Variation of Prandtl number Pr on temperature profile θ by keeping Rd = 0.2, θw = 1.3 and
K = 7 fixed

5 Results and Discussion

Numerical solution for the momentum Eq. 11 is subject to either boundary conditions
(9) (i.e., for the Blasius flow) or the boundary conditions (10) (i.e., for the Sakiadis
flow), and energy Eq. 18 subject to boundary conditions (19) is obtained by shooting
method along with the Runge–Kutta algorithm. The effect of nondimensional radius
of curvature K on f and its derivatives is shown in Fig. 2. Figure 3 depicts effects of
Prandtl number Pr for both Sakiadis and Blasius flows. From this figure it is observed
that the temperature of the fluid is decreased in both the cases. It is due to the fact
that Prandtl number has an inverse relation with the thermal diffusivity of the fluid.
Hence, an increase in Prandtl number results in a decrease in thermal diffusivity. Also,
the thermal boundary layer thickness is thicker for the Sakiadis flow in comparison
with the Blasius flow. Figure 4 demonstrates the influence of nonlinearized radiation
parameter Rd on temperature distribution for both Sakiadis and Blasius flows. The
temperature of the fluid is increased by increasing the value of Rd. Also, the thermal
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Fig. 4 Variation of nonlinearized radiation parameter Rd on temperature distribution θ by keeping Pr =
20, θw = 1.3 and K = 7 fixed

Table 3 Comparison of the results of Nusselt number −θ ′(0), for the Sakiadis flow for several values of
the temperature and radiation parameter θw and Rd, respectively, with previously published data [37] with
Pr = 5.0 and K → ∞ (i.e., K = 1000) fixed, and ()∗∗ represents for the curved surface by taking K = 10

Rd = 10 Rd = 100 Rd = 1000

Battaler [36] Linear Rosseland approximation

1.1349 1.2072 1.2160

Pantokratoras and Fang [37] present results of linear Rosseland approximation

1.1342, (1.1342)∗ (1.1830)∗∗ 1.2071, (1.2071)∗ (1.2559)∗∗ 1.2165, (1.2165)∗ (1.2654)∗∗
θw Nonlinear linear Rosseland approximation

1.5 0.9516, (0.9516)∗ (1.0001)∗∗ 1.1811, (1.1811)∗ (1.2299)∗∗ 1.2124, (1.2124)∗ (1.2613)∗∗
3 0.4196, (0.4196)∗ (0.4668)∗∗ 0.9671, (0.9671)∗ (1.0157)∗∗ 1.1837, (1.1837)∗ (1.2326)∗∗
5 0.1671, (0.1671)∗ (0.2120)∗∗ 0.5907, (0.5907)∗ (0.6389)∗∗ 1.0792, (1.0792)∗ (1.1279)∗∗

Table 4 Comparison of the results of reduced Nusselt number −θ ′ (0) , for the Blasius flow for different
values of the temperature and radiation parameter θw and Rd, respectively, with previously published data
[38] with Pr = 5.0 and K → ∞ (i.e., K = 1000) fixed, and ()∗∗ represents for the curved surface by
taking K = 10

Rd = 10 Rd = 100 Rd = 1000

Battaler [35] Linear Rosseland approximation

0.5528 0.5741 0.5764

Pantokratoras and Fang [38] present results of linear Rosseland approximation

0.5533, (0.5533)∗ (0.6014)∗∗ 0.5745, (0.5745)∗ (0.6227)∗∗ 0.5767, (0.5767)∗ (0.6248)∗∗
θw Nonlinear linear Rosseland approximation

1.5 0.4755, (0.4755)∗ (0.5243)∗∗ 0.5640, (0.5640)∗ (0.6122)∗∗ 0.5756, (0.5756)∗ (0.6238)∗∗
3 0.2422, (0.2422)∗ (0.2883)∗∗ 0.4714, (0.4714)∗ (0.5193)∗∗ 0.5635, (0.5635)∗ (0.6117)∗∗
5 0.1266, (0.1266)∗ (0.1706)∗∗ 0.3068, (0.3068)∗ (0.3540)∗∗ 0.5171, (0.5171)∗ (0.5651)∗∗
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Fig. 5 Variation of temperature parameter θw on temperature distribution θ by keeping Pr = 20, Rd = 0.2
and K = 7 fixed

boundary layer thickness is higher for the Sakiadis flow as compared to the Blasius
flow because the Nusselt number for Sakiadis flow is more than Blasius flow which
can be seen in Tables 3 and 4. Figure 5 is made to see the variation of temperature
parameter θw on the temperature distribution for both Sakiadis and Blasius flows.
From this figure it is found that temperature is increased for higher values of θw. Also,
one can observe from this figure that the temperature distribution becomes S shaped
(as discussed by Pantokratoras and Fang [37,38]) showing the existence of adiabatic
case for large values of θw. It is also worth mentioning here that when θw is near 1, the
nonlinear Rosseland approximation tends to linear Rosseland approximation, which
can be seen in Tables 3 and 4.

6 Concluding Remarks

In the present study the Blasius and Sakiadis flows are considered in the presence of
nonlinear radiation over a curved surface. The following conclusions have been drawn
from this study:

• Both the temperature and thermal boundary layer thickness of the fluid are
decreased for higher values of Pr .

• An increase in nonlinear radiation parameter Rd raises the temperature and the
thermal boundary layer thickness.

• Temperature of the fluid increases and becomes S shape for large value of θw.
• By taking K → ∞, the results for flat surface for both Sakiadis and Blasius flows

are recovered.
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