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Abstract In 1960, E. H. Brown defined a set of characteristic curves (also known
as ideal curves) of pure fluids, along which some thermodynamic properties match
those of an ideal gas. These curves are used for testing the extrapolation behaviour of
equations of state. This work is revisited, and an elegant representation of the first-
order characteristic curves as level curves of a master function is proposed. It is shown
that Brown’s postulate—that these curves are unique and dome-shaped in a double-
logarithmic p, T representation—may fail for fluids exhibiting a density anomaly. A
careful study of the Amagat curve (Joule inversion curve) generated from the IAPWS-
95 reference equation of state for water reveals the existence of an additional branch.

Keywords Brown’s characteristic curve · Ideal curve · IAPWS-95 equation of state ·
Joule inversion · Joule–Thomson inversion · Water

Symbols

Bi i th virial coefficient
Cp Isobaric heat capacity
CV Isochoric heat capacity
cX (Dimensionless) thermodynamic response function, X ∈ {p, V, T, κ}

(Eqs. 14–15)
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G Gibbs energy
G Hessian of Gm(p, T )

H Configurational enthalpy
n Amount of substance
p Pressure
qX Dimensionless logarithmic slope, X ∈ {A, B, C} (Eqs. 16–18)
R Universal gas constant
S Configurational entropy
T Temperature
U Configurational internal energy
V Volume
Z Compression factor, Z = pVm/(RT )

αp Isobaric thermal expansivity
κT Isothermal compressibility
ρ Molar density, ρ = V−1

m

Subscripts

A Amagat (Joule inversion) curve
B Boyle curve
c Critical property
C Charles (Joule–Thomson inversion) curve
m Molar property

Superscripts

id Ideal gas
g Vapour phase
l Liquid phase

1 Introduction

In 2002, Wagner and Pruß published a reference equation of state which became
known as the IAPWS-95 (International Association for the Properties of Water and
Steam) equation [1]. This equation is a complicated multi-parameter function which
is able to describe all experimental data for the thermodynamic properties of water
up to 1000 MPa and 1273 K within their uncertainties. Later a simplified version of
this equation became a part of the GERG (Groupe Européen de Recherches Gazières)
equation of state for mixtures [2]. As water is used as a working fluid in most of the
world’s thermal power plants, plays a major role in geology and meteorology, and is an
important solvent or reactant in chemical industry, the importance of the IAPWS-95
equation cannot be underrated.1

1 For applications in which computational speed is critical, it is advantageous to use the IAPWS-IF97
(“industrial formulation”), a faster executing simplified version of the IAPWS-95 equation [3,4].
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One of the many tests that the IAPWS-95 had to pass was the calculation of Brown’s
characteristic curves (a.k.a. ideal curves). These are curves in the pressure–temperature
plane along which one property of a real gas has the same value as that of an ideal
gas. Brown defined a number of such curves [5] and proposed some rules about their
shapes and arrangements. These rules were in part based on thermodynamic laws and
physical insight, but to some extent also on experience.

Of course—in comparison to the present situation—Brown was working with a
rather limited set of experimental data in 1960. But his rules were found to be good
for nonpolar fluids, and therefore, the calculation of Brown’s characteristic curves is
recommended for all new equations of state [6,7].

This immediately leads to the questions whether Brown’s rules are applicable to
a strongly polar and hydrogen-bonding fluid like water and—in particular—whether
the IAPWS-95 reference equation of state obeys Brown’s rules.

2 Theory

2.1 The Characteristic Curves

The compression factor Z of an ideal gas is 1 for all temperatures T and molar volumes
Vm,

Z ≡ pVm

RT
= 1. (1)

Moreover, for an ideal gas, the configurational internal energyU is zero for all volumes
and temperatures. Therefore, all derivatives of Z or U with respect to temperature or
pressure are zero, too.

For a real gas, Z usually deviates from 1, and the derivatives of Z usually have
nonzero values. In his work “On the thermodynamic properties of fluids”, however,
Brown [5] points out that, for each thermodynamic property, there are special states
where it has the same value as in an ideal gas. For pure fluids, such states can be
represented by curves in the p, T plane. Brown studied derivatives of the compression
factor and defined a hierarchy of such curves, which are nowadays called Brown’s
ideal curves or characteristic curves. In this work, the so-called first-order curves are
of particular interest, i.e., curves along which a first-order derivative of Z vanishes.2

There are three such curves:

1. The Amagat curve, also called Joule inversion curve. Its mathematical condition
is any one of the following:

(
∂Z

∂T

)
V

= 0,

(
∂Z

∂p

)
V

= 0, πT ≡
(

∂U

∂V

)
T

= 0,

(
∂p

∂T

)
V

= p

T
. (2)

πT , the so-called internal pressure, is usually negative, i.e., an isothermal compres-
sion lowers the internal energy. At very high pressures or temperatures, however,

2 Brown furthermore defined a number of second-order characteristic curves, but we shall not deal with
them here.
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the molecules are driven into the repulsive branches of their interaction potentials,
and then a compression increases the internal energy. At the Joule inversion point,
the configurational internal energy is independent of density.
The Amagat curve starts at high temperatures and zero pressure at the temperature
TA for which the second virial coefficient B2 has its maximum, hence

B ′
2(TA) = 0, (3)

where the prime indicates a differentiation with respect to temperature. The ter-
minal slope at this endpoint is3

dp

dT

∣∣∣
T→TA

= B ′
2(TA)RTA

B3(TA)
. (4)

From there it passes through a pressure maximum to lower temperatures, until it
ends (in a p, T projection) on the vapour pressure curve. For most substances,
however, this endpoint is not accessible because crystallization sets in before the
endpoint can be attained.
The maximum of the Amagat curve lies at very high pressures, typically 50–100
times the critical pressure. For water, the maximum is expected around 2.6 GPa.
This is a rather high value, beyond the scope of present technical applications, but
within range of experiments, and certainly of geological interest.

2. The Boyle curve, which is defined by one of

(
∂Z

∂V

)
T

= 0,

(
∂Z

∂p

)
T

= 0,

(
∂p

∂V

)
T

= − p

V
. (5)

This curve originates on the temperatures axis at the Boyle temperature TB, i.e.,
at the temperature for which

B2(TB) = 0. (6)

Its terminal slope is3

dp

dT

∣∣∣
T→TB

= B ′
2(TB)RTB

2B3(TB)
. (7)

From there the curve passes through a pressure maximum and ends on the vapour
pressure curve4 near to the critical point.

3. The Charles curve, also known as Joule–Thomson inversion curve. It is defined
by any one of

(
∂Z

∂T

)
p

= 0,

(
∂Z

∂V

)
p

= 0,

(
∂H

∂p

)
T

= 0,

(
∂V

∂T

)
p

= V

T
,

(
∂T

∂p

)
H

= 0.

(8)

3 The derivations of the endpoint conditions and the terminal slopes are given in Appendix 2.
4 If metastable states are excluded; otherwise, the endpoint is on the liquid spinodal.
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The Charles curve starts on the temperature axis at the temperature at which the
slope of the second virial coefficient matches that of the secant,

B ′
2(TC) = B2(TC)

TC
; (9)

the terminal slope is3

dp

dT

∣∣∣
T→TC

= − B ′′
2 (TC)RTC

B ′
3(TC) − 2

TC
B3(TC)

. (10)

Like the Amagat and Boyle curves, it runs through a pressure maximum to lower
temperatures and ends on the vapour pressure curve. The Charles curve marks the
transition from cooling to heating upon isenthalpic throttling [8].

For completeness’ sake we mention the Zeno curve, the zeroth-order characteristic
curve, which is the locus of the states obeying Z = 1. It originates at high temperatures
at the same point as the Boyle curve. From there it runs to lower temperatures above
the Boyle curve and intersects the Charles and the Amagat curves.

In his article, Brown formulates some postulates about the behaviour of the first-
order characteristic curves:

• There is exactly one Amagat, Boyle, and Charles curve.
• The Amagat, Boyle, and Charles curves must not cross, but surround each other

(Boyle inside Charles inside Amagat), as can be seen in Fig. 1, which shows these
curves for the IAPWS-95 equation of state for water.

• In a double-logarithmic diagram, the Amagat, Boyle, and Charles curves have neg-
ative curvatures everywhere (i.e., they are dome-shaped, with a single maximum
and no inflection points), and their slopes tend to infinity for low pressures.

Fig. 1 Overview of Brown’s
first-order characteristic curves
for the IAPWS-95 equation of
state. : Amagat curve,

: Boyle curve, : Charles
curve, grey: vapour pressure
curve, ◦: critical point, :
melting pressure curves, �:
triple points. The equation of
state is not valid for metastable
states beyond the melting
pressure curves

100 1000 10000

10

100

1000

10000

T/K

p/
M
Pa

123



96 Page 6 of 19 Int J Thermophys (2016) 37:96

2.2 Response Functions

Of considerable practical interest are various thermodynamic response functions,
which describe how a property changes when some other property is varied. Basic
second-order thermodynamic response functions are the isochoric and isobaric heat
capacities, which for a pure system are defined by

CV ≡
(

∂U

∂T

)
V

= T

(
∂S

∂T

)
V

and Cp ≡
(

∂H

∂T

)
p

= T

(
∂S

∂T

)
p
, (11)

the isobaric thermal expansivity,

αp ≡ 1

V

(
∂V

∂T

)
p
, (12)

and the isothermal compressibility,

κT ≡ − 1

V

(
∂V

∂p

)
T
. (13)

For the study of Brown’s characteristic curves, it is advantageous to define dimen-
sionless response functions (n: amount of substance):

cV ≡ CV

nR
, cp ≡ Cp

nR
, cT ≡ Tαp. (14)

Because of the well-known thermodynamic relation

Cp = CV + VTα2
p

κT
,

the isothermal compressibility can be expressed by

κT = Z

pcκ

with cκ ≡ cp − cV
c2
T

≥ 0, (15)

where cκ denotes another dimensionless response function. The inequality in Eq. 15
follows from thermodynamic stability.

2.3 Derivatives of the Compression Factor

To compute the derivatives of Z appearing in the definitions of the Amagat, Boyle, and
Charles curves, Eqs. 2–8, we define some dimensionless logarithmic slopes, namely

123



Int J Thermophys (2016) 37:96 Page 7 of 19 96

the dimensionless isochoric slope

qA ≡
(

∂ ln p

∂ ln T

)
V

= T

p

(
∂p

∂T

)
V

= cκcT
Z

, (16)

the dimensionless bulk modulus

qB ≡
(

∂ ln p

∂ ln V

)
T

= −V

p

(
∂p

∂V

)
T

= cκ

Z
, (17)

and the dimensionless thermal susceptibility

qC ≡
(

∂ ln V

∂ ln T

)
p

= T

V

(
∂V

∂T

)
p

= cT = qA

qB
. (18)

Then the Z derivatives become

A1 : +T

(
∂Z

∂T

)
V

= cκcT − Z = Z(qA − 1),

A2 : −p

(
∂Z

∂p

)
V

= Z

(
Z

cκcT
− 1

)
= Z

1 − qA

qB
,

B1 : −p

(
∂Z

∂p

)
T

= Z

(
Z

cκ

− 1

)
= Z

1 − qB

qB
,

B2 : +V

(
∂Z

∂V

)
T

= Z − cκ = Z(1 − qB),

C1 : +T

(
∂Z

∂T

)
p

= Z(cT − 1) = Z
qB − qA

qB
= Z(1 − qC),

C2 : +V

(
∂Z

∂V

)
p

= Z

(
1 − 1

cT

)
= Z

qA − qB

qA
= Z

(
1 − 1

qC

)
. (19)

Details of the derivations are given in Appendix 1.
In the following, we consider the compression factor as a function Z(p, T ) of

temperature and pressure, continuous except along the coexistence curve, where one
gets different limits Z l and Zg when one approaches it from the liquid or the vapour
side, respectively.

The limiting behaviour of thermodynamic quantities as temperature or pressure
tends to zero or infinity is known from statistical mechanics and summarized in Table 1:

• At low densities the behaviour of a fluid is described by the virial equation of state,

Z(ρ, T ) = 1 + B2(T )ρ + O
(
ρ2), (20)

where ρ = V−1
m denotes the molar density. B2(T ), the second virial coefficient,

can be computed from the intermolecular pair potential. In particular, for real-
istic pair potentials, i.e., potential functions not having a rigid core, the limit
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Table 1 Limiting values of the compression factor and related quantities

Conditions Quantitya

Z qA qB qC

ρid ≡ p/RT → 0, ρ < ρc 1 + B2ρid 1 + (T B2)′ρid 1 + B2ρid 1 + T B′
2ρid

p → 0, ρ > ρc 0 O(p−1)

p → ∞ a2
RT p2/5 O(p−2/5) 5

3

T → 0, ρ > ρc O(T−1) O(T 2) > 5
3

T = Tc, p = pc Zc < 1 qAc > 1 0

Spinodal Finite Finite 0 0

TDM Finite 0 Finite

Amagat Finite 1

Boyle Finite 1

Charles Finite 1

TDM temperature–density maximum
aA prime denotes differentiation w.r.t. T

limT→∞ B2(T ) = 0 is approached from above. Substitution of Eq. 20 into
Eqs. 16–18 immediately yields the low-density limits of the qX :

lim
ρ→0

qA = 1 + d(T B2)

dT
ρ,

lim
ρ→0

qB = 1 + B2ρ,

lim
ρ→0

qC = 1 + T
dB2

dT
ρ. (21)

As a consequence, Z , qA, qB, and qC all approach 1 for ρ → 0.
• The high-density behaviour of matter is governed by formulas derived from the

so-called quantum-statistical model, an extension of the Thomas–Fermi theory.5

This model [9] was used to derive the entries for p → ∞ as well as T → 0 in
Table 1.
The low-pressure, high-density behaviour is derived from the Vinet equation [10],
which has been reported to work very well for solids [9].

Figure 2 represents, in nonlinearly transformed qA, qB coordinates, the IAWPS-95
reference equation of 1995 for water [1]. That the 270 K isotherm is curved to the left
is a consequence of the density anomaly of water.

5 Equations of state matching the Thomas–Fermi asymptotics appear to be valid for materials at extremely
high pressures as found in fusion plasmas and neutron stars [9]. Some researchers apply it to all states of
aggregation, whereas others argue that this might be inappropriate for substances under terrestrial conditions
where limp→∞ qB > 5

3 in nonplasma matter.
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Fig. 2 Isolines of pressure and
temperature in the qA, qB plane,
computed for the IAPWS-95
equation of state [1]. :
isobars 1–100 MPa, :
isotherms 270–600 K isotherms,

: connodes, red: boundary
of the vapour–liquid 2-phase
region, blue: Amagat (A), Boyle
(B), and Charles (C) curves. The
nonlinearly transformed
coordinates f (qX ) =
qX /(10 + |qX |), X = A, B
were chosen to make details
discernible (Color figure online)
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2.4 First-Order Characteristic Curves

A comparison of the definitions of Brown’s first-order characteristic curves, Eqs. 2–8,
with Eqs. 16–18 immediately shows that these curves can be characterized by

qA = 1 Amagat curve,
qB = 1 Boyle curve,
qA = qB Charles curve. (22)

Therefore, these three characteristic curves are level curves of the thermodynamic
variable

qR ≡ 1 − qB

qA + 2qB − 1
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−2 in the Thomas–Fermi limit,

− 1
2 along the Amagat curve,

− 1
3 along the Charles curve,

±0 along the Boyle curve.

(23)

The value qR = −2 comes from the Thomas–Fermi theory, which gives qA → 0
and qB → 5

3 in the high-density limit; this limit is not attainable. The level curves
qR = const therefore interpolate continuously between the characteristic curves,
which explains their onion ring-like arrangement.

A double-logarithmic plot of qR for water, based on the IAPWS reference equation
of state, as a function of p and T is given in Fig. 3, exhibiting the typical shape of
the characteristic curves. (The bottom left part is in the metastable domain, where the
IAWPS-95 equation is not reliable.).

For water, the minimal value of qR attained (for p = 2000 MPa, the maximal value
of the pressure tried here, which exceeds the range of validity of the equation of state)
was found to be approximately −0.5982; the maximal value attained (for p = 0 and T
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Fig. 3 qR as a function of pressure and temperature for water (IAPWS-95 equation of state). The level
curves for qR = − 1

2 , − 1
3 , and 0 define the Amagat curve, Charles curve, and Boyle curve, respectively.

The frayed portion at the left side of the graph corresponds to the vapour–liquid two-phase region, where
the equation of state is undefined

slightly below the critical temperature) is about 1.0333; the value at the critical point
is about 0.23694 .

Since—except at critical points—qA and qB depend continuously on T and p, the
existence of all three characteristic curves follows from the inequalities6

qA <1 < qB if p is large or T is small,

qA >1 > qB close to the critical point,

or equivalently

cT <
Z

cκ

< 1 if p is large or T is small,

cT >
Z

cκ

> 1 close to the critical point. (24)

6 The supporting arguments of Brown [5] are not fully justified. Beyond the three laws of thermodynamics
and the (physically reasonable) entropy condition limp→∞(∂S/∂T )p = 0, he assumed the additional
condition limp→∞ Z/p = vmin(T )/RT > 0 at constant T , which is inappropriate in view of Thomas–
Fermi theory.
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By the discussion in Section 2.3, this is satisfied for real fluids; cf. Table 1.
The characteristic curves are nonintersecting7 because their qR values differ, and

have a characteristic shape. Because of Eq. 24, it is easy to see that at the critical
temperature all three curves must lie above the critical point and surround it. These
properties are probably shared by all level curves qR = const ≥ 0.

It is suggested in [7] that, in a double-logarithmic plot, the characteristic curves
should have a unique maximum and no inflection points. The only argument for this
(given in the appendix of [6]) seems to be based on the corresponding-states principle
and hence has little force.

Under Brown’s assumptions,
cT > 0 (25)

must hold in a fluid phase, for then—and only then—the criteria A1 and A2 as well
as C1 and C2 in Eq. 19 are equivalent.

2.5 The Amagat Curve of Water at Low Temperatures

cT ≤ 0, however, might cause a second Amagat and a second Charles curve, for a
change of sign of cT causes a change of sign of A2 and C2, as will be discussed in a
moment.

Moreover, a negative cT has implications for the behaviour of pressure isotherms.
Indeed, two isotherms, with temperatures T1 and T2 cross if there is a densityρ such that
p(ρ, T1) = p(ρ, T2). Because of the mean value theorem, this implies the existence
of an intermediate temperature T for which

dp(ρ, T )

dT
=

(
∂p

∂T

)
Vm

= RcT cκ

Vm

vanishes. Since κT ≥ 0 by Eq. 15, crossing isotherms appear in regions where cT and
hence the thermal expansivity αp = cT /T change their sign. Because of Inequality
(25), this would be impossible in a fluid phase under Brown’s assumptions. The exper-
imentally observed density anomaly of water, however, results in a negative thermal
expansivity for T < 3.983 ◦C at atmospheric pressure. As a result, the Amagat line of
water, which enters the metastable8 region at low temperatures and a pressure of about
1100 MPa, becomes stable again at about 390 MPa and then remains stable down to
zero pressure, as shown in Fig. 4.

A closer study of the low-temperature, high-pressure region reveals two peculiari-
ties: Close to the endpoint, the Amagat curve has a negative slope in p, T coordinates.
In the double-logarithmic representation, this curve must therefore have an inflection
point. This is at variance with Brown’s postulates.

7 This was claimed by Brown [5], based on the following—not convincing—argument: At a hypothetical
point where two of the curves intersect, we must have cT = Z/cκ = 1, hence all three curves intersect.
Brown concluded without sufficient reason that Z should therefore attain a global minimum there, and that
this is impossible.
8 with respect to crystallization; the melting pressure curve in Fig. 4 consists of several segments, as ice
undergoes several phase changes with increasing pressure (ice I → III → V → VI → VII) [1].
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Fig. 4 Amagat curves of water. : IAPWS-95 equation of state, : equation of state of Holten et
al., : melting pressure curve, �: triple point; grey area: region of negative αp , grey curve: poles of
αp , : inflection points of Um(Vm) (the latter three calculated for the IAPWS-95 equation). It should
be noted that the IAPWS-95 equation is not valid in the metastable region beyond the melting pressure
curves. (a) Overview: double-logarithmic representation. (b) Detail: low-temperature range. (c) Detail:
high-temperature range

The other peculiarity is the existence of a second Amagat curve (Fig. 4), which is
metastable with respect to crystallization. One might be tempted to write it off as an
artifact of the IAPWS-95 equation, but the matter is more complicated:

To explain this phenomenon we consider Fig. 5: In this diagram, the Amagat, Boyle,
and Charles conditions correspond to a vertical, horizontal, and diagonal line, respec-
tively. The crossing point of these lines is a hypothetical state of infinite temperature
and low pressure. The high-temperature endpoints of the characteristic curves lie in
its vicinity; the low-temperature endpoints lie “outward”, at high qA or qB values. The
indicated path 1→ 2 → 3 → 4 represents an isothermal expansion starting at a very
high pressure. This path necessary crosses the Amagat, Charles, and Boyle lines—in
this sequence and exactly once, as postulated by Brown.
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Fig. 5 Schematic representation
of an expansion from very high
pressure towards the critical
region. : Amagat
condition (qA = 1), :
Boyle condition (qB = 1), :
Charles condition (qA = qB), ◦:
critical point, •: Thomas–Fermi
limit (T → 0, p → ∞. The
high-temperature endpoints of
the characteristic curves are in
the vicinity of the intersection
point (qA = qB = 1), the
low-temperature endpoints at
high qA or qB values. 1-2-3-4:
expansion path of a normal fluid,
1’: possible starting point of a
fluid exhibiting a density
anomaly
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0 1
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1 2
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For a fluid exhibiting a density anomaly, however, the initial state may lie at qA < 0
(state 1’ in the diagram). From here, an alternative expansion path is possible that
intersects the Charles and then the Amagat line, and thus gives rise to a second Charles
and Amagat curve in a p, T diagram, respectively.

As a check, we looked at the equation of state of Holten et al. [11], which describes
the low-temperature and supercooled regions, particularly the solid–liquid equilibria
of water. This equation predicts a second Amagat curve, too. But here the arrangement
of the curve branches is different. A comparison of the Amagat curves obtained for the
IAPWS-95 equation and that of Holten et al. suggests that, in a continuous deformation
connecting the two thermodynamic descriptions, a bifurcation occurs between these
two equations at which the Amagat curves exchange branches.

It is conceivable, of course, that both the IAPWS-95 equation and that of Holten et
al. suffer from artifacts But if this is the case, they do so because there is sensitive spot
in the p, T plane, and there may be a physical explanation for this sensitivity. This
is corroborated by the observation that the portion of the IAPWS-95 Amagat curve
running from the high-temperature endpoint to the temperature minimum at about
258.2 K and 255 MPa is a locus of minima ofUm(Vm), whereas the portion from there
to the endpoint at about 277 K is a locus of maxima. Evidently, there is a curve of
inflection points of Um(Vm) lying between the two Amagat curve branches.

The shaded regions in Fig. 4a and b indicate the region of the density anomaly
(αp < 0). Where its border is close to an Amagat curve, this curve is a locus of
maxima. Thus, the secondary Amagat curve that the IAPWS-95 equation predicts is
also a locus of maxima. Below 660 MPa, the border is a locus of points for which
αp = 0 holds; above that pressure, the border is a locus of poles. The transition point
appears to be the origin of the secondary Amagat curve.
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This shows that the behaviour of the Amagat curve(s) at low temperatures is linked
to the sign of αp. Evidently, Brown’s postulates do not fully apply to fluids exhibiting
a density anomaly.

2.6 The Amagat Curve of Water at High Temperatures

At the high-temperature endpoint, the Amagat curve obtained with the IAPWS-
95 equation exhibits a positive slope, again in contradiction to Brown’s postulates.
The positive slope implies that the third virial coefficient of water increases with
temperature (cf.2). For nonpolar fluids, B3 is usually negative at low temperatures,
passes through a (positive) maximum below the critical temperature, and then declines
towards zero. For polar fluids the maximum is less pronounced [12]; for water, the
maximum is very shallow, as can be seen in Fig. 6. Unfortunately, the experimen-
tal datasets for water do not agree very well, reliable experimental data are scarce
beyond 800 K, and none appear to exist beyond 1200 K. But even so, experiments
and theoretical calculations based on polarizable interaction potentials all agree that
the maximum occurs in the range of 550 K to 900 K [13–15]. Beyond this maximum,
the slope of B3 is negative, and hence the terminal slope of the Amagat curve must
be negative, too. Therefore, the positive terminal slope derived from the IAPWS-95
equation is probably an artifact.

In fact, a close inspection of the third virial coefficient function obtained from the
IAPWS-95 equation in Fig. 6 shows that there is a shallow minimum around 1400 K
and a maximum above 7000 K; the function declines to zero monotonously beyond
that maximum. It must be pointed out, however, that this unphysical behaviour of
the IAPWS-95 equation is of little importance, for this equation is claimed to be
valid up to 1273 K only. Moreover, at 5000 K, water would undergo decomposition

Fig. 6 The third virial
coefficient B3 of water as a
function of reciprocal
temperature. ◦: computed from
the GCPM water interaction
potential [13], : spline
interpolation through these
points with the restriction that
B3 and B′

3 must vanish for
T → ∞, �: computed from the
potential of Góra et al. [15];
filled symbols: experimental
data: �: Vukalovich et al. [17],
�: Kell et al. [18], and •:
Abdulagatov et al. [19]
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to a significant extent. But as in practical applications equations of state are often
used beyond their limits of validity, it is important to know about this problem of the
IAPWS-95 equation.

3 Conclusion

In this work, a novel formulation of Brown’s first-order characteristic curves is pro-
posed, in which these curves are obtained as level functions of a master function
qR = const. As already observed by Brown, the Amagat curve surrounds the Charles
curve in a double-logarithmic p, T diagram, and the Charles curve surrounds the Boyle
curve.

Brown postulated that these curves are unique and dome-shaped, with a single
pressure maximum and no inflection points. We show here, and we verify it at the
example of water, that for fluids exhibiting a density anomaly the Amagat and Charles
curves may have more than one branch. For such fluids it is possible to have a vanishing
thermal expansivity, αp = 0, as well as p(ρ) isotherm crossing.

For water, the initial slope of the Amagat curve (i.e., the slope at low pressures
and at low temperatures) is negative, which is in conflict with Brown’s postulates.
The terminal slope at high temperatures is positive, again in conflict with Brown’s
postulates, but there it can be shown that, most likely, the IAPWS-95 equation of state
is at fault and cannot be extrapolated9 to 5000 K.

We conclude that Brown’s analysis of the characteristic curves, particularly of
the Amagat curve, is qualitatively correct for fluids having αp > 0 for all stable
thermodynamic states. Caution is advised when the characteristic curves are computed
for fluids exhibiting a density anomaly.

Appendix 1: Thermodynamic Derivatives

All derivatives are computed at constant amount of substance n.
isochoric tension coefficient:

βV ≡
(

∂p

∂T

)
V

= −
(

∂p

∂V

)
T

(
∂V

∂T

)
P

= αp

κT
. (26)

derivatives appearing in Eq. 19:

(
∂Z

∂T

)
V

= V

nRT

(
∂p

∂T

)
V

− pV

nRT 2 = Zαp

pκT
− Z

T
= cκcT − Z

T
,

(
∂Z

∂p

)
V

= − pV

nRT 2

(
∂T

∂p

)
V

+ V

nRT
= Z

p

(
1 − pκT

Tαp

)
= Z

p

(
1 − Z

cκcT

)
,

(
∂Z

∂p

)
T

= p

nRT

(
∂V

∂p

)
T

+ V

nRT
= Z

p
(1 − pκT ) = Z

p

(
1 − Z

cκ

)
,

9 The IAPWS-95 equation is officially valid up to 1273 K.
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(
∂Z

∂V

)
T

= V

nRT

(
∂p

∂V

)
T

+ p

nRT
= p − κ−1

T

nRT
= Z − cκ

V
,

(
∂Z

∂T

)
p

= p

nRT

(
∂V

∂T

)
p

− pV

nRT 2 = Zαp − Z

T
= Z

T
(cT − 1),

(
∂Z

∂V

)
p

= − pV

nRT 2

(
∂T

∂V

)
p

+ p

nRT
= Z

V

(
1 − 1

Tαp

)
= Z

V

(
1 − 1

cT

)
.

(27)

Appendix 2: The Terminal Slopes of the Characteristic Curves at High
Temperatures

Schaber presents expressions for the terminal slopes of Brown’s characteristic curves
in his thesis [16], but does not give the proofs. For the readers’ convenience, these
proofs are offered here.

For small pressures and large molar volumes the fluid can be described with a
3-term virial equation (cf. Eq. 20),

Z = 1 + B2(T )

Vm
+ B3(T )

V 2
m

. (28)

The molar volume as a function of pressure is then, neglecting higher-order terms,

Vm ≈ RT

p
+ B2(T ) + pB3(T )

RT
. (29)

(a) The Terminal Slope of the Amagat Curve

Applying the first one of the Amagat criteria in Eq. 2 to the virial equation yields

(
∂Z

∂T

)
Vm

= B ′
2(T )

Vm
+ B ′

3(T )

V 2
m

= 0

or

B ′
2(T ) + B ′

3(T )

Vm
= 0. (30)

In the limit p → 0, Vm → ∞ the second term can be neglected, and therefore
B ′

2(T ) = 0 is the criterion for the endpoint of the Amagat curve, which corresponds
to a maximum of the second virial coefficient.

Let TA denote the temperature of this endpoint, and �T = T − TA and �p = p
the temperature and pressure deviations, respectively, from this point. Then, in the
vicinity of TA, B ′

2(T ) can be approximated by

B ′
2(T ) ≈ B ′′

2 (TA)�T,
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where B ′′
2 (TA) denotes the curvature of the second virial coefficient function at the

Amagat endpoint. Substituting this into Eq. 30 and switching from molar volume to
pressure yields

B ′′
2 (TA)�T + B ′

3(T )

RT
�p + B2 + . . .

= 0

and, after some rearrangements,

�p

�T
= − B ′′

2 (TA)

B ′
3(T )

(RT + �pB2(T ) + . . .) .

In the limit �p → 0, T → TA this reduces to

lim
T→TA

dp

dT

∣∣∣
qR=− 1

2

= − B ′′
2 (TA)RTA

B ′
3(TA)

. (31)

(b) The Terminal Slope of the Boyle Curve

Applying the criterion Eq. 5 to the virial equation gives

(
∂Z

∂Vm

)
T

= − B2(T )

V 2
m

− 2B3(T )

V 3
m

= 0

and hence

B2(T ) + 2B3(T )p

RT + B2(T )p + . . .
= 0. (32)

In the limit p → 0, this reduces to B2 = 0: At the endpoint of the Boyle curve, at
the Boyle temperature TB, the second virial coefficient vanishes.

Again using deviation variables, we can write the previous equation as

B ′
2(TB)�T + 2B3(T )�p

RT + �pB2(T ) + . . .
= 0.

or
�p

�T
= − B ′

2(TB)

2B3(T )
(RT + �pB2(T ) + . . .) .

In the limit �p → 0, T → TB this reduces to

lim
T→TB

dp

dT

∣∣∣
qR=0

= − B ′
2(TB)RTB

2B3(TB)
. (33)
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(c) The Terminal Slope of the Charles Curve

For the derivation of this property, it is advantageous to start from the pressure-based
virial equation of state,

Z = 1 + B̄2(T )p + B̄3(T ) + p2. (34)

The pressure-based virial coefficients are related to the volume-based ones by

B̄2(T ) = B2(T )

RT
and B̄3(T ) = B3(T ) − B2

2 (T )

(RT )2 . (35)

Applying the appropriate criterion in Eq. 8 gives

(
∂Z

∂T

)
p

= p

RT

(
B′

2(T ) − B(T )

T

)
+

( p

RT

)2
(
B′

3(T ) − 2B3(T )

T
− 2B2(T )B′

2(T ) + 2B2
2 (T )

T

)
= 0.

or

B′
2(T ) − B2(T )

T
+ p

RT

(
B′

3(T ) − 2B3(T )

T
− 2B2(T )B′

2(T ) + 2B2
2 (T )

T

)
= 0. (36)

The endpoint, at p → 0, is evidently characterized by B ′
2(T ) − B2(T )/T = 0.

In order to obtain the terminal slope, we expand this criterion around the endpoint
temperature TC,

B ′
2(T ) − B2(T )

T
≈

(
B ′′

2 (TC) − B ′
2(TC)

TC
+ B2(TC)

T 2
C

)
�T = B ′′

2 (TC)�T .

Then Eq. 36 becomes

B ′′
2 (TC)�T = − �p

RT

(
B ′

3(T ) − 2B3(T )

T
− 2B2(T )

[
B2(T )′ − B2(T )

T

])
= 0.

In the limit �p → 0, T → TC, where the term in brackets vanishes, this yields the
terminal slope,

lim
T→TC

dp

dT

∣∣∣
qR=− 1

3

= − B ′′
2 (TC)RTC

B ′
3(TC) − 2

TC
B3(TC)

. (37)
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