
Int J Thermophys (2015) 36:2705–2719
DOI 10.1007/s10765-015-1982-4

Polylogarithmic Representation of Radiative and
Thermodynamic Properties of Thermal Radiation
in a Given Spectral Range: II. Real-Body Radiation

Anatoliy I. Fisenko1 · Vladimir Lemberg1

Received: 4 June 2015 / Accepted: 25 September 2015 / Published online: 13 October 2015
© Springer Science+Business Media New York 2015

Abstract There are several classes of materials and space objects for which the
frequency dependence of the spectral emissivity is represented as a power series.
Therefore, the study of the properties of thermal radiation for these real bodies is an
important task for both fundamental science and industrial applications. The general
analytical expressions for the thermal radiative and thermodynamic functions of a
real body are obtained in a finite range of frequencies at different temperatures. The
Stefan–Boltzmann law, total energy density, number density of photons, Helmholtz
free energy density, internal energy density, enthalpy density, entropy density, heat
capacity at constant volume, pressure, and total emissivity are expressed in terms of
the polylogarithm functions. The obtained general expressions for the thermal radia-
tive and thermodynamic functions are applied for the study of thermal radiation of
liquid and solid zirconium carbide. These functions are calculated using experimental
data for the frequency dependence of the normal spectral emissivity in the visible
and near-infrared range at the melting (freezing) point. The gaps between the ther-
mal radiative and thermodynamic functions of liquid and solid zirconium carbide are
observed. The general analytical expressions obtained can easily be presented in the
wavenumber domain.

Keywords Emissivity · Finite frequency range · Liquid and solid zirconium
carbide · Melting (freezing) temperature · Polylogarithms · Stefan-Boltzmann law ·
Thermodynamic functions

B Anatoliy I. Fisenko
afisenko@oncfec.com

1 ONCFEC Inc., 250 Lake Street, Suite 909, St. Catharines, ON L2R 5Z4, Canada

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10765-015-1982-4&domain=pdf


2706 Int J Thermophys (2015) 36:2705–2719

1 Introduction

It is well known that a knowledge of the spectral emissivity is necessary to measure the
true temperature of a real body using non-contact optical devices [1–3]. Therefore,
a great number of experimental studies have been focused on the measurement of
spectral emissivity ε(v, T ) for various materials [4–18].

Multiwavelength emissivity models to determine the surface temperature of a real
body were proposed in [19,20]. Two of the most important emissivity models are the
following: (a) linear emissivity model (LEM) [21–25] and (b) log-linear emissivity
model (LLE) [26–29]. The true temperature of a real body can be measured using
optical multispectral radiation thermometers in conjunction with a multiwavelength
emissivity model. There are other emissivity models that are based on fundamental
physical principals. Such models are Maxwell, Hagen-Ruben, and Edwards [30,31].

A non-contact method for the determination of the true temperature of a real body
from the “generalized”Wien’s displacement lawwas proposed in [32–34]. Themethod
was proven on the spectra of the thermal radiation of tungsten, tantalum, and lumi-
nous flames. The accuracy in the determination of the steady-state temperature in
these cases does not exceed 2 %. Another method for representing the “generalized”
Wien displacement law in terms of the logarithmic frequency or wavelength scale is
proposed in [35].

It is important to note that a knowledge of the frequency dependence of the spec-
tral emissivity also allows determination of the thermal radiative and thermodynamic
properties of a real body within a finite range of frequencies. In [36–38], the thermal
radiative and thermodynamic properties of materials have been studied using spectral
emissivity data presented in tabular form. These materials are (a) hafnium, zirconium,
and titanium carbides; (b) ZrB2-SiC-based ultra-high temperature ceramics; and (c)
molybdenum. The Helmholtz free energy density, internal energy density, enthalpy
density, entropy density, heat capacity at constant volume, pressure, and the total
emissivity were calculated numerically.

In [39], it was pointed out that there are several classes of materials and space
objects, forwhich the thermal radiative and thermodynamicproperties canbedescribed
within a finite spectral range of frequencies using the polylogarithms functions. This
means that the frequency dependence of ε (ν, T ) should be represented as a poly-
nomial. Some of these materials and space objects are (a) zirconium, uranium, and
plutonium carbides at their melting (freezing) points [40,41]; (b) noble metals at the
melting temperatures [42]; (c) Fe, Co, andNi at themelting points [43]; (d)MilkyWay
and other galaxies [44–46]; and others. It is essential to note that the thermal radiative
and thermodynamic properties of these real bodies having emitted continuous spectra
that can be calculated analytically.

In this paper, the general analytical expressions for the thermal radiative and ther-
modynamic functions of a real body are obtained using the frequency dependence of

the spectral emissivity in the form ε(v, T ) =
∞∑

i=−3
ai (T )vi . The expressions for the

Stefan–Boltzmann law, total energy density, number density of photons, Helmholtz
free energy density, internal energy density, enthalpy density, entropy density, heat
capacity at constant volume, total emissivity, and pressure in a finite spectral range
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of frequencies are expressed in terms of the polylogarithm functions. This polyloga-
rithmic representation allows us to calculate the thermal radiative and thermodynamic
properties of a real body analytically. As an example, a study of the thermal radiative
and thermodynamic properties of solid and liquid zirconium carbide is performed in
detail. These properties are calculated using experimental data for the normal spectral
emissivity in the spectral range 0.333 PHz ≤ v ≤ 0.545 PHz at a melting (freezing)
temperature T = 3155 K.

2 General Relationships for Thermal Radiative and Thermodynamic
Properties of a Real Body

The radiant spectral density of a real body having emitted continuous spectra can be
presented in the form,

I (ν, T ) = ε (ν, T ) I P (ν, T ), (1)

where ε (ν, T ) is the spectral emissivity and I P (ν, T ) at temperature T is given by
the Planck law [47]:

I P (ν, T ) = 8πh

c3
ν3

e
hν
kBT − 1

. (2)

Using the expression for the polylogarithm function of zero order (Li0(x) =
x

1−x , |x | < 1, [48]), Eq. 2 can be written as

I P(v, T ) = 8πhv3

c3
Li0

(

e
− hv

kBT

)

. (3)

Let us present the frequency dependence of the spectral emissivity of a real body as a
polynomial

ε(v, T ) =
∞∑

i=−3

ai (T )vi , (4)

where ai are the coefficients.
The total energy density of thermal radiation of a real-body surface in the finite

frequency range of the spectrum is defined as

I (v1, v2, T ) = 8πh

c3

ν2∫

ν1

v3ε (ν, T )Li0

(

e
− hν

kBT

)

dν. (5)

Using the relationship between the total energy density (Eq. 5) and the total radiation
power per unit area I SB = c

4 I , the Stefan–Boltzmann law in the finite frequency range
of the spectrum takes the form,

I SB(v1, v2, T ) = 2πh

c2

ν2∫

ν1

v3ε (ν, T )Li0

(

e
− hν

kBT

)

dν. (6)
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The total emissivity is represented as

ε(v1, v2, T ) = I (v1, v2, T )

IBB(v1, v2, T )
, (7)

where

IBB (v1, v2, T ) = 48π(kBT )4

c3h3
[P3(x1) − P3(x2)] (8)

is the total energy density of blackbody surface radiation in the finite frequency range
of the spectrum [49]. Here x = hv

kBT
and P3(x) is defined as

P3 (x) =
3∑

s=0

(x)s

s! Li4−s(e
−x ), (9)

where

Li4−s(e
−x ) =

∞∑

k=1

e−kx

k4−s
,

∣
∣
∣e−kx

∣
∣
∣ < 1 (10)

is the polylogarithm function of the order 4 − s [48].
According to [47], the number density of photons of thermal radiation of a real

body with a photon energy from hv1 to hv2 is represented in the form,

n = 8π

c3

v2∫

v1

ε(v, T )v2Li0

(

e
− hv

kBT

)

dv. (11)

The Helmholtz free energy density of thermal radiation of a real body in the finite
frequency range of the spectrum is defined as [47]

f (v1, v2, T ) = 8πkB
c3

v2∫

v1

v2ε(v, T ) ln

(

1 − e
− hv

kBT

)

dv. (12)

The thermodynamic functions of thermal radiation of a real body in a finite range of
frequencies are defined by the following expressions [47]:

(1) Entropy density s = S
V :

s = − ∂ f

∂T
; (13)

(2) Heat capacity at constant volume per unit volume cv = Cv

V :

cv =
(

∂ I (v1, v2T )

∂T

)

V
; (14)
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(3) Pressure of photons per volume p = P
V :

p = − f. (15)

3 Polylogarithmic Representation of Thermal Radiative Properties
of a Real-Body

To compute the total energy density for a given temperature over the finite frequency
range of the spectrum, it is necessary to compute the integral in Eq. 5. In accordance
with Eq. 4, the integral can be integrated by parts to give

I (v1, v2, T ) = 8π(kBT )4

c3h3

∞∑

i=−3

ai (3 + i)!
(
kBT

h

)i

Ai (x1, x2), (16)

where
Ai (x1, x2) = P3+i (x1) − P3+i (x2). (17)

Here x = hv
kBT

and P3+i (x) is defined as

P3+i (x) =
3+i∑

s=0

(x)s

s! Li4+i−s(e
−x ), (18)

where

Li4+i−s(e
−x ) =

∞∑

k=1

e−kx

k4+i−s
,

∣
∣
∣e−kx

∣
∣
∣ < 1 (19)

is the polylogarithm function of the order 4 + i − s [48].
In accordance with Eq. 6, the Stefan–Boltzmann law in the finite frequency range

of the spectrum takes the form,

I SB(v1, v2, T ) = 2π(kBT )4

c2h3

∞∑

i=−3

ai (3 + i)!
(
kBT

h

)i [
P3+i (x1) − P3+i (x2)

]
.

(20)
The total radiation power Itotal emitted by a heated surface area S of a real body is
defined as

Itotal = SI SB(v1, v2, T ). (21)

In accordance with Eqs. 7, 8, 16, and 17, the total emissivity can be presented in the
form,

ε(v1, v2, T ) =

∞∑
i=−3

ai (T )(3 + i)!
(
kBT
h

)i [
P3+i (x1) − P3+i (x2)

]

6[P3(x1) − P3(x2)] . (22)
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Using Eq. 4 and after computing the integral in Eq. 11, the polylogarithmic represen-
tation of the number density of photons of thermal radiation of a real body can be
written as

n = 8π

c3

∞∑

i=−2

ai

(
kBT

h

)3+i

(2 + i)!Bi (x1, x2), (23)

where
Bi (x1, x2) = P2+i (x1) − P2+i (x2). (24)

In conclusion of this paragraph, it is essential to note that the analytical expressions
obtained above in the case of blackbody radiation, when ai = 0 and a0 = 1, take
well-known expressions [47].

4 Thermodynamics of Real-Body Thermal Radiation

After computing the integral in Eq. 12, the general expressions for the thermody-
namic functions of thermal radiation of a real body can be expressed in terms of the
polylogarithm functions as follows:

(1) Helmholtz free energy density f :

f = −8πk4B
c3h3

T 4
∞∑

i=−2

ai (2 + i)!
(
kBT

h

)i

Ci (x1, x2), (25)

where

Ci (x1, x2) (26)

=
{
[
P3+i (x1) − P3+i (x2)

] − 1

(3 + i)!
(
x3+i
1 Li1(e

−x1) − x3+i
2 Li1(e

−x2)
)}

.

(2) Entropy density s:

s = 8πk4B
c3h3

T 3
∞∑

i=−2

ai

(
kBT

h

)i

(2 + i)!(4 + i)Di (x1, x2), (27)

where

Di (x1, x2) (28)

=
{
[
P3+i (x1) − P3+i (x2)

] − 1

(4 + i)!
[
x3+i
1 Li1(e

−x1) − x3+i
2 Li1(e

−x2)
]}

.

(3) Heat capacity at constant volume per volume, cV :

cV = 8πk4B
c3h3

T 3
∞∑

i=−2

ai

(
kB
h

)i

T i (4 + i)!Ei (x1, x2), (29)
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where

Ei (x1, x2) (30)

=
{
[
P3+i (x1) − P3+i (x2)

] + 1

(4 + i)!
[
x4+i
1 Li0(e

−x1) − x4+i
2 Li0(e

−x2)
]}

.

(4) Pressure p:

p = 8πk4B
c3h3

T 4
∞∑

i=−2

ai (2 + i)!
(
kBT

h

)i

Ci (x1, x2), (31)

where

Ci (x1, x2) (32)

=
{
[
P3+i (x1) −P3+i (x2)

]− 1

(3 + i)!
(
x3+i
1 Li1(e

−x1) − x3+i
2 Li1(e

−x2)
)}

.

By definition [47], f = u − T s, (where u is the internal energy density), we obtain
the analytical expression for u,

u(x1, x2, T ) = f + T s

= 8π(kBT )4

c3h3

∞∑

i=−3

ai (3 + i)!
(
kBT

h

)i

Ai (x1, x2), (33)

where A(x1, x2) is defined by Eq. 17.
The enthalpy density h follows from its definition, h = u + p, giving

h(x1, x2, T ) = 8πk4B
c3h3

T 4
∞∑

i=−2

ai

(
kBT

h

)i

(2 + i)!(4 + i)Di (x1, x2). (34)

The Gibbs free energy density g, by definition, is h − T s, thus

g(x1, x2, T ) = 0. (35)

This result coincides with the result obtained for the blackbody radiation [47]. This
mean, that the normal spectral emissivity of a real body has no thermodynamic effect
on the Gibbs free energy.

The chemical potential density μ =
(

∂g
∂n

)

T,V
, as seen from Eq. 35, is zero

μ(x1, x2, T ) = 0. (36)

It is not difficult to show that Eqs. 16, 20, 23, 25, 27, 29, 31, 33, and 34 in the semi-
infinite range of frequencies, when ε(v, T ) = 1, take the well-known expressions for
the thermal radiative and thermodynamic functions of blackbody radiation [47].
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In conclusion, it should be noted that the obtained analytical expressions for the
thermal radiative and thermodynamic functions of a real body in a finite range of
frequencies can easily be presented in the wavenumber (ṽ) domain. In this case, we
should use the following relationships [50]:

v = cṽ (37)

dv = cdṽ (38)
v2∫

v1

I P(v, T )dv =
ṽ2∫

ṽ1

I P(ṽ, T )dṽ. (39)

Note that using different spectral units produces the same result, because it represents
the same physical quantity.

5 Thermal Radiative and Thermodynamic Properties of Liquid and
Solid Zirconium Carbide

Now let us consider an example related to the study of the thermal radiative and
thermodynamic properties of liquid and solid zirconium carbide using experimen-
tal data for the normal spectral emissivity in the visible and near-infrared range at
melting/freezing temperature.

It is well known that the rapid development of space and missile technologies
requires ultra-high temperature ceramics with the melting temperature up to 4273 K
[51,52]. Zirconium carbide is a good candidate material for using it in environments
with extreme temperatures. Applications of ZrC are (a) nuclear fuel coating in high
temperature Generation IV reactors [53]; (b) thermal shield in aerospace applications
[54]; (c) solar energy receiverwith low emissivity and high absorptivity [55]; etc. Thus,
the investigation of the thermal radiative and thermodynamic properties of zirconium
carbide under extreme conditions is a research domain of great interest both for basic
science and industrial applications.

In [41], the radiance spectra of zirconium carbide were measured in the frequency
range (0.333 PHz ≤ v ≤ 0.545 PHz) at temperature T = 3155 K during the melting
and freezing arrestswhile cooling and heating the samples. Themeasured normal spec-
tral emissivity of solid and liquid zirconium carbide is approximated by the following
analytical expression:

ε(ν, T ) =
0∑

i=−2

ãiv
i = ã0 + ã−1ν

−1 + ã−2ν
−2, (40)

where

Solid ZrC: ã0 = 0.6968; ã−1 = −8.2503 × 1013 Hz;
ã−2 = 1.4739 × 1028 Hz2 (41)
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Liquid ZrC: ã0 = 0.86663; ã−1 = −2.6018 × 1014 Hz;
ã−2 = 4.4587 × 1028 Hz2. (42)

The gap between the normal spectral emissivity of solid and liquid ZrC is observed in
the spectral frequency range from 0.333 PHz to 0.545 PHz [41]. The normal spectral
emissivity of both solid and liquid zirconium carbide increases with increasing v.

Using the general expressions for the thermal radiative and thermodynamic func-
tions of a real-body obtained above and Eq. 40, in the case of zirconium carbide, we
obtain

(1) The total energy density in the finite frequency range of the spectrum:

I = ã0 I0 + ã−1 I−1 + ã−2 I−2, (43)

where

I0 = 48π(kBT )4

c3h3
[P3(x1) − P3(x2)] , (44)

I−1 = 16π(kBT )3

c3h2
[P2(x1) − P2(x2)] , (45)

I−2 = 8π(kBT )2

c3h
[P1(x1) − P1(x2)] . (46)

(2) The total radiation power per unit area in the finite frequency range (Stefan–
Boltzmann law):

I SB = ã0 I
SB
0 + ã−1 I

SB−1 + ã−2 I
SB−2 , (47)

where

I SB0 = 12π(kBT )4

c2h3
[P3(x1) − P3(x2)] , (48)

I SB−1 = 4π(kBT )3

c2h2
[P2(x1) − P2(x2)] , (49)

I SB−2 = 2π(kBT )2

c2h
[P1(x1) − P1(x2)] . (50)

(3) Total emissivity:

ε(v1, v2, T ) = ã0 I0 + ã−1 I−1 + ã−2 I−2

IBB(v1, v2, T )
. (51)

IBB(v1, v2, T ) is determined by Eq. 8.
(4) Number density of photons with a photon energy from hv1 to hv2:

n = ã0n0 + ã−1n−1 + ã−2n−2. (52)
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where

n0 = 16πk3B
c3h3

T 3 {[P2(x1) − P2(x2)]} , (53)

n−1 = 8πk2B
c3h2

T 2 {[P1(x1) − P1(x2)]} , (54)

n−2 = 8πkB
c3h

T {[P0(x1) − P0(x2)]} . (55)

(5) Helmholtz free energy density f :

f = ã0 f0 + ã−1 f−1 + ã−2 f−2, (56)

where

f0 = −16πk4B
c3h3

T 4
{

[P3(x1) − P3(x2)] − 1

6

(
x31Li1(e

−x1) − x32Li1(e
−x2)

)}

,

(57)

f−1 = −8πk3B
c3h2

T 3
{

[P2(x1) − P2(x2)] − 1

2

(
x21Li1(e

−x1) − x22Li1(e
−x2)

)}

,

(58)

f−2 = −8πk2B
c3h

T 2 {
[P1(x1) − P1(x2)] − (

x1Li1(e
−x1) − x2Li1(e

−x2)
)}

. (59)

(6) Entropy density s:
s = ã0s0 + ã−1s−1 + ã−2s−2, (60)

where

s0 = 64πk4B
c3h3

T 3
{

[P3(x1) − P3(x2)] − 1

24

(
x31Li1(e

−x1) − x32Li1(e
−x2)

)}

,

(61)

s−1 = 24πk3B
c3h2

T 2
{

[P2(x1) − P2(x2)] − 1

6

(
x21Li1(e

−x1) − x22Li1(e
−x2)

)}

,

s (62)

s−2 = 16πk2B
c3h

T

{

[P1(x1) − P1(x2)] − 1

2

(
x1Li1(e

−x1) − x2Li1(e
−x2)

)
}

.

(63)

(7) Heat capacity at constant volume per unit volume cV :

cV = ã0cV0 + ã−1cV−1 + ã−2cV−2 , (64)
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Table 1 Calculated values of the thermal radiative and thermodynamic functions of thermal radiation of
solid and liquid zirconium carbide emitted by a heated surface per unit area of the sample in the finite
frequency range 0.333 PHz ≤ v ≤ 0.545 PHz at the eutectic temperature 3155 K

Quantity Zirconium carbide Gaps between solid
and liquid phases

Solid phase Liquid phase

I (ν1, ν2, T ) (J·m−3) 8.968 × 10−3 7.675 × 10−3 1.23 × 10−3

ISB (ν1, ν2, T ) (W·m−2) 6.721 × 105 5.753 × 105 0.968 × 105

ε 0.584 0.500 0.084

f (J·m−3) −1.743 × 10−3 −2.167 × 10−3 0.424 × 10−3

s (J·m−3·K−1) 3.869 × 10−6 3.528 × 10−6 0.341 × 10−6

p (J·m−3) 1.743 × 10−3 2.167 × 10−3 −0.424 × 10−3

cV (J·m−3·K−1) 1.002 × 10−5 8.965 × 10−6 1.037 × 10−6

n (m−3) 3.357 × 1016 2.866 × 1016 0.491 × 1016

where

cV0 = 192πk4B
c3h3

T 3
{

[P3(x1) − P3(x2)] + 1

24

(
x41Li0(e

−x1) − x42Li0(e
−x2)

)}

,

(65)

cV−1 = 48πk3B
c3h2

T 2
{

[P2(x1) − P2(x2)] + 1

6

(
x31Li0(e

−x1) − x32Li0(e
−x2)

)}

,

(66)

cV−2 = 16πk2B
c3h1

T

{

[P1(x1) − P1(x2)] + 1

2

(
x21Li0(e

−x1) − x22Li0(e
−x2)

)}

.

(67)

The thermal radiative and thermodynamic functions of liquid and solid ZrC such
as the total energy density, the total radiation power per unit area, total emissivity,
Helmholtz free energy density, entropy density, pressure, heat capacity at constant
volume, and number density of photons are calculated in the finite frequency range
0.333 PHz ≤ v ≤ 0.545 PHz at the eutectic temperature 3155 K. Their values are
presented in Table 1. As seen, the gaps between these functions are observed.

Now let us calculate the same properties of thermal radiation emitted by a heated
surface area S of a zirconium carbide sample.

According to [41], the zirconium carbide sample under investigation is a disk about
1 mm thick and around 10 mm in diameter. Then, in accordance with Eq. 21, the total
radiation powers emitted by a surface area S of the ZrC sample in solid and liquid
phases are defined as

Solid ZrC: I SBSolidtotal(T ) = SI SBSolid(v1, v2, T ) (68)

Liquid ZrC: I SBLiquidtotal(T ) = SI SBLiquid(v1, v2, T ), (69)
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where I SBLiquid(v1, v2, T ) and I SBSolid(v1, v2, T ) are the total radiation powers emitted by
a heated surface per unit area of the ZrC sample. Their values are presented in Table 1.

The surface area S of the zirconium carbide sample under investigation can be
determined as

S = 2π

(
d

2

)2

+ πhd = 1.885 × 10−4 m2. (70)

Then, in accordance with Eq. 32 and Table 1, Eqs. 68 and 69 take the following values:

Solid ZrC: I SBSolidtotal = SI SBSolid(v1, v2, T ) = 7.379 × 102 W (71)

Liquid ZrC: I SBLiquidtotal = SI SBLiquid(v1, v2, T ) = 9.178 × 102 W. (72)

A volume of the ZrC sample under study can be calculated using the following expres-
sion:

V = πh

(
d

2

)2

= 7.854 × 10−8 m3. (73)

Using Eq. 73 and Table 1, for the total energies of the ZrC sample in solid and liquid
phases, we obtain

Solid ZrC: ISolidtotal(T ) = V ISolid(v1, v2, T ) = 4.102 × 10−9 J (74)

Liquid ZrC: ILiquidtotal(T ) = V ILiquid(v1, v2, T ) = 5.102 × 10−9 J. (75)

In accordance with Eq. 73 and Table 1, the total numbers of photons Ntotal emitted
by solid and liquid ZrC in the finite frequency range 0.333 PHz ≤ v ≤ 0.545 PHz at
temperature T = 3155 K are calculated and take the following values:

Solid ZrC: NSolidtotal = VnSolid = 3.486 × 1010 (76)

Liquid ZrC: NLiquidtotal = VnLiquid = 4.336 × 1010. (77)

Now let us calculate the thermodynamic functions of thermal radiation of liquid and
solid ZrC emitted by a heated surface area S of the sample. Using Eq. 73 and Table 1,
for the total Helmholtz free energies Ftotal, we obtain

Solid ZrC: FSolidtotal = aSolidV = −1.367 × 10−9 J (78)

Liquid ZrC: FLiquidtotal = aLiquidV = −1.701 × 10−9 J. (79)

In Table 2, the calculated values of thermal radiative and thermodynamic functions of
thermal radiation of liquid and solid zirconium carbide emitted by a heated surface
area S of the sample are presented in the finite frequency range from 0.333 PHz to
0.545 PHz at the eutectic melting (freezing) temperature T = 3155 K. As can be
clearly seen, the gaps between the thermal radiative and thermodynamic functions of
liquid and solid zirconium carbide are observed.

Now let us compare the obtained results with the experimental data. In [56], the
experimental data of the normal total emissivity of stoichiometric zirconium carbide
are presented in the temperature range 2300 K ≤ T ≤ 2900 K for wavelengths
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Table 2 Calculated values of the thermal radiative and thermodynamic functions of thermal radiation of
solid and liquid zirconium carbide emitted by a heated surface area S of the sample in the finite frequency
range 0.333 PHz ≤ v ≤ 0.545 PHz at the eutectic temperature 3155 K

Quantity Zirconium carbide Gaps between solid
and liquid phases

Solid phase Liquid phase

Itotal (ν1, ν2, T ) (J) 7.043 × 10−10 6.027 × 10−10 1.015 × 10−10

ISBtotal (ν1, ν2, T ) (W) 1.267 × 102 1.084 × 102 0.182 × 102

Ftotal (J) −1.369 × 10−10 −1.702 × 10−10 3.330 × 10−11

Stotal (J·K−1) 3.039 × 10−13 2.771 × 10−13 2.678 × 10−14

Ptotal (J) 1.369 × 10−10 1.702 × 10−10 −3.330 × 10−11

CVtotal (J·K−1) 7.870 × 10−13 7.041 × 10−13 8.144 × 10−14

Ntotal 2.636 × 109 2.251 × 109 0.385 × 109

The surface area of the sample is S = 1.885×10−4 m2. The volume of the sample is V = 7.854×10−8 m3

between 0.6µm and 6.0µm. In [57], the normal spectral emissivity was measured
in the wavelength range 0.6µm ≤ λ ≤ 4.0µm at different temperatures 2100 K,
2270 K, 2470 K, and 2670 K. Let us extrapolate these experimental data to the ultra-
high temperature range up to 3155 K. At T = 3155 K, the values of the normal total
emissivity are (a) ε(T ) ≈ 0.47 [56], and (b) ε(T ) ≈ 0.49 [57]. According to Table 1,
the calculated values for normal total emissivity in the solid and liquid phases are (a)
ε(T ) = 0.584 for solid phase and (b) ε(T ) ≡ 0.50 for liquid phase, respectively. As
seen, the calculated value for the normal total emissivity of liquid zirconium carbide,
presented in Table 1, is in good agreement with experimental data. This fact confirms
that at the temperature 3155 K, the melting occurs and the liquid phase exists.

6 Conclusions

Using the expression for the normal spectral emissivity in the form ε (ν, T ) =∑∞
i=−3 aiv

i , the thermal radiative and thermodynamic properties of a surface of the
real body are studied in a finite range of frequencies. The general analytical expres-
sions for the Stefan–Boltzmann law, total energy density, number density of photons,
Helmholtz free energy density, enthalpy density, internal energy density, entropy den-
sity, heat capacity at constant volume, and pressure in various frequency ranges and
different temperatures are obtained. In the case of blackbody radiation, these expres-
sions reproduce the well-known equations for blackbody radiation in a semi-infinite
range of frequencies.

The general expressions obtained in this work is applied to the study of the thermal
radiative and thermodynamic properties of solid and liquid zirconium carbide using
the experimental data for the frequency dependence of the normal spectral emissivity
at melting (freezing) point. The calculated values of the total radiation power per unit
area, total energy density, number density of photons, Helmholtz free energy density,
enthalpy density, internal energy density, entropy density, heat capacity at constant
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volume, and pressure in a spectral range 0.333 PHz ≤ v ≤ 0.545 PHz at temperature
T = 3155 Kare presented inTable 1. The value for the normal total emissivity of liquid
zirconium carbide presented in Table 1 is in a good agreement with the experimental
data.

In Table 2, the thermal radiative and thermodynamic functions of thermal radiation
of solid and liquid ZrC emitted by a heated surface area S of the sample are presented.
The volume of the sample is V = 7.854×10−8 m3. The existence of the gaps between
the thermal radiative and thermodynamic functions of solid ZrC and that of liquid ZrC
in the visible range are confirmed.

In conclusion, it is important to note the following. In [30,40], and [42–46], the
normal spectral emissivity is represented as a series. Thus, the general analytical
expressions for the thermal radiative and thermodynamic functions obtained in this
paper can be applied to study of real bodies such as (a) luminous flames; (b) cobalt,
iron, and nickel at melting points; (c) uranium and plutonium carbides at melting tem-
peratures; and (d) MilkyWay and other galaxies. As a result, the thermal radiative and
thermodynamic functions of these real bodies can be described using polylogarithm
functions.

These and other topics will be points of discussion in subsequent publications.
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