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Abstract The paper provides a numerical investigation of the entropy generation
analysis due to mixed convection with viscous dissipation effect of a laminar viscous
and incompressible fluid, flowing in an inclined channel filled with a saturated porous
medium. The Darcy–Brinkman model is employed. The Navier–Stokes and energy
equations are solved by classic Boussinesq incompressible approximation. A special
attention is given to the study of the influence of the channel inclination angle on
the transient and the steady-state entropy generation. The fluctuations of the transient
total entropy generation are investigated when the inclination angle is varied from 0◦
to 180◦. Moreover, the entropy generation and the Bejan number were studied as a
function of the inclination angle of the channel, in the steady state ofmixed convection.
It was found that the total entropy generation is maximum at inclination angle close
to 70◦ and minimum at 0◦ and 180◦.
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List of Symbols

Variables

c Specific heat capacity at constant pressure (m2·s−2·K−1)

Da Darcy number (μ/h2)
g Gravitational acceleration (m·s−2)

h Channel height (m)
l Channel length (m)
Nu The local Nusselt number (|dθ/dY |)
Nu The space-averaged Nusselt number
〈Nu〉 Space and time-averaged Nusselt number
p Pressure (N·m−2)

P Dimensionless pressure
Pe Peclet number (Re·Pr)
Pr Prandtl number (ηcp/λm)

Ra Rayleigh number in porous media (βg�Th3/(υ·αeff))

Re Reynolds number (hu0/υ)

s Local entropy generation (J·m−3·s−1·K−1)

st Total dimensionless entropy generation (J·s−1·K−1)

〈st〉 Time-averaged total entropy generation (J·s−1·K−1)

t Time (s)
T Temperature (K)
T0 Mean temperature [(Th + Tc)/2] (K)

�T Temperature difference (Th − Tc)
u0 Characteristic velocity (m·s−1)

u, v Velocity components in x and y directions, respectively (m·s−1)

U, V Dimensionless velocity components
x, y Cartesian coordinates (m)
X,Y Dimensionless Cartesian coordinates

Greek Symbols

βT Thermal volumetric expansion coefficient (K−1)

ε Medium porosity
μ Permeability of the porous media (m2)

λ Thermal conductivity (kg·m·s−3·K−1)

θ Dimensionless temperature
Θ Dimensionless period
ρ Mass density (kg·m−3)
ρ0 Reference mass density (kg·m−3)

σ Specific heat capacities ratio ((ρ c)m/(ρ c)f)
Λ Viscosity ratio (ηeff/η)

η Dynamic viscosity (kg·m−1·s−1)

α Thermal diffusivity (m2·s−1)
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υ Kinematic viscosity (m2·s−1)

τ Dimensionless time

Subscripts

a Dimensionless
c Cold wall
eff Effective
F Fluid friction
f Fluid
H Heat transfer
h Hot wall
l Local
m Porous media
s Solid

1 Introduction

Entropy generation is closely associated with the thermodynamic irreversibility
because it encountered in all heat transfer processes. The different sources respon-
sible for the entropy generation are heat transfer and viscous effect. References (Nield
and Bejan [1], Bejan and Kraus [2] and Ingham et al. [3]) excellently described the
extent of the research information in this area. The viscous dissipation effects are
important in geophysical flows and also in certain industrial operations. In the litera-
ture, extensive research works are available to examine the effect of mixed convection
on flow in porous channel with viscous dissipation effect. Ingham et al. [4] studied
mixed convection in a vertical porous channel in the presence of viscous dissipation
effects. He used the Darcy flow model and determined the basic flow and temperature
fields. Al-Hadhrami et al. [5] investigated the mixed convection of a fully developed
Newtonian fluid in a vertical porous channel with viscous dissipation andDarcy effects
taken into consideration. He combined the Brinkman equation and the energy equation
in the porous medium to form a fourth-order non-linear Ordinary Differential Equa-
tion. Based on the Brinkman model a new form of the viscous dissipation term was
given so that it possesses the correct asymptotic behaviors for the clear fluid region
(μ → ∞) and for the Darcy limit (μ → 0). Nield et al. [6] studied the effect of the
viscous dissipation term to the thermal energy equation for the problem of forced con-
vection in a parallel-plate channel, with the temperature held constant at the walls that
is in the absence of viscous dissipation. He shows that the variation of Nusselt number
is small with the Darcy number but it is increasing as Peclet number decreases. He
concluded that the effect of viscous dissipation has a significant effect on the develop-
ing Nusselt number. Okedayo et al. [7] studied the viscous dissipation effect on flow
through a horizontal porous channel with constant wall temperature and a periodic
pressure gradient. Effects of various parameters such as the Darcy, Reynolds, Prandtl,
and Eckert numbers were also studied. Elbashbeshy [8] has investigated the mixed
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convection along a vertical plate embedded in non-Darcian porous medium with suc-
tion and injection.Makinde andOsalusi [9] analyzed the entropy generation in a liquid
film falling along an inclined porous heated plate and concluded that the entropy gen-
eration is enhanced by viscous dissipation and generally reduced by increasing wall
suction. However, mixed convection and entropy generation in the Poiseuille–Benard
channel in different angles are studied numerically by Nourollahi et al. [10]. They
studied the variations of entropy generation and the Bejan number as a function of
inclination angle. Moreover, they discussed the positive and negative effects of buoy-
ancy force on flow field, Nusselt number, and entropy generation. It shows that the
entropy generation due to heat transfer is localized at the areas where heat exchanged
between the walls and the flow is maximum, while the entropy generation due to
fluid friction is maximum at areas where the velocity gradients are maximum such as
vortex centers. A numerical investigation of double-diffusive convection through an
inclined porous cavity was carried out by Mchirgui et al. [11]. They found that the
entropy generation exhibits an oscillatory behavior for lower (Da = 10−4) and higher
(Da = 10−2) medium permeability values, when α �= 0◦. It shows that the minimum
entropy generation is found in the aspect ratio A = 0.5 and 1, for Da = 10−2 and
10−4, respectively. However, Malashetty et al. [12] studied the fully developed con-
vective flow and heat transfer in an inclined channel bounded by two rigid plates,
containing porous layer saturated with a fluid and a clear viscous fluid layer using the
Darcy–Brinkman equation model. Hooman and Gurgency [13] numerically investi-
gated the forced convection with viscous dissipation in a parallel-plate channel filled
by a saturated porous medium. He examined the effect of various viscous dissipation
models on the thermal aspects. It shows that, the three models lead to similar Nusselt
number values when Darcy number is low, however, for high Darcy number values
only the model of Al-Hadhrami et al. [14] claimed to be valid. Hooman et al. [15]
numerically investigated the entropy generation due to forced convection in a parallel-
plate channel filled by a saturated porous medium. It was observed that the increase
in the medium aspect ratio provokes an increase of the irreversibility degree in the
studied system. However, Chinyoka and Makinde [16] analyzed the flow and heat
transfer inside a uniformly porous vertical pipe. They presented the entropy genera-
tion number, irreversibility distribution ratio, and Bejan number. Entropy generation
in an unsteady flow through a porous pipe with suction was investigated numerically
by Makinde and Chinyoka [17].

The prime objective of this study is to consider the effect of viscous dissipa-
tion term for the flow and heat transfer in a horizontal channel filled with porous
media in different inclination angles. The investigation is carried out from the numer-
ical solutions of complete Navier–Stokes and energy equations by the finite volume
method. In this study the porosity, the Reynolds, the Prandtl number, the Rayleigh,
and the modified Brinkman numbers are fixed at 0.5, 10, 0.7, 104, and 10−3, respec-
tively. The Brinkman number, the Darcy number, and the inclination angle of the
channel are in the following ranges: 10−5 ≤ Br ≤ 10−2; 10−6 ≤ Da ≤ 10;
0◦ ≤ β ≤ 180◦.
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Fig. 1 Mathematical model

2 Mathematical Modeling

The schematic of the system under consideration is shown in Fig. 1. It consists of a
laminar two-dimensional mixed convective flow inside an inclined channel saturated
by porousmedium. The inclination angle of the channel is defined as the angle between
the hot wall, which coincides with the x-axis, and the horizontal plane. The fluid
is assumed to be incompressible, Newtonian, and viscous. The porous medium is
supposed to be isotropic, homogeneous, and in thermodynamic equilibrium with the
fluid. The homogeneity and isotropy of the porous medium leads us to believe that
pores have same size and form. The capillary force is assumed to be negligible.

The thermophysical properties of the fluid and the solid matrix are supposed to be
constant, except for the fluid density which satisfies the Boussinesq approximation
such as:

ρ = ρ0 [1 − βT(T − T0)] (1)

In the equation above, ρ0, T0, and βT are the fluid density, the reference temperature,
and the thermal volumetric expansion coefficient, respectively. The latter is given by:

βT = 1

ρ0

(
∂ρ

∂T

)
p

(2)

Using the Darcy Brinkman model and in two-coordinate system, the governing equa-
tions of the flow under consideration are:
Dimensional continuity equation:

∂u

∂x
+ ∂v

∂y
= 0, (3)

Dimensional momentum equation in x-axis:

ρ0

[
1

ε

∂u

∂t
+ 1

ε2
u

∂u

∂x
+ 1

ε2
v
∂u

∂y

]
= −∂p

∂x
− η

μ
u + ηeff

(
∂2u

∂x2
+ ∂2u

∂y2

)
− ρg· sin β

,(4)
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Dimensional momentum equation in y-axis:

ρ0

[
1

ε

∂v

∂t
+ 1

ε2
u

∂v

∂x
+ 1

ε2
v
∂v

∂y

]
= −∂p

∂y
− η

μ
v + ηeff

(
∂2v

∂x2
+ ∂2v

∂y2

)
− ρg· cosβ

,(5)

Dimensional energy equation with viscous dissipation:

σ
∂T

∂t
+

[
u

∂T

∂x
+ v

∂T

∂y

]
= αeff

(
∂2T

∂x2
+ ∂2T

∂y2

)
+ Φ

(ρc)f
, (6)

where ηeff is the effective viscosity, η is the fluid dynamic viscosity, μ is the perme-
ability, and ε is the medium porosity. In Eq. 6, the term Φ is the viscous dissipation
which appears as an internal heat source in the porous media, which was defined by
Al-Hadhrami et al. [14]:

Φ = η

μ

(
u2 + v2

)
+ ηeff

[
2

(
∂u

∂x

)2

+ 2

(
∂v

∂y

)2

+
(

∂u

∂y
+ ∂v

∂x

)2
]

(7)

Following the work of Bejan [18], only the first term of Eq. 7 will be considered as the
viscous dissipation contribution in the energy Eq. 6. Details of the alternative viscous
dissipation models for flow through a porous media can be found in Nield [19–21],
Nield et al. [22] and Magyari et al. [23].

The terms σ andαeff refer to the specific heat capacity ratio and the effective thermal
diffusivity, respectively and they are defined by:

αeff = λm

(ρc)f
; σ = (ρc)m

(ρc)f
, (8)

where (ρc)m and (ρc)f are the specific heat capacity per unit volume of the porous
medium and the specific heat capacity of the fluid, respectively. The effective thermal
conductivity of a porous medium λm depends in a complex manner on the geometry
of the medium and on the way how heat conduction in the solid and fluid phases
occurs. The local thermal equilibriummodel is used, therefore the considered effective
conductivity can be written as the weighted arithmetic mean of the solid phase and
the fluid phase conductivities:

λm = (1 − ε)λs + ελf , (9)

where λf and λs are the thermal conductivities of the fluid and solid, respectively.
The dimensionless variables are:

τ = t

h
u0; X = x

h
; Y = y

h
; U = u

u0
; V = v

u0
; P = p

ρ0u20
; θ = T − Tc

Th − Tc
(10)
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Using the dimensionless variables mentioned above, the governing equations can be
written in dimensionless form as:

∂U

∂X
+ ∂V

∂Y
= 0, (11)

∂U

∂τ
+ div (JU ) = −ε

∂P

∂X
− ε

Da·ReU + Ra·ε
Re·Pe θ · sin β, (12)

∂V

∂τ
+ div (JV ) = −ε

∂P

∂Y
− ε

Da·ReV + Ra·ε
Re·Pe θ · cosβ, (13)

σ
∂θ

∂τ
+ div (Jθ ) = c· Br

Re·Pr · Da
(U 2 + V 2), (14)

where JU = 1
ε
U ·V − �ε

Re grad(U ), JV = 1
ε
V ·V − �ε

Re grad(V ), Jθ = θ ·V −
1

Re·Pr grad(θ).

In Eq. 14, the term c is taken equal to one or zero in the presence or absence of
viscous dissipation effect, respectively.

The boundary and initial conditions appropriate to laminar flow within the differ-
ential heated channel are:

0 ≤ X ≤ l/h; Y = 0; U = V = 0; θ = 1
0 ≤ X ≤ l/h; Y = 1; U = V = 0; θ = 0
X = 0; 0 ≤ Y ≤ 1; U = 6Y (1 − Y ); V = 0; θ = 1 − Y

X = l/h; 0 ≤ Y ≤ 1; ∂ϕ
∂τ

+ ∂ϕ
∂X = 0,

1∫
0
UdY = 1, (ϕ = U, V )

At τ = 0; U = V = 0; P = 0; θ = 0.5 − Y.

(15)

3 Entropy Generation

For the flow in porous medium, entropy generation per unit volume can be written as
follows (Bejan [24]):

s = λm

T 2
0

[(
∂T

∂x

)2

+
(

∂T

∂y

)2
]

+ η

T0·μ
(
u2 + v2

)

+ η

T0

[
2

(
∂u

∂x

)2

+ 2

(
∂v

∂y

)2

+
(

∂u

∂y
+ ∂v

∂x

)2
]

. (16)

Using the dimensionless variables listed in Eq. 15, dimensionless entropy generation
equation is given in compact form by Tasnim et al. [25], Mahmud and Fraser [26],
and Hooman and Gurgency [13]:

sl,a = sl,a,H + sl,a,D + sl,a,F (17)

On the right-hand side of Eq. 17, the first term represents the heat transfer entropy
generation (sl,a,H), the second is the Darcy viscous entropy generation (sl,a,D), and the
third represents the clear fluid viscous entropy generation (sl,a,F). They are given by:
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sl,a,H =
(

∂θ

∂X

)2

+
(

∂θ

∂Y

)2

, (18)

sl,a,D = Br∗

Da

(
U 2 + V 2

)
, (19)

sl,a,F = Br∗
[
2

(
∂U

∂X

)2

+ 2

(
∂V

∂Y

)2

+
(

∂U

∂Y
+ ∂V

∂X

)2
]

, (20)

where Br∗ is defined as the modified Brinkman number, it is given by:

Br∗ = Br

Ω
. (21)

Br and Ω are the Brinkman number and the dimensionless temperature difference,
respectively. They are given by:

Br = u20·η
λm·�T

, Ω = �T

T0
. (22)

The dimensionless total entropy generation for the entire channel is obtained by inte-
grating Eq. 17:

st =
1∫

0

l/h∫
0

sl,adXdY . (23)

The time-averaged total entropy generation can be evaluated using the following equa-
tion:

〈st〉 = 1

Θ

Θ∫
0

stdτ . (24)

The thermal heat flux exchanged between the walls and the flow is characterized by
the space-averaged Nusselt number evaluated as follows:

Nu = 1

l/h

l/h∫
0

∣∣∣∣ ∂θ

∂Y

∣∣∣∣ dX . (25)

The space- and time-averaged Nusselt number is defined as:

〈
Nu

〉 = 1

Θ

Θ∫
0

Nudτ , (26)

where Θ is the period of oscillations of the space-averaged Nusselt number Nu.
The Bejan number is defined as:
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Table 1 Space- and
time-averaged Nusselt number
for Re = 10; Ra = 104;
Pr = 0.7, Da = 1

Inclination angle β −15 −5 0 10 20

This study 2.11 2.4 2.39 2.32 1.995

Nourollahi et al. [10] 2.10 2.37 2.35 2.34 2.05

Table 2 Maximum dimensionless velocity component in X direction for Pr = 0.7; Re = 100

Darcy number This study Mahmud and Fraser [26] Karamallah et al. [28]

1.0e−9 1.02 1.01 –

0.001 1.06 1.06 1.09

0.01 1.23 1.11 1.30

0.05 1.40 1.26 –

0.1 1.44 1.33 1.55

1 1.53 1.48 1.59

10 1.57 1.50 1.59

100 1.57 1.50 1.59

1000 1.57 1.50 1.59

Be =
〈
sl,a,H

〉
〈st〉 . (27)

The Bejan number compares the magnitude of entropy generation due to heat transfer
with the magnitude of the total entropy generation.When Be ≥ 1/2, the irreversibility
due to heat transfer dominates, while for Be ≤ 1/2 the irreversibility due to viscous
effects dominates. For Be ∼= 1/2, entropy generation due to heat transfer is almost of
the same magnitude as that due to viscous effects.

4 Numerical Procedure

Amodified version of control volume finite-element method (CVFEM) of Saabas and
Baliga [27] is adapted to the standard staggered grid in which pressure and velocity
components are stored at different points. The SIMPLER algorithm was applied to
resolve the pressure–velocity coupling in conjunction with an alternating direction
implicit (ADI) scheme for performing the time evolution.

Our code was validated with other works as seen in the Tables 1, 2, and 3.
This table shows a good agreement between our results and those of the previous

study.
In order to assess the accuracy of our numerical technique, our results are compared

with those of the laminar flow in a horizontal porous channel reported by Mahmud
and Fraser [26] and the laminar flow in a vertical porous channel given by Karamallah
et al. [28]. A good agreement between our results and the previous ones as illustrated
in Table 2.
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Table 3 Averaged Nusselt number for Pr = 0.7; Re = 1

Darcy number This study Mahmud and Fraser [26] Mahmud and Fraser [26]
Numerical study Analytical study

0.01 100.324 99.936 103.35

0.05 21.193 21.213 22.119

0.1 10.785 11.098 11.587

0.5 2.5858 2.6823 2.8083

1 1.4759 1.5849 1.6643

10 0.5293 0.5828 0.6199

Another test of the accuracy of the present numerical study has been performed by
comparing the average values of Nusselt number with the numerical and analytical
works given by Mahmud and Fraser [26]. Nusselt numbers are calculated for six
selected values of Darcy numbers in Table 3. Also, there is a good agreement between
our results and those of Mahmud and Fraser [26].

Details of the code used in this study can be found in Abbassi et al. [29,30].
Imposed global and local convergence criteria are taken into account, and should

respectively satisfy the following:

(
∂U

∂X
+ ∂V

∂Y

)
≤ 10−5, max

∣∣∣∣φ
τ+�τ − φτ

φτ+�τ

∣∣∣∣ ≤ 10−5, (28)

where Φ is the dependent variable (Φ = U, V, θ). This means that the continuity
equation should verify the first convergence criterion at each time step of calculation,
and the dependent variable Φ should verify the second criterion at each point of the
channel and at each time step. The transient study is carried out with a time step
�τ = 10−3.

The averaged Nusselt number at the top wall is used for the grid independence
analysis. Grid refinement tests have been performed for the case Re = 10, Pe = 20/3,
and Ra = 104 using three uniform grids 70×20, 101×26, and 131×31. Results show
that when we pass from a grid of 70 × 20 to a grid of 101× 26, the averaged Nusselt
number undergoes an increase of 7.1%. When we pass from the grid of 101 × 26 to
the grid of 131×31, it undergoes an increase of only 1.6%. We conclude that the grid
101× 26 is sufficient to carry out a numerical study of this flow. This grid is retained
for all the following investigations.

5 Results and Discussion

Given the large number of variables related to this study, some of them will be con-
sidered constants. Then, the porosity, Reynolds, Prandtl, Rayleigh, and the modified
Brinkman numbers are fixed at 0.5, 10, 0.7, 104, and 10−3, respectively. Also, the vis-
cosity ratio and the specific heat capacity ratio are fixed to unity. An optimization study
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Fig. 2 Transient entropy generation versus inclination angle

of the entropy generation according to the inclination angle of the channel ranging
between 0◦ and 180◦ will be conducted.

Figure 2 shows the transient entropy generation versus the inclination angle of the
porous channel. From this figure, it can be seen that the entropy generation fluctua-
tions are periodic at inclination angle β = 0◦. The total entropy generation oscillates
around average value close to 10 with dimensionless period Θ = 2.6. These periodic
fluctuations, which persist in time, lead us to believe in the presence of dissipative
structure in the channel flow. This structure, highlighted by the plot of the stream lines
in Fig. 3, is characterized by the presence of thermo-convective cells near the bottom
and the top walls. This dissipative structure, present in the channel and maintained by
energy dissipation, is characterized by three convective cells (Fig. 3) which appear in
alternation near the bottom and the top walls of the main flow as cylinders turning
without translation on walls. The bottom one turns in the clockwise direction, while
the two other cells turn in the anticlockwise direction. In point of view of thermody-
namics of irreversible processes this configuration maintained by energy dissipation
and known as dissipative structure, corresponds to a rotation of the system around
the steady state. This latter is far from equilibrium one, and consequently the system
evolves in the non-linear domain of the thermodynamics of irreversible processes,
since the Prigogine’s theorem of minimum entropy generation is unverified. In the fol-
lowing, we have tried to investigate the effect of the channel inclination on the entropy
generation fluctuations and eventually the presence of dissipative structures. Results
show that, when the inclination angle of the channel increases from 0◦, the dissipative
structure is immediately lost since the periodic fluctuations of the entropy generation
are absent. Also, it can be seen in general case that, when the inclination angle increases
the entropy generation takes an important initial value at the very beginning of mixed
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0.5

Fig. 3 Stream lines of the flow configuration

convection, then it decreases as dimensionless time proceeds with slight fluctuations
before reaching the steady state. This latter corresponds to a constant value of the total
entropy generation, where its dependence on the channel inclination anglewill be stud-
ied later. These small fluctuations can be the effect of the birth of cells downstream of
the channel that is rapidly lost. It is important to note that, at inclination angle equal to
180◦, the entropy generation diminishes with time devoid of any fluctuation and tends
asymptotically towards a constant and minimum value, which characterizes the steady
state of mixed convection. In fact, this case corresponds to a heating from the top and a
cooling from the bottom of the porous enclosure, then all the driving thermodynamic
forces are minimum. Therefore the convective phenomena are practically absent and
the obtained entropy generation is minimal. In a thermodynamic view point, in this
case the steady state is sufficiently close to equilibrium one, thus the system tends
directly towards the steady state. Consequently, the Prigogine’s theorem of minimum
entropy generation for processes which are linear on a global scale is verified and the
system evolves in the linear branch of the thermodynamics of irreversible processes
in which the relations between thermodynamic forces and fluxes are linear.

Figure 4a illustrates the variation of the total entropy generation, at steady state, with
the inclination angle of the porous channel for different values of Brinkman number.
As can be seen from this figure, the total entropy generation begins with a small value
at inclination angle equal to 0◦, then it increases, reaches a maximum close to 70◦ and
decreases to reach a minimum value at 180◦. Remark that, the inclination angle has
more pronounced effect on the entropy generation as the Brinkman number increases.

Figure 4b illustrates the variation of Bejan number versus the inclination angle
for different values of Brinkman number. It can be seen that, when the Brinkman
number is greater than 10−3, the Bejan number is always higher than 0.5. Therefore
irreversibility due to heat transfer dominates for all inclination angle ranging between
0◦ and 180◦. Also the same figure shows that, at fixed inclination angle, the Bejan
number decreases when the Brinkman number decreases, which implies that heat
transfer irreversibility begins to lose its dominance. One can notice that, the Bejan
number is maximum at inclination angles 0◦ and 180◦, whereas it is minimum at 90◦.
Results show that when the Brinkman number decreases from 10−3, heat transfer
irreversibility is dominantly close to the selected limit angles (0◦ and 180◦), whereas
one can observe a dominance of the viscous fluid irreversibility in the vicinity of
inclination angle 90◦. Figures 5 and 6 illustrate the evolution of the streamlines and
the isothermal lines respectively for Pr = 0.7, Da = 10−2, Br∗ = 10−3, Br = 10−3

and inclination angle ranging between 0◦ and 180◦. Figure 5 shows the existence of
dissipative structure at β = 0◦ which is characterize by three thermo-convective cells
as explained before. The existence of this dissipative structure proves that convection is

123



Int J Thermophys (2015) 36:2881–2896 2893

Fig. 4 Variation of (a) the averaged total entropy generation and (b) Bejan number versus inclined angle
for different Brinkman number at Re = 10, Ra = 104, and Br∗ = 10−3

present in the channel and consequently irreversibility is mainly due to the convective
heat transfer. As the inclination angle increases from 0◦ to 90◦, the flow structure
undergoes a change from three thermo-convective cells to one convective cell, which
occupies practically all the channel domain. Simultaneously, as shown in Fig. 6, the
distortion of isotherms, which is marked at inclination angle 0◦ mostly in the right
half of the channel, becomes increasingly less pronounced when the inclination angle
increases, indicating a decrease of the thermal gradients. In parallel total entropy
generation increases (Fig. 4a, for Br = 10−3) whereas the Bejan number decreases
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Fig. 5 Evolution of stream lines versus inclination angle at ε = 0.5; Re = 10; Ra = 104; Pr = 0.7;
Br∗ = 10−3; Da = 10−2; and Br = 10−3

and may even take values less than 0.5, which indicate that the thermal irreversibility
dominance diminishes to give way to the viscous one (Fig. 4b, for Br = 10−3). This
means that,when increasing the inclination angle in the range cited above, the change in
the flow configuration is mainly accompanied by an increase in the velocity gradients.
This augmentation in the velocity gradients increases the total entropy generation via
essentially the viscous irreversibility, which becomes dominant as the inclination angle
exceeds practically the value 45◦. As inclination angle increases from 90◦ to 180◦ the
Bejan number increases, indicating that the dominance of the viscous irreversibility is
gradually lost. When inclination angle approaches 180◦, stream lines and isotherms
become practically parallel and the flow is stratified. In this case the irreversibility is
minimal and limited to the thermal conduction one.

This section is a brief comment related to the experimental validation of the numer-
ical results concerning the porous media. In fact, the experimental validation can be
conducted according to two aspects. The first is related to the observation and the sec-
ond concerns the calculation. Regarding the first aspect, the observation of the flow
structure behavior in the porous medium, when flow parameters change is relatively
difficult. This is due to the nature of the porous medium, eventually its opacity, and
the diffusion of light by its porous matrix (this light diffusion can occur even when
the porous medium is transparent). The second aspect is technically possible and the
numerical prediction of entropy generation can be experimentally verified using the
entropy balance over the entire porousmedium in the stationary state. This requires the
measurement of the inlet and outlet temperatures and flow rates of the fluid and also
the heat transfer fluxes through the two isothermal walls. In my opinion, experimen-
tal validation of the numerical calculation encounters two problems. The first is that
the experimental calculation of entropy generation can only concern the global level
(entire system) and consequently cannot be applied at local level, which is the highlight
of the numerical calculation. The second one is the necessity to make a dimensional
numerical study (with real values and in the same condition with experiment), which
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Fig. 6 Evolution of isothermal lines versus inclination angle at ε = 0.5; Re = 10; Ra = 104; Pr = 0.7;
Br∗ = 10−3; Da = 10−2; and Br = 10−3

presents the weakness of the numerical calculation even with traditional numerical
code. In this context the use of industrial numerical calculation software is indispens-
able to approach experimental conditions with real fluid and real dimensions of flow
configuration.

6 Conclusion

This work concerns the influence of the channel inclination angle on the irreversibility
at steady and transient states. It was found that the existence of periodic fluctuations of
the entropy generation at inclination angleβ = 0◦, corresponds froma thermodynamic
point of view, to a rotation of the system around the steady state. This steady state is
therefore far from equilibrium one and the system evolves in the non-linear domain
of the thermodynamics of irreversible processes. When the inclination angle of the
channel increases from 0◦, the periodic fluctuations of the entropy generation are lost.
The entropy generation takes important initial value at the very beginning of mixed
convection, and then it decreases and takes practically a constant value in the steady
state, which is minimal at inclination angle equal to 180◦. In this case, the Prigogine’s
theorem of minimum entropy generation for processes which are linear on a global
scale is verified and the system evolves in the linear branch of the thermodynamics
of irreversible processes. The investigation of the steady-state irreversibility with the
inclination angle of the porous channel, for different values of Brinkman number,
showed that the total entropy generation is maximum at inclination angle close to 70◦,
and insignificant at inclination angle equal to 0◦ and 180◦. The study of Bejan number
with the inclination angle, illustrated a dominance of heat transfer irreversibility for all
inclination angle, when the Brinkman number is greater than 10−3.Whereas, when the
Brinkmannumber decreases from10−3, a dominance of the viscous fluid irreversibility
is remarked in the vicinity of inclination angle 90◦.
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