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Abstract First-principles calculations have been performed to obtain the thermo-
dynamic properties of ScAlO3 perovskite in a wide range of pressure (0GPa to
30GPa) and temperature (0K to 1400K). Calculations have been performed by
using the pseudo-potential method within the generalized gradient approximation.
Both pressure- and temperature-dependent thermodynamic properties including the
bulk modulus, thermal expansion, thermal expansion coefficient, and the heat capac-
ity at constant volume and constant pressure were calculated using three differ-
ent approaches based on the quasi-harmonic Debye model: the Slater, Dugdale–
MacDonald (DM), and Vaschenko–Zubarev (VZ) approaches. Also, empirical energy
corrections are applied to the results of models to correct the systematic errors intro-
duced by the functional. It is found that theVZmodel providesmore accurate estimates
in comparison with the DM and Slater models, especially after an empirical energy
correction. The results obtained from the VZ analysis on the corrected static energy
show that this method can be used to determine the thermodynamic properties of
ScAlO3 compounds with reasonable accuracy.
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1 Introduction

Rare earth aluminate perovskites have been studied extensively for their interesting fer-
roelectric and piezoelectric properties [1]. The crystal structure of scandium aluminate
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Fig. 1 Unit cell of ScAlO3 perovskite

(ScAlO3)was refined for the first time by Reid and Ringwood [2], and a single- crystal
diffraction experimentwas performed by Sinclair et al. [3] confirmed theGdFeO3-type
structure of ScAlO3. The structural stability of ABO3- or GdFeO3-type perovskites
has been investigated by many researchers [4–8]. Ross [6] used single-crystal X-ray
diffraction for pressures below 5GPa. Also, Magyari-Köpe et al. [7] showed that the
orthorhombic Pbnm structure remains stable relative to the cubic structure for pres-
sures up to 150GPA by using an ab initio total energy method. Wu and Neumann [8]
investigated the high-pressure phase stability and elasticity based on density func-
tional theory and showed that a phase transition occurs at 53GPa and 0K from the
Pbnm to the Cmcm structure. There have been few studies of the thermal properties
of the ScAlO3 perovskite. The thermal expansion has been reported by Hill and Jack-
son [9] and Yamanaka et al. [1]. The temperature dependence of the shear modulus
and bulk modulus was investigated by Jackson and Kung up to 1000K at 300MPa
[10]. Kung et al. [11] determined the elasticity of ScAlO3 up to 3GPa at room tem-
perature and the temperature dependence of the elastic moduli between 300K and
600K [12]. It is important to study the physical properties of materials under high
pressures and temperatures for microscopic understanding as well as technological
applications. In this paper, we report a theoretical study of both the pressure and
temperature dependence of the thermal properties of ScAlO3 perovskite. The results
of Debye calculations are reported in two sections. In the first section, the results
of three approaches, the Slater, Dugdale–MacDonald (DM), and Vaschenko–Zubarev
(VZ) approaches, are compared with available experimental data. The approach that
leads to the best results was taken into account to calculate the temperature and pres-
sure dependence of the bulk modulus, thermal expansion, thermal expansion coeffi-
cient, and the heat capacity at constant volume and constant pressure, and the results
are presented in the second section. In Fig. 1 the unit cell of ScAlO3 perovskite is
shown.
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2 Theoretical Method

2.1 First-Principles Calculations

The ab initio calculations were performed within density functional theory (DFT),
using the plane-wave pseudo-potential method as implemented in the Quantum-
ESPRESSO package [13] with ultrasoft Vanderbilt pseudo-potentials [14]. For the
exchange and correlation terms in the electron–electron interaction, the generalized
gradient approximation (GGA) of Perdew, Burke, and Ernzerhof (PBE) [15] has been
used. The plane-wave energy cutoff was 60Ry, and the k-grids used in the total
energy were 12 × 12 × 12 Monkhorst–Pack (MP) meshes [16]. The self-consistent
threshold value for convergence was 10−12 Ry, and the first-order Methfessel–Paxton
method [17] was used with a smearing width of 0.05Ry.

2.2 Quasi-harmonic Approximation

In the quasi-harmonic Debye model, the non-equilibrium Gibbs function G∗ is taken
in a form,

G∗ (V, p, T ) = E (V ) + pV + Avib(V, T ), (1)

where E (V ) is the total energy per unit cell, and pV corresponds to the constant
hydrostatic pressure condition. Avib is the vibrational Helmholtz-free energy given by
the Debye model, which can be written as [18]

Avib (θD, T ) = nkBT
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where θD is the Debye temperature, n is the number of atoms per formula unit, kB is
the Boltzmann constant, and D is the Debye function, which is defined as
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where r is the number of atoms in the chemical formula of the material, m is an
effective atomic mass defined as the logarithmic average of all masses in the formula,
and P (V ) = − ∂E(V )

∂V . The f (σ )function is
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where σ is Poisson’s ratio at the equilibrium geometry. When λ = −1, 0, and +1, one
obtains the Slater [20] model that assumes a pressure-independent Poisson ratio, and
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the Dugdale–MacDonald (DM) [21] and Vaschenko–Zubarev (VZ) [22] approaches,
respectively. In order to calculate the thermal properties of ScAlO3, we used all three
approaches as implemented in the GIBBS code [23].The default value of σ in GIBBS
is σ = 0.25, corresponding to a Cauchy solid.

To evaluate E (V ), the calculated static energy versus volume was fitted to the
finite-strain isothermal third-order Birch–Murnaghan [24] equation of state (EOS).
By minimizing the non-equilibrium Gibbs function with respect to volume V , one can
obtain the thermal equation of state (EOS) for V (P, T ). The specific heat capacity
(CV ) at constant volume, isothermal bulkmodulus (BT ), coefficient of volume thermal
expansion (α), heat capacity at constant pressure (CP ), and adiabatic bulk modulus
(BS) can be expressed as [23]

CV = 3nk

[
4D
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− 3 θD

T

e
θD
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, (6)
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α = − γCV

BT V
, (8)

Cp = CV (1 + γαT ) , (9)

BS = BT (1 + γαT ) , (10)

where γ is the Grüneisen ratio, which is defined as

γ = −d ln θD

d ln V
. (11)

In the Debye–Grüneisen model such as the DM or VZ formula, an approximate
Grüneisen ratio is chosen to correct quasi-harmonicity introduced by assuming that
the Poisson ratio does not change with volume. In the DM model, the material is
modeled as a simple cubic lattice undergoing one-dimensional harmonic oscillations.
In the VZ model the Grüneisen parameter is derived from free-volume theory based
on anharmonic central pairwise potentials between nearest-neighbor atoms in a three-
dimensional cubic lattice. This model incorporates the volume dependence of Pois-
son’s ratio and reduces to the DM approach for one-dimensional vibrations [25].

Also, the empirical energy corrections (EECs) are applied to the results of the three
models to correct the systematic errors introduced by the functional in the calculation
of equilibrium volumes [23]. The corrected static energy (Es) is defined as follows:

Ẽs (V ) = Es (V0) + BexpVexp
B0V0

[
Es

(
V

V0
Vexp

)
− Es(V0)

]
, (12)

where V0 and B0 are chosen so that the experimental room-temperature equilibrium
volume and bulk modulus are reproduced. The calculation procedure is described in
more detail in [23].
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3 Results and Discussion

ScAlO3 perovskite has an orthorhombic structure (space group Pbnm). The equilib-
rium lattice parameters calculated by using a PBE functional for bulk ScAlO3 are
a = 4.971 Å, b = 5.263 Å, and c = 7.305 Å, compared with experimental values of
a = 4.9355 Å, b = 5.2313 Å, and c = 7.2003 Å [1]. In order to compare the results
of the Slater, Dugdale–MacDonald (DM), and Vaschenko–Zubarev (VZ) approaches,
we used the three models with the same parameters for electronic calculations. Also,
in order to obtain more reasonable results, the empirical energy corrections are applied
to the results of all three models. The equilibrium volume and bulk modulus at room
temperature that have been used for empirical energy corrections were set to 186 Å3

[1] and 222 GPa [10]. Variations of static energies with the unit cell volume before
and after the empirical energy corrections (EEC) are presented in Fig. 2.

The results of the quasi-harmonic analysis after empirical energy corrections
together with all available experimental data are presented in Table 1 and plotted
in Fig. 3a–d. In the figures, the results of the three models are plotted together for
comparison. In Fig. 3a, the temperature dependence of the unit cell volume at zero
pressure is compared with experimental data. As can be seen from the figure, the
best agreement with experiment is obtained by the VZ approximation. Calculated and
experimental results for the pressure dependence of the unit cell volume are plotted
in Fig. 3b. The results of the three models at zero temperature are identical and in
excellent agreement with experimental data [6]. The results for the bulk modulus are
shown in Fig. 3c. As can be seen from the figure, the VZ approach gives the results
which are in better agreement with the experimental data [10], but none of the models
is really close to the experimental data, especially at high temperatures. The origin
of this difference is mainly due to the neglect of intrinsic anharmonic effects in the
quasi-harmonic approximation. On the other hand, by applying the empirical energy
correction, the volume-energy curve is changed in a way that reproduces the experi-

Fig. 2 Empirical energy correction (EEC) to the static energy; dashed lines denote equilibrium volumes
for each curve
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Table 1 Calculated and experimental results for expansion, CVTE, and bulk modulus

T (K) Slater DM VZ EXP.

Unit cell volume (Å3)

293 185.87 (0) 185.87 (0) 185.87 (0) 185.87a

473 186.95 (0.23) 186.76 (0.12) 186.58 (0.03) 186.53a

673 188.40 (0.53) 187.96 (0.29) 187.53 (0.06) 187.42a

917 190.39 (0.91) 189.58 (0.48) 188.80 (0.07) 188.67a

1273 193.62 (1.53) 192.20 (0.78) 190.84 (0.07) 190.70a

CVTE (10−6K−1)

293 27.28 (56.6) 22.59 (29.7) 17.99 (3.3) 17.42a

473 36.01 (65.2) 29.76 (36.6) 23.64 (8.4) 21.80a

673 40.74 (58.9) 33.54 (30.8) 26.54 (3.5) 25.64a

917 44.70 (54.8) 36.58 (26.7) 28.78 (0.3) 28.87a

1273 49.98 (62.3) 40.45 (31.4) 32.49 (2.3) 30.79a

Bulk modulus (GPa)

304 222 (0) 222 (0) 222 (0) 222b

472 215.26 (1.6) 216.37 (1.1) 217.37 (0.6) 218.7b

625 208.82 (3.0) 210.87 (2.1) 212.78 (1.2) 215.3b

930 195.51 (6.2) 199.41 (4.3) 203.13 (2.5) 208.4b

Values in the parentheses are percent errors between the calculated and experimental data
a Result of fitting a third-order polynomial to the experimental data (Yamanaka et al. [1] and Hill & Jackson
[9])
b Jackson et al. [10] at 300 MPa

mental room-temperature bulk modulus which may also lead to a change in the slope
of the bulk modulus versus temperature.

To obtain the experimental coefficient of the volume thermal expansion (CVTE),
experimental results obtained by Hill and Jackson [9] and Yamanaka et al. [1] for
unit cell expansion are altogether fitted to a third-order polynomial using the least-
squares method. The unit cell volume change with temperature does not show a linear
expansion but is well represented with the equation,

V (T ) = 185.157 + 0.001556T + 3.2188 × 10−6T 2 − 7.9797 × 10−10T 3. (13)

The results together with the calculated results for CVTE are shown in Fig. 3d. The
results of the VZ approximation are lower than Slater and DM analysis and are clearly
in reasonable agreement with experiment. Differences between calculated and exper-
imental values 1 [9] of the coefficient of volume thermal expansion at 298K are about
3.3%, 29.7%, and 56.6% for VZ, DM, and Slater approaches, respectively. These
values at 1000K are about 2.3%, 31.4%, and 62.3%.

As mentioned in Sect. 2.2, in the VZ approach, the anharmonicity is taken into
account as an anharmonic central pairwise potential between nearest-neighbor atoms.
Therefore, it is expected that the results obtained with the VZ approach are in better
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Fig. 3 Calculated unit cell volume as a function of (a) temperature and (b) pressure, (c) temperature depen-
dence of bulk modulus and (d) coefficient of volume thermal expansion with Slater, Dugdale–MacDonald
(DM), and Vaschenko–Zubarev (VZ) approaches. Experimental data are also displayed for comparison

agreement with experiment. On the other hand, as can be seen, themaximum deviation
occurs for the Slater approach. This is because in the Slater model, Poisson’s ratio is
volume-independent. Although the variation of Poisson’s ratio with pressure is usually
very small [26], the volume derivatives of the shear mode and the longitudinal mode
are different. Therefore, failure of Slater’s assumption must be the reason that the
results of the Slater approach are in less agreement with experimental data than the
other two approaches. The results of the DM approach are located between the Slater
and VZ approaches.

The results obtained after applying the VZ approach to the corrected static energy
are presented in Figs. 4 and 5. In Fig. 4a–e, the temperature dependence of the
unit cell volume, bulk modulus, CVTE, and the heat capacity at constant vol-
ume (CV ) and constant pressure (CP ), up to 1400K at different pressures (P =
0 GPa, 5 GPa, 10 GPa, and 20 GPa) are, respectively, plotted. The results for the
bulk modulus at different pressures (Fig. 4b) show that at T < 100 K, the bulk modu-
lus is nearly constant, but it drops at higher temperatures. As can be seen from Fig. 4c,
the thermal expansion coefficient increases with nearly T 3 at low temperatures and
then approaches a linear increase at high temperatures. Also, the results show that CV

and CP (Fig. 4d and e) decrease with pressure, especially at high temperatures.
The pressure dependence of the unit cell volume, CVTE, the bulk modulus, and

CV and CP at different temperatures (T = 0K, 298K, 600K, and 1400K) are plotted
in Fig. 5a–e, respectively. The EOS curves at different temperatures are shown in
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Fig. 4 Results of Debye–Grüneisen VZ approach after empirical energy correction for temperature depen-
dence of (a) unit cell volume, (b) bulk modulus, (c) coefficient of volume thermal expansion and heat
capacities of copper at (d) constant volume and (e) constant pressure at different pressures

Fig. 5a. The results for the bulk modulus are shown in Fig. 5b. The results show
that the bulk modulus increases almost linearly with pressure but it decreases with
increasing temperature. As it can be seen from Fig. 5c, CVTE drops rapidly with
increasing pressure up to 30GPa, especially at very high temperature (at 1400K, it
becomes half at 30GPa). As can be seen in Figs. 5d and e both CV and CP decrease
almost linearly with increasing pressure. Also, it can be seen that the variation of CV

in the range of 0GPa to 30GPa decreases with increasing temperature, as shown in
Fig. 5d. This is not true for CP at very high temperatures.

4 Conclusions

Thermodynamic properties of ScAlO3 perovskite are determined from first principles
in the temperature range from 0K to 1400 K. The pressure effect is studied in the 0 to
30GPa range.

The basic thermodynamic quantities such as the bulk modulus, the heat capacity at
constant volume and constant pressure, the thermal expansion, and the coefficient of
volume thermal expansion have been calculated based on the Debye–Grüneisenmodel
with Slater, Dugdale–MacDonald (DM), and Vaschenko–Zubarev (VZ) approaches.
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Fig. 5 Results ofDebye–GrüneisenVZ approach after empirical energy correction for pressure dependence
of (a) unit cell volume, (b) bulk modulus, (c) coefficient of volume thermal expansion, and heat capacities
of copper at (d) constant volume and (e) constant pressure at different temperatures

The empirical energy corrections are applied to the results of the three models to
correct the systematic errors introduced by the functional. The best agreement between
the calculated and experimental data was obtained for VZ calculations. Differences
between calculated and experimental values for the coefficient of volume thermal
expansion in the range of 283K to 1273K are not more than about 8.4% for the VZ
analysis. Comparing the results of the VZ calculations with the experimental data
shows that by applying the empirical energy corrections, this method can be used to
determine thermodynamic properties of ScAlO3 perovskite with reasonable accuracy.

Acknowledgments The authors would like to thank Dr.M. A. Blanco and his co-workers for their GIBBS
code.

References

1. T. Yamanaka, R.C. Liebermann, C.T. Prewitt, J. Mineral. Petrol. Sci. 95, 182 (2000)
2. A.F. Reid, A.E. Ringwood, J. Geophys. Res. 80, 3363 (1975)
3. W. Sinclair, R.A. Eggleton, A.E. Ringwood, Z. Kristallogr. 149, 307 (1979)
4. J. Zhao, N.L. Ross, R.J. Angel, Acta Cryst. B 62, 431 (2006)
5. H. Zhang, N. Li, Li Keyan, D. Xue, Acta Cryst. B 63, 812 (2007)

123



2282 Int J Thermophys (2015) 36:2273–2282

6. N.L. Ross, Phys. Chem. Miner. 25, 597 (1998)
7. B. Magyari-Köpe, L. Vitos, J. Kollár, Phys. Rev. B 63, 104 (2001)
8. X. Wu, G.S. Neumann, “Phase Stability and Elasticity of ScAlO3 at High Pressure,” Abstract of 15th

Annual Goldschmidt Conference (Davos, June 2009)
9. R.J. Hill, I. Jackson, Phys. Chem. Miner. 17, 89 (1990)

10. I. Jackson, J. Kung, Phys. Earth Planet. Int. 167, 195 (2008)
11. J. Kung, S.M. Rigden, G. Gwanmesia, Phys. Earth Planet. Int. 118, 65 (2000)
12. J. Kung, S.M. Rigden, I. Jackson, Phys. Earth Planet. Int. 120, 299 (2000)
13. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M.

Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C.
Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini,
A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P.
Umari, R.M. Wentzcovitch, J. Phys. Condens. Matter 21, 395502 (2009)

14. D. Vanderbilt, Phys. Rev. B 41, 7892 (1990)
15. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)
16. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)
17. M. Methfessel, A.T. Paxton, Phys. Rev. B 40, 3616 (1989)
18. M.A. Blanco, A.M. Pendas, E. Francisco, J.M. Recio, R. Franco, J. Mol. Struct. 368, 245 (1996)
19. X.G. Lu, M. Selleby, B. Sundman, Acta Mater. 55, 1215 (2007)
20. J.C. Slater, Introduction to Chemical Physics (McGraw-Hill, New York, 1939)
21. J.S. Dugdale, D.K.C. MacDonald, Phys. Rev. 89, 832 (1953)
22. V. Ya, Vashchenko, V.N. Zubarev, Phys. Solid State 5, 653 (1963)
23. A. Otero-de-la-Roza, D. Abbasi-Pérez, V. Luaña, Comput. Phys. Commun. 182, 2232 (2011)
24. F. Birch, Geophys. Res. 83, 1257 (1978)
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