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Abstract Presently, absolute radiometry is the main method of thermodynamic tem-
perature determination above the silver point. The importance of such measurements
has increased, as a large international project is underway aimed at assigning thermo-
dynamic temperatures to high-temperature fixed points (HTFPs). All participants are
using filter radiometers calibrated against an absolute cryogenic radiometer which,
therefore, will be the basis of the provided thermodynamic temperatures of the fixed
points. However, such a unified approach may lead to systematic errors (if any) com-
mon to all participants. There are methods, providing an alternative to absolute radiom-
etry, which allow the determination of blackbody thermodynamic temperatures using
relative measurements. Alternative methods, even if they have lower accuracy than
absolute radiometry, could disclose some possible unrecognized systematic errors,
or, on the contrary, could confirm the results obtained using absolute radiometry
and increase confidence of the thermodynamic temperature determination. One such
method, known as the method of ratios (i.e., double wavelength technique), is based on
measuring the ratios of fluxes emitted by a blackbody in separate spectral ranges at two
temperatures. This approach has been developed at VNIIOFI, but its realization met
serious technical difficulties. Modern sensors with improved sensitivity and stability,
extremely reproducible HTFP blackbodies, and significant progress in computational
methods and computer performance provide a new chance to realize this approach
with sufficient accuracy. Another method is based on comparing the ratio of fluxes
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measured at two wavelengths for a high-temperature blackbody with that measured
for synchrotron radiation. This article overviews possibilities of the alternative meth-
ods for determination of blackbody thermodynamic temperatures by means of relative
radiometry to attract attention of the thermometry and radiometry communities to the
importance of international cooperation for realization of these methods.

Keywords Blackbody · Double wavelength technique · High-temperature fixed
points · Method of ratios · Synchrotron radiation · Thermodynamic temperature

1 Introduction

Precise determination of the thermodynamic temperature of a blackbody radiator from
measurements of its radiation is a problem of great importance for radiation thermom-
etry and blackbody radiometry. This issue has become even more important after the
introduction of high-temperature fixed points (HTFPs) in connection with the neces-
sity to assign thermodynamic temperatures to them. In 2007, Working Group 5 of
the Consultative Committee for Thermometry (CCT WG5) initiated an international
project to assign thermodynamic temperatures to a selected set of HTFPs [1]. The
project, whose progress is described in [2], has a final objective to determine defin-
itive thermodynamic temperatures for the melting transitions of the metal–carbon
eutectics Co–C (1324 ◦C), Pt–C (1738 ◦C), and Re–C (2474 ◦C) as well as the freez-
ing point of copper by 2015 to make HTFPs routine reference standards for radiation
thermometry. This, in turn, can significantly improve the measurement accuracy of
radiometric quantities [3].

The usual way to determine the thermodynamic temperature of a high-temperature
blackbody, including that based on a HTFP cell, is to measure by a detector the radi-
ant flux emitted by a blackbody and then to calculate the temperature from Planck’s
law [4–7]. This approach is based on a filter radiometer (FR) and requires absolute
measurements of its spectral responsivity and accurate determination of geometrical
constants of the optical system selecting the radiation flux. Thermodynamic tempera-
ture measurements in such an approach are linked, often via a long traceability chain,
to the primary standard of an optical watt—an absolute cryogenic radiometer (ACR),
and to the standard of meter through wavelength measurements and geometric mea-
surements of a two-aperture system. One of the largest components in the uncertainty
of a FR calibration is the measurement uncertainty of the aperture area of a transfer
detector [8].

All national metrology institutes participating in the international project intended
to determine thermodynamic temperature of HTFPs, are going to use absolute radiom-
etry, namely, the method based on FR absolutely calibrated against an ACR, because
the ACR is considered as the most accurate radiometric instrument and filter radiome-
tery is considered as the most accurate method of blackbody temperature measurement.
Therefore, the future high-temperature scale will be based only on absolute radiometric
measurements carried out using FRs traceable to the ACR and the length standard.

However, there are alternative approaches to the determination of blackbody tem-
peratures, which are based on relative radiometry methods, namely, the method of
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ratios [9–13] and the method of comparing blackbody radiation with that of a syn-
chrotron [14]. Since these methods use only ratios of detector signals, absolute calibra-
tion of detectors in terms of radiometric units is not required. The main requirement
for the detectors used is the linearity of their responses. Under certain conditions,
these methods allow avoiding measurements of some physical quantities (including
aperture areas) whose accuracy is otherwise critical for the accuracy of the measured
temperature.

Even if these methods are less accurate than absolute radiometry, alterna-
tive approaches employing different measurement principles, could detect possible
unrecognized systematic errors (if any), which should be common for all implementa-
tions of the absolute radiometry method, or, on the contrary, confirm their results and,
suchwise, increase confidence of the thermodynamic temperature measurements.

In this paper, we overview the possibilities and prospects of relative radiometry
application to the blackbody temperature determination in order to attract attention of
radiometric and thermometric communities to the importance of international coop-
eration for realizing alternative methods.

2 Methods of Ratios

2.1 Background

One of the most promising approaches based on relative radiometric measurements
implies determining the ratios of radiometric quantities of blackbody radiation at two
temperatures. Often, it is referred to as “the method of ratios”. To our knowledge, it was
proposed for the first time by Wulfson in his paper “Absolute Method of Blackbody
Temperatures Measurement” published in Russian in 1951 [9]. Therefore, the method
is also known as Wulfson’s method. Realization of this method does not require cali-
bration of a detector in absolute units; the main requirement imposed is the linearity of
the detector response. Since relative measurements are easier in implementation and
can be performed with better precision than absolute measurements, the method of
ratios looks very attractive. It is based on measurement of ratios X1 and X2 of spectral
radiances (or irradiance, or other radiometric quantity) of a perfect blackbody at two
known wavelengths, λ1 and λ2, and two temperatures, T1 (thermodynamic tempera-
ture that has to be determined) and T2 (that is considered as an auxiliary temperature):

X1 =
[

exp

(
c2

λ1T2

)
− 1

]
·
[

exp

(
c2

λ1T1

)
− 1

]−1

, (1a)

X2 =
[

exp

(
c2

λ2T2

)
− 1

]
·
[

exp

(
c2

λ2T1

)
− 1

]−1

, (1b)

where c2 ≈ 1.4388 × 104 μm·K is the second radiation constant in Planck’s law.
Here and hereinafter, we will assume that measurements are conducted in vacuo; if
the measurements are conducted in a gaseous medium, a correction for its refractive
index can easily be made following [15].
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Equations 1a and 1b must be solved together for T1 and T2. Apparently, realizing
the difficulties of solving this system of nonlinear equations, Wulfson [9] proposed
to choose temperatures and wavelengths in such a way that the Wien approximation
would be valid for the first ratio, while the Rayleigh–Jeans law could be applied for
the second ratio. In this case, T1 and T2 can be found analytically. Along with the lim-
itations associated with the choice of temperature and wavelength ranges, this method
could only provide an accuracy worse than that achievable by usual pyrometric means
and was forgotten for a long time. However, Eqs. 1a and 1b themselves encompass the
reasonable idea: the Planckian radiator allows the determination of its thermodynamic
temperature on the basis of relative measurements (only wavelength measurements
have to be absolute).

Another approach employs the ratio X of spectral radiances at a known wavelength
λ0 and the ratio Z of radiant exitances of a blackbody at temperatures T1 and T2 [16].
Using the Planck and Stefan–Boltzmann laws, one can write the system of nonlinear
equations:

X =
[

exp

(
c2

λ0T2

)
− 1

]
·
[

exp

(
c2

λ0T1

)
− 1

]−1

, (2a)

Z = (T1/T2)
4 . (2b)

If λ0, T1, and T2 are chosen in such a way that the Wien approximation is suffi-
ciently accurate, Eqs. 2a and 1b can be solved for T1 and T2 analytically; otherwise,
they must be solved numerically. It was assumed that the ratio X can be measured using
a monochromator and a linear detector, while a linear non-selective thermal detector
should be used to measure the ratio Z . Needless to say, this approach is idealized: the
finite bandwidth of a monochromator and residual selectivity of a thermal detector are
the main sources of uncertainties. Nonetheless, comparative analysis of various ratios
methods [11,17] shows that, for the best estimation, they allow measurements of the
thermodynamic temperatures of blackbodies with an uncertainty of the order of 1 K
at about 3000 K.

The advent of precision FRs opens up new perspectives for the method of ratios.
At NPL, application of two FRs with known relative spectral responsivities, r1 (λ)

and r2 (λ) , for the determination of thermodynamic temperatures was analyzed by
computer modeling [12]. For this method, referred to as “the double-wavelength tech-
nique,” the following system of equations can be written:

X1 =
⎡
⎣

∞∫
0

r1 (λ) dλ

λ5
[
exp

(
c2
λT1

)
− 1

]
⎤
⎦ ·

⎡
⎣

∞∫
0

r1 (λ) dλ

λ5
[
exp

(
c2
λT2

)
− 1

]
⎤
⎦

−1

, (3a)

X2 =
⎡
⎣

∞∫
0

r2 (λ) dλ

λ5
[
exp

(
c2
λT1

)
− 1

]
⎤
⎦ ·

⎡
⎣

∞∫
0

r2 (λ) dλ

λ5
[
exp

(
c2
λT2

)
− 1

]
⎤
⎦

−1

. (3b)

As is easily seen, Eqs. 3a and 3b are the generalization of systems of Eqs. 1a and 1b
and 2a and 2b: if r1 (λ) = δ (λ− λ1) and r2 (λ) = δ (λ− λ2), Eqs. 3a and 1b become
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equivalent to Eqs. 1a and 1b; if r1 (λ) = δ (λ− λ0) and r2 (λ) ≡ 1, Eqs. 3a and 1b
take the form of Eqs. 2a and 1b (here, δ is the Dirac delta function). In [12], recovery
of T1 = 2747 K (the melting temperature of Re–C eutectic) and T2 = 1357.77 K (the
freezing temperature of Cu) was modeled; it was supposed that the ratio X1 is obtained
using the FR with a silicon photodiode and r1 (λ) centered at 0.7 μm; X2 is obtained
using the FR with an InSb sensor and r2 (λ) centered at 4.55 μm. The FRs’ bandpasses
were specified as 3 nm and 85 nm, respectively. Evaluation of uncertainties of T1 and T2
recovery from computed values of X1 and X2 was performed by adding multiplicative
Gaussian noise to X1 and X2 and employing Monte Carlo modeling of uncertainty
propagation according to JCGM 101:2008 [18]. It was concluded that, at realistic
values of affecting factors and rather optimistic then realistic values of measurement
uncertainties, the melting temperature of the Re–C eutectic can be determined with a
standard uncertainty of about 0.5 K.

Recently, Saunders [13] applied the Sakuma–Hattori approximation [19,20] of
Planck’s law to derive analytical expressions for standard uncertainties of the determi-
nation of thermodynamic temperatures by the double-wavelength technique and per-
formed a detailed analysis for the comparison of HTFP blackbodies with blackbodies
at fixed points of the ITS-90. An important conclusion was drawn on the approach
to minimize these uncertainties: the two FRs must have spectral responsivities very
different in width while their center wavelengths do not necessarily have to be widely
separated. It was noted in [13] that although the Sakuma–Hattori approximation is ade-
quate to be used for analysis of uncertainty propagation, the unknown temperatures
T1 and T2 must be determined by direct solution of Eqs. 3a and 1b. The Levenberg–
Marquardt (LM) nonlinear least-squares fitting algorithm [21] was proposed for their
solution.

2.2 Solution of the System of Governing Equations

The most common approach to solution of the system of nonlinear equations is to
reduce this problem to the equivalent problem of minimization of the Euclidean dis-
tance between an initial guess and the true solution. For Eqs. 3a and 1b, such an
approach leads to the minimization problem for the objective function,

F (T1, T2) = [
X1,true − X1 (T1, T2)

]2 + [
X2,true − X2 (T1, T2)

]2
, (4)

where T1 and T2 are unknown temperatures that have to be found; X1,true and X2,true
are the signal ratios computed according to Eqs. 3a and 1b for the true blackbody
temperatures T1,true and T2,true, respectively.

Since one of our goals was to assess the feasibility of the method of ratios realized
using one photodetector and two filters having very different bandwidths, we chose
for modeling the well-studied Hamamatsu S1337 silicon photodiode with two filters:
the first, a narrow-band interference filter with the Gaussian spectral transmittance
centered at 650 nm and an FWHM of 10 nm, and the second, a wide-band Schott
KG5 glass filter [22]. Relative spectral responsivities of these two FRs with the same
photodiode but different filters are shown in Fig. 1. Hereinafter, all numerical examples

123



Int J Thermophys (2015) 36:252–266 257

Fig. 1 Relative spectral responsivities of two filter radiometers with silicon photodiodes

are provided for this case. Figure 2 presents the surface of F (T1, T2) for T1,true =
1357.77 K (the freezing temperature of copper) and T2,true = 2747 K (the melting
temperature of Re–C eutectic alloy) plotted on a logarithmic scale within the square
100 K × 100 K using a regular grid with 2001 × 2001 nodes. We chose this pair of
temperatures to maintain the comparability with the results provided in [12]. Actually,
the method of ratios is equally applicable to fixed-point and variable-temperature
blackbodies; the surface plot corresponding to the pyrolytic graphite blackbody [23]
at temperatures T1,true = 2500 K and T2,true = 3500 K is presented in Fig. 3. Both
surfaces have a similar shape: the very narrow deep minimum (F = 0; lg (F) = −∞)

corresponds to T1 = T1,true and T2 = T2,true lies at the bottom of a narrowing down
valley.

Minimization of F (T1, T2) requires application of appropriate numerical methods.
Initially, we applied the algorithm of particle swarm optimization (PSO) [24]. PSO
is a derivative-free, stochastic optimization method that mimics random movement
of “particles” in a multidimensional (two-dimensional, in our case) search space.
The swarm is initialized by particles randomly distributed over the search space. The
movements of the particles are determined by their individual best-known positions and
the best-known position for a swarm as a whole. PSO does not require a “good” initial
guess but needs only to specify the boundary of the search space. We achieved reliable
determination of the global minimum even for a very large search range (400 K ≤
T1, T2 ≤ 4000 K) after several restarts of the PSO search algorithm. However, the PSO

123



258 Int J Thermophys (2015) 36:252–266

Fig. 2 Three-dimensional (3D) plot of the objective function F (T1, T2) for T1,true = 1357.77 K and
T2,true = 2747 K

method, especially with application of a multi-restart strategy, is too slow for evaluation
of uncertainty propagation via Monte Carlo modeling according to [18]. For this
reason, we finally adopted one of the LM algorithms from the MINPACK-1 Fortran 77
library developed at the Argonne National Laboratory [25]. The convergence domain is
large enough although it depends on initial settings (conditions of the iterative process
termination, initial step bound, and the mode of variables scaling). No problems with
convergence arise if an initial guess is chosen in such a way that the first (smaller)
of the starting temperatures is less than min

(
T1,true, T2,true

)
while the second (larger)

starting temperature is greater than max
(
T1,true, T2,true

)
. For most cases, the solution

is obtained almost instantaneously, after several iterations.

2.3 Evaluation of Solution Stability

Numerical experiments with the pairs of above-mentioned temperatures showed that
solution of Eqs. 1a and 1b is unstable: even small changes in X1 or X2 may result
in significant changes in T1 and T2. All other things being equal, solution of Eqs. 2a
and 1b is stable enough: uncertainties in the thermodynamic temperature determina-
tion depend almost linearly on the uncertainty of the less precise FR for the signal
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Fig. 3 3D plot of the objective function F (T1, T2) for T1,true = 2500 K and T2,true = 3500 K

uncertainties that ranged from 0.01 % to 0.5 %. Solution of Eqs. 3a and 3b has an
intermediate stability that depends to a great extent upon the spectral responsivity
curves of both FRs. Numerical experiments confirmed the conjecture made in [13]
that the use of two FRs with spectral bands very different in width (in contrast to two
narrow-band FRs in [12]) can improve the solution stability for Eqs. 3a and 3b.

We performed the Monte Carlo modeling to assess the stability of solutions to the
random errors added to measured signals unlike [12], where such errors were added
to the ratio values. For numerical experiments, X1,true and X2,true were pre-computed
for the known (true) values of T1,true and T2,true; the same r1 (λ), and r2 (λ) depicted
in Fig. 1 were used for all cases. We assumed that the output signal of FRs can be
measured with an uncertainty characterized by the Gaussian probability distribution
with a zero mean and a standard deviation of 0.01 %.

Figures 4 and 5 present the scatter plots of errors T1 − T1,true and T2 − T2,true
obtained after 10 000 trials for (T1,true = 1357.77 K, T2,true = 2747 K) and
(T1,true = 2500 K, T2,true = 3500 K), respectively. The signals SFR1

(
T1,true

)
,

SFR1
(
T2,true

)
, SFR2

(
T1,true

)
, and SFR2

(
T2,true

)
were computed by numerical integra-

tion of appropriate Planckian functions multipled by relative spectral responsivities;
then the multiplicative random Gaussian error with a standard deviation of 0.01 %
was added to each signal and the ratios were computed. For each pairs of X1 and
X2 obtained in such a way, T1 and T2 were found by the LM method. The mean
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Fig. 4 Scatter plot of errors in calculations of T1 and T2 for T1,true = 1357.77 K and T2,true = 2747 K,
and a standard uncertainty of signal measurement of 0.01 %

values of T1 and T2, standard uncertainties u (T1) and u (T2), and correlation coeffi-
cient r (T1, T2) computed by statistical processing of the modeling results are collected
in Table 1. In both cases, the correlation coefficients r (T1, T2) are very close to unity.
This means that there is almost a linear dependence between u (T1) and u (T2), in
accordance with the well-known approximate equation (see, e.g., [8]):

u (T2) =
(

T2

T1

)2

u (T1) . (5)

We found that the standard uncertainties up to 0.05 nm in wavelength measurements
(rectangular probability distribution was modeled) and up to 0.05 % in determination of
the relative spectral responsivities (Gaussian probability distributions were modeled)
affect weakly computed temperatures and their uncertainties. We would emphasize
that the uncertainties evaluated constitute only a part of the uncertainty budget; the
model we built does not include uncertainties associated with a particular hardware
implementation. Although these results can be considered only as preliminary, the
method of ratios seems to be very promising.

123



Int J Thermophys (2015) 36:252–266 261

Fig. 5 Scatter plot of errors in calculations of T1 and T2 for T1,true = 2500 K and T2,true = 3500 K, and
a standard uncertainty of signal measurement of 0.01 %

Table 1 Results of Monte Carlo modeling of uncertainty propagation for the method of ratios

T1,true and T2,true (K) T1 and T2 (K) u (T1)
(mK)

u (T2)
(mK)

r (T1, T2)
(

T2,true
T1,true

)2 u(T2)
u(T1)

1357.77 and 2747 1357.768 and 2746.994 130 497 0.9978 4.093 3.823

2500 and 3500 2500.002 and 3500.004 781 1472 0.9994 1.960 1.885

3 Blackbody Versus Synchrotron

Another method of relative radiometry has been proposed in [14]. Its essence is in
comparing the ratios of irradiances produced at two wavelengths by the thermal radi-
ation of a high-temperature blackbody and the synchrotron radiation of an electron
storage ring, two standard sources based on different fundamental physical laws. An
intuitive premise of this method is a strong dependence of the blackbody relative spec-
trum on its temperature and, on the other hand, a weak dependence of the synchrotron
radiation spectrum on storage ring parameters in the visible spectral range. The origi-
nal work [14] considered the monochromatic Wien’s approximation; relative spectral
responsivities r1 (λ1) and r2 (λ2) of the detector(s) are supposed to be unknown. If the
measurement geometry and the blackbody spectral effective emissivity are identical
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at λ1 and λ2, one can write the ratio X of the blackbody irradiances using Planck’s
law:

X = SBB (λ1)

SBB (λ2)
= r1 (λ1)

r2 (λ2)

(
λ2

λ1

)5 exp
(

c2
λ2T

)
− 1

exp
(

c2
λ1T

)
− 1

, (6)

where SBB (λ1) and SBB (λ2) are the measured signals at the wavelengths λ1 and λ2,
respectively.

The second ratio is obtained from measurements at the same wavelengths of the
spectral irradiance produced by the synchrotron radiation. If one assumes the mea-
surement geometry to be identical for measurements at both wavelengths (although
this geometry may not necessarily coincide with that at the blackbody measurements),
one can write

Y = r1 (λ1)

r2 (λ2)

Eλ,SR (λ1)

Eλ,SR (λ2)
. (7)

The spectrum of the synchrotron radiation can be computed on the basis of the clas-
sical Schwinger theory for the accelerated relativistic electron [26]. The continuous
spectrum of the synchrotron radiation is divided by the so-called critical wavelength
λc into two parts: half of the power is radiated above λc and half below. The critical
wavelength is expressed as follows:

λc = γ−3 4πR

3
, (8)

where γ = E/
(
m0c2

)
; E and m0 are the electron energy and rest mass, respectively;

c is the speed of light; and R is the curvature radius of the electrons’ orbit.
The synchrotron radiation is highly collimated; its peak corresponds to a direction

tangential to the particle orbit. Integration of the Schwinger equation over all directions
perpendicular to the electron orbital plane allows application to Eq. 8 the well-known
approximation for λ � λc (see, e.g., [27]) that is based on the asymptotic behavior of
the modified Bessel functions of the second kind:

Y = r1 (λ1)

r2 (λ2)

(
λ1

λ2

)−7/3

. (9)

There are two conditions for validity of Eq. 9: (i) all the radiation spread in the
direction perpendicular to the electron orbital plane must be collected and (ii) both
wavelengths λ1 and λ2 must be much larger than the critical wavelength λc.

Fulfilment of the first condition is not a complex problem because the synchrotron
radiation beam in the direction perpendicular to the electron orbital plane has a very
small half-opening angle given by �ψ/2 = γ−1. For instance, the electron energy
of 500 MeV gives �ψ/2 ≈ 1 mrad. The modern measurement facilities on the base
of the electron storage ring allow employng the aperture of about 3 mm to 5 mm
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in diameter to measure the irradiance of the synchrotron radiation in the visible and
near-IR spectral ranges [28,29].

The second condition can also be easily fulfilled. For instance, for the metrology
light source (MLS), the electron storage ring of the Physikalisch-Technische Bunde-
sanstalt (PTB, Germany), the critical wavelength λc at 630 MeV energy is equal to
3.4 nm [30]. At this electron energy, the spectral irradiance level in the visible and near
infrared spectral ranges can be made comparable with that of a blackbody at 3000 K
by adjustment of the electron beam current.

Using Eqs. 7 and 10, we can form the ratio A = Y/X :

A =
(
λ1

λ2

) 8
3 exp

(
c2
λ1T

)
− 1

exp
(

c2
λ2T

)
− 1

. (10)

If the wavelengths λ1 and λ2 are known and the ratios X and Y are determined as
described above, we can compute the constant A and solve Eq. 10 for the unknown
temperature T . The easiest way to find the single root of this nonlinear equation is to
use a bisection-like method, e.g., the Brent method [31], which allows obtaining the
solution almost instantaneously.

Over almost two decades that elapsed since publication of the paper in [14], impor-
tant changes have taken place in optical radiometry. First, the FRs operating in the
irradiance mode and having unprecedented accuracy which is limited primarily by the
uncertainty in measurement of aperture areas were introduced in metrological practice.
Second, the MLS, a synchrotron radiation source with a reduced electron energy ded-
icated to synchrotron-radiation-based metrology throughout the optical spectral range
was commissioned in 2008 [32]. Third, the very stable high-temperature pyrolytic
graphite blackbodies were developed, including those capable to serve as heating
furnaces for large-aperture HTFP cells such as eutectic Re–C (2747 K) or peritectic
WC–C (3022 K) were developed [23]. Taking into account these achievements, the
method of comparing the ratios of blackbody and synchrotron radiation can be adopted
to operations with the FRs having the relative spectral responsivities r1 (λ) and r2 (λ).
Equation 10 should be re-written in the form,

A =

∞∫
0
λ−7/3r1 (λ) dλ

∞∫
0
λ−7/3r2 (λ) dλ

·

∞∫
0
λ−5r2 (λ)

[
exp

( c2
λT

) − 1
]−1 dλ

∞∫
0
λ−5r1 (λ)

[
exp

( c2
λT

) − 1
]−1 dλ

, (11)

if the asymptotic expression for λ � λc is used, or in the form,

A =

∞∫
0

Eλ,sr (λ) r1 (λ) dλ

∞∫
0

Eλ,sr (λ) r2 (λ) dλ
·

∞∫
0
λ−5r2 (λ)

[
exp

( c2
λT

) − 1
]−1 dλ

∞∫
0
λ−5r1 (λ)

[
exp

( c2
λT

) − 1
]−1 dλ

, (12)
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Fig. 6 Dependence of the uncertainty u (T ) of the recovered blackbody temperature T = 3000 K on the
center wavelengh λ2; the center wavelengh λ1 = 400 nm; the standard uncertainty of signal measurements
is 0.01 %. Numbers separated by a comma in the legend indicate �λ1 and �λ2 in nm

if calculation of Eλ,SR (λ) using Schwinger’s theory and absolute measurement of the
electron storage ring operational parameters [33] provides higher accuracy.

To evaluate the feasibility of realization of this method using the FR technique, we
performed numerical modeling of a simple case, when the blackbody has a temperature
of 3000 K, the two FRs have rectangular relative spectral responsivities with center
wavelengths and widths λ1,�λ1 and λ2,�λ2, respectively. It was assumed that λ1 =
400 nm while λ2 varies from 500 nm to 1000 nm. Various combinations of widths of
10 nm, 50 nm, and 100 nm for�λ1 and�λ2 were studied. For all four signals included
in Eq. 11, we modeled the uncorrelated multiplicative random errors with a Gaussian
probability distribution, zero mean and relative standard deviations σS of 0.01 % and
0.02 %. Some results for the standard uncertainties u (T ) are plotted againstλ2 in Fig. 6
(for σS = 0.01 %) and 7 (for σS = 0.02 %). Each value of u (T ) was computed using
10 000 random trials. The numbers separated by a comma in the legends indicate
�λ1 and �λ2 in nm. According to Figs. 6 and 7, the standard uncertainty u (T )
depends more strongly on the distance between center wavelengths λ1 and λ2 than
on the bandwidths �λ1 and �λ2; however, for every σS (and, apparently, the lower
wavelength λ1), there is a lower bound, to which u (T ) approaches asymptotically, so
that a further increase in the distance between λ1 and λ2 does not lead to a noticeable
decrease of u (T ). The modeling results give hope to the possibility of implementation
for this method using FRs with silicon photodiodes.

Again, it should be noted that the uncertainties evaluated are not the total uncer-
tainties in the blackbody temperature determination. Other sources of errors can be
included in the model when a particular hardware implementation will be defined.
The blackbody temperature can be determined using measurements at only two wave-
lengths, but comparison of measurements carried out at several different wavelengths
can help to identify some possible unrecognized systematic errors.
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Fig. 7 Dependence of the uncertainty u (T ) of the recovered blackbody temperature T = 3000 K on the
center wavelengh λ2; the center wavelengh λ1 = 400 nm; the standard uncertainty of signal measurements
is 0.02 %. Numbers separated by a comma in the legend indicate �λ1 and �λ2 in nm

4 Conclusion

In this paper, methods for determination of the high-temperature blackbody thermody-
namic temperature, which are based on relative radiometry were considered as a nec-
essary alternative (but not a replacement) to the method based on absolute radiometry
and linked to the primary cryogenic radiometer. Realization of the relative radiometry
methods allows comparisons of two branches of radiometry—detector-based, which
uses the ACR as a primary standard, and source-based, which employs the blackbody
and/or electron storage ring.

Alternative methods employing different measurement principles can increase the
confidence in the high-temperature scale, even if they cannot compete in precision
with the absolute radiometry methods. Unprecedented stability achieved for HTFP
blackbodies and progress in filter radiometry allow one to make a reassessment of the
relative radiometry importance for determination of thermodynamic temperatures of
blackbodies above the silver point.

Acknowledgment The work was carried out with the financial support of the Ministry of Education and
Science of the Russian Federation.

References

1. G. Machin, P. Bloembergen, J. Hartmann, M. Sadli, Y. Yamada, Int. J. Thermophys. 28, 1976 (2007)
2. G. Machin, K. Anhalt, P. Bloembergen, M. Sadli, Y. Yamada, E. Woolliams, in Proceedings of Ninth

International Temperature Symposium (Los Angeles), Temperature: Its Measurement and Control, ed.

123



266 Int J Thermophys (2015) 36:252–266

by C.W. Meyer. Science and Industry, vol. 8, A.I.P. Conference Proceedings 1552 (AIP, Melville, NY,
2013), pp. 317–322

3. Y. Yamada, B. Khlevnoy, Y. Wang, T. Wang, K. Anhalt, Metrologia 43, S140 (2006)
4. G. Machin, P. Bloembergen, K. Anhalt, J. Hartmann, M. Sadli, P. Saunders, E. Woolliams, Y. Yamada,

H. Yoon, Int. J. Thermophys. 31, 1779 (2010)
5. E.R. Woolliams, M.R. Dury, T.A. Burnitt, P.E.R. Alexander, R. Winkler, W.S. Hartree, S.G.R. Salim,

G. Machin, Int. J. Thermophys. 32, 1 (2011)
6. H.W. Yoon, C.E. Gibson, G.P. Eppeldauer, A.W. Smith, S.W. Brown, K.R. Lykke, Int. J. Thermophys.

32, 2217 (2011)
7. V.R. Gavrilov, B.B. Khlevnoy, D.A. Otryaskin, I.A. Grigorieva, M.L. Samoylov, V.I. Sapritsky, in

Proceedings of Ninth International Temperature Symposium (Los Angeles), Temperature: Its Mea-
surement and Control, ed. by C.W. Meyer. Science and Industry, vol. 8, A.I.P. Conference Proceedings
1552 (AIP, Melville, NY, 2013), pp. 329–334

8. J. Hartmann, Phys. Rep. 469, 205 (2009)
9. K.S. Wulfson, Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki (J. Exp. Theor. Phys.) 21, 507 (1951).

[in Russian]
10. V.I. Sapritskii, Metrologia 27, 53 (1990)
11. A.V. Prokhorov, S.N. Mekhontsev, V.I. Sapritsky, in Proceedings of TEMPMEKO ’99, 7th Interna-

tional Symposium on Temperature and Thermal Measurements in Industry and Science, ed. by J.F.
Dubbeldam, M.J. de Groot (Edauw Johannissen bv, Delft, 1999), pp. 698–703

12. E.R. Woolliams, R. Winkler, S.G.R. Salim, P.M. Harris, I.M. Smith, Int. J. Thermophys. 30, 144 (2009)
13. P. Saunders, Int. J. Thermophys. 35, 417 (2014)
14. R.P. Madden, T.R. O’Brian, A.C. Parr, R.D. Saunders, V.I. Sapritsky, Metrologia 32, 425 (1995/96)
15. L.P. Boivin, C. Bamber, A.A. Gaertner, R.K. Gerson, D.J. Woods, E.R. Woolliams, J. Mod. Opt. 57,

1648 (2010)
16. A.F. Kotyuk, L.S. Lovinskii, L.N. Samoilov, V.I. Sapritskii, Meas. Tech. 18, 75 (1975)
17. B.B. Khlevnoi, Meas. Tech. 44, 308 (2001)
18. JCGM 101:2008. Evaluation of measurement data—Supplement 1 to the “Guide to the expression of

uncertainty in measurement”—Propagation of distributions using a Monte Carlo method (JCGM: Joint
Committee for Guides in Metrology, 2008)

19. F. Sakuma, M. Kobayashi, in Proceedings of TEMPMEKO ’96, 6th International Symposium on Tem-
perature and Thermal Measurements in Industry and Science, ed. by P. Marcarino (Levrotto and Bella,
Torino, 1997), pp. 305–310

20. P. Saunders, D.R. White, Metrologia 40, 195 (2003)
21. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes: The Art of Scientific

Computing (Cambridge University Press, London, 1986)
22. SCHOTT Optical Filter Glass. Properties (2013), http://www.schott.com/advanced_optics/english/

download/schott-optical-filter-glass-properties-2013-eng.pdf. Accessed 13 November 2014
23. S.A. Ogarev, B.B. Khlevnoy, M.L. Samoylov, V.I. Shapoval, V.I. Sapritsky, M.K. Sakharov, in Proceed-

ings of TEMPMEKO 2004, 9th International Symposium on Temperature and Thermal Measurements
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