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Abstract An equation of state is developed for the Lennard-Jones model fluid, trun-
cated and shifted at rc = 2.5σ . The underlying dataset contains thermodynamic prop-
erties at 706 state points including pressure, residual internal energy, first volume
derivative of the residual internal energy, and residual isochoric heat capacity as a
function of temperature and density. The equation of state is explicit in terms of the
Helmholtz energy, allowing the determination of any thermodynamic property by dif-
ferentiation. It is valid for temperatures 0.6 < T/Tc < 10 and pressures p/pc < 70.
High accuracy and good extrapolation behavior of the equation of state are established.
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List of Symbols

Latin Symbols

a Helmholtz energy
c1,c2 Integration constants of the ideal Helmholtz energy
cv Isochoric heat capacity
di Density exponents of the residual Helmholtz energy
h Enthalpy
li Density exponents of the exponential term of the residual Helmholtz energy
m Molecular mass
N Number of molecules in the simulation
ni Coefficients of the residual Helmholtz energy
Ni Coefficients of the ancillary equations
p Pressure
r Radius
rc Cut-off radius
s Entropy
t Time
T Temperature
ti Temperature exponents of the residual Helmholtz energy
u Potential energy/internal energy
V Volume
X Any thermodynamic property

Greek Symbols

α Reduced Helmholtz energy
βi Gaussian bell-shaped parameters
γi Gaussian bell-shaped parameters
δ Reduced density
ε Energy parameter of the molecular model
εi Gaussian bell-shaped parameters
ηi Gaussian bell-shaped parameters
θ (1 − T/Tc) for the ancillary equations
ρ Density
σ Size parameter of the molecular model
τ Inverse reduced temperature

Subscript

c Critical
LJ Lennard-Jones
LJTS Lennard-Jones truncated and shifted
v Vapor
v Isochoric
0 Reference
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Superscript

o Ideal
r Residual
′ Saturated liquid
′′ Saturated vapor

1 Introduction

Molecular modeling and simulation have become widely accepted tools in the applied
sciences for detailed understanding of thermophysical processes. Molecular models
(force fields) can be used as powerful tools for thermodynamic data prediction. The
truncated and shifted Lennard-Jones (LJTS) potential [1] is one of the most basic
and computationally inexpensive molecular models available. Nonetheless, it is still
sufficiently realistic to represent nonpolar spherical molecules. It is defined by

u(r)LJTS =
{

uLJ (r) − uLJ (r = rc) for r ≤ rc
0 for r > rc

, (1)

with

uLJ(r) = 4ε

[(σ

r

)12 −
(σ

r

)6
]
, (2)

where ε and σ are the energy and size parameters of the Lennard-Jones (LJ) potential, r
is the distance between two particles, and rc is a cut-off radius, which is rc = 2.5σ here.
Truncation leads to inexpensive simulation and avoids long-range corrections. The LJ
fluid differs significantly from the LJTS fluid. For example, the critical temperature of
the Lennard-Jones fluid is about Tc,LJ = 1.31, whereas the critical temperature of the
truncated and shifted version is about Tc,LJTS = 1.08. The LJTS potential has been
employed in numerous theoretical studies on phase coexistence [2–13] as well as in
applications to noble gases and methane [14], where e.g., the vapor–liquid surface
tension of the noble gases was predicted within 10 % of the experimental data. For the
full Lennard-Jones fluid, several equations of state were published, e.g., Nicholas et
al. [15], Johnson et al. [16], Kolafa and Nezbeda [17], Mecke et al. [18,19], and May
and Mausbach [20]. To our knowledge, no fundamental equation of state (FEOS) has
been developed prior to this work for the LJTS model fluid. There is only a general
approach how to convert a FEOS for the full Lennard-Jones model fluid into a FEOS
for a truncated and shifted potential as published by Johnson et al. [16].

2 Molecular Simulation

The underlying dataset was generated by NVT molecular dynamics using the molecular
simulation tool ms2 [21]. Newton’s equations of motion were solved using a fifth-order
Gear predictor-corrector numerical integrator [1]. The temperature was kept constant
using isokinetic velocity scaling [1]. Thermodynamic properties at 706 state points
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Fig. 1 Simulation dataset used in the present FEOS development. Four independent thermodynamic prop-
erties were measured at each state point: pressure, residual internal energy, first volume derivative of the
residual internal energy, and residual isochoric heat capacity

include pressure p, residual internal energy ur, first volume derivative of the residual
internal energy (∂ur/∂v)T , and residual isochoric heat capacity cr

v as a function of
temperature T and density ρ = N/V . At each state point, N = 1372 particles
were sufficiently equilibrated and sampled for 2 to 5 million production time steps of

t (ε/m)1/2/σ = 0.001, where m is the molecular mass. Figure 1 shows the dataset
in the T , ρ plane. The energy and size parameters ε and σ of the potential were
used to reduce all properties to dimensionless numbers of order unity: temperature
T ∗ = T kB/ε, density ρ∗ = ρσ 3, internal energy u∗ = u/ε, enthalpy h∗ = h/ε,
or pressure p∗ = pσ 3/ε. For brevity, asterisks are omitted in the following with the
understanding that reduced quantities are used. Results were validated with simulations
of N = 2048 and 3072 particles and no significant system size dependence was found
(cf. Supplementary Material D). Statistical uncertainties of all results were estimated
by a block averaging method [22].

3 Equation of State

The present FEOS is written in terms of the reduced molar Helmholtz energy α as
a function of temperature and density. The equation is decomposed into an ideal-
gas contribution (superscript o) and a residual contribution due to the intermolecular
interactions (superscript r)

α (τ, δ) = A (T, ρ)

NkBT
= ao (T, ρ) + ar (T, ρ)

kBT
= αo (τ, δ) + αr (τ, δ) , (3)

where kB is Boltzmann’s constant, τ = Tc/T , and δ = ρ/ρc with Tc = 1.086 and
ρc = 0.319. The critical parameters were determined during the fitting process. See
Sect. 4.2.

As the LJTS model fluid is a classical monatomic model, the isobaric heat capacity
of the ideal gas is co

p/kB = 2.5. Integration yields the ideal-gas contribution

αo = ln δ + 1.5 ln τ + c1τ + c2. (4)
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The constants c1 and c2 were arbitrarily adjusted so that ho
0 = 0 and so

0 = 0 at
T0 = 0.8, p0 = 0.001, and the corresponding density of the ideal gas is ρ0 = p0/T0.

A common form for the residual part of the Helmholtz energy consists of poly-
nomial, exponential, Gaussian bell-shaped, and non-analytic terms [23]. Polynomial
and exponential terms capture the overall features of the FEOS. The Gaussian bell-
shaped terms, introduced by Setzmann and Wagner [24] for methane, improve the
representation of the properties in the critical region. Originally, these terms were
used to yield significant contributions only near the critical point. However, with
moderate parameters, they may also improve the Helmholtz energy surface over the
entire fluid range [25]. Non-analytic terms were used only for the FEOS of water
[26] and carbon dioxide [27]. These terms allow modeling the isochoric heat capacity
and the speed of sound very close to the critical point. However, they require very
accurate data in that region [23] which are not well accessible by molecular simula-
tion.

The functional form of the present FEOS has 21 terms: 6 polynomials, 6 exponen-
tials, and 9 Gaussian’s

αr (δ, τ ) =
6∑

i=1

niδ
di τ ti +

12∑
i=7

niδ
di τ ti exp

(
−δli

)

+
21∑

i=13

niδ
di τ ti exp

(
−ηi (δ − εi )

2 − βi (τ − γi )
2
)
. (5)

The correlation is valid for temperatures 0.64 < T < 11 and pressures p < 6.8, cor-
responding to 0.6 < T/Tc < 10 and p/pc < 70. No accurate triple-point temperature
Ttr,LJTS of the Lennard-Jones truncated and shifted model fluid is available in the liter-
ature. Therefore, the well-known triple-point temperature of the Lennard-Jones fluid,
which is about Ttr,LJ = 0.68 [28], has been used as an estimate for the triple-point
temperature Ttr,LJTS = 0.56 by naive corresponding states estimation. To ensure that
all simulations are located in the fluid region, the value was increased to T = 0.64. The
coefficients, temperature and density exponents, as well as the Gaussian bell-shaped
parameters are listed in Table 1.

The simultaneous determination of coefficients and parameters requires a non-
linear fit algorithm which was provided by E. W. Lemmon from the National Institute
of Standards and Technology (NIST). During the fit, simulation data were augmented
by several thermodynamic constraints to ensure reasonable physical behavior of the
FEOS results. Recent FEOS correlations for real substances, e.g., R-125 [29], propane
[25], or propylene [30], show that correct FEOS behavior can be enforced for prop-
erties and regions where no data are available. Special attention was given to the
vapor–liquid equilibrium (VLE) curves, rectilinear diameter, heat capacities, speed of
sound, Gruneisen coefficient, the phase identifier parameter [31] (which significantly
influences heat capacities and speed of sound), virial coefficients up to the fourth order,
and ideal curves.

Figure 2 shows VLE in the critical region. The rectilinear diameter from the present
FEOS exhibits a sudden bend very close to the critical point, which is not common
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Table 1 Parameters and coefficients of the residual part of the FEOS correlation, Eq. 5

i ni ti di li ηi βi γi εi

1 0.156 060 84 × 10−1 1.000 4 –

2 0.179 175 27 × 10+1 0.304 1 –

3 −0.196 132 28 × 10+1 0.583 1 –

4 0.130 456 04 × 10+1 0.662 2 –

5 −0.181 176 73 × 10+1 0.870 2 –

6 0.154 839 97 × 10+0 0.870 3 –

7 −0.948 852 04 × 10−1 1.250 5 1

8 −0.200 924 12 × 10+0 3.000 2 2

9 0.116 396 44 × 10+0 1.700 2 1

10 −0.506 073 64 × 10+0 2.400 3 2

11 −0.584 228 07 × 10+0 1.960 1 2

12 −0.475 109 82 × 10+0 1.286 1 1

13 0.943 331 06 × 10−2 3.600 1 – 4.70 20.0 1.0 0.55

14 0.304 446 28 × 10+0 2.080 1 – 1.92 0.77 0.5 0.70

15 −0.108 209 46 × 10−2 5.240 2 – 2.70 0.50 0.8 2.00

16 −0.996 933 91 × 10−1 0.960 3 – 1.49 0.80 1.5 1.14

17 0.911 935 22 × 10−2 1.360 3 – 0.65 0.40 0.7 1.20

18 0.129 705 43 × 10+0 1.655 2 – 1.73 0.43 1.6 1.31

19 0.230 360 30 × 10−1 0.900 1 – 3.70 8.00 1.3 1.14

20 −0.826 710 73 × 10−1 0.860 2 – 1.90 3.30 0.6 0.53

21 −0.224 978 21 × 10+1 3.950 3 – 13.2 114 1.3 0.96

Fig. 2 VLE in the critical region. Dashed line: saturated vapor density ρ′′, solid line: saturated liquid
density ρ′, dashed-dotted line: rectilinear diameter (ρ′ + ρ′′)/2

for real fluids. Molecular simulation does most likely not allow for a verification of
the effect. Therefore, it is at least not ruled out that the bend is correct.
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Fig. 3 (Z − 1)/ρ as a function
of ρ along isotherms (T = 0.2
to 2.8)

The virial coefficients B, C , and D ensure a correct transition from the ideal-gas
into the real fluid. They are calculated from the FEOS as

B (T ) = lim
ρ→0

(
∂αr/∂δ

)
τ
/ρr, (6)

C (T ) = lim
ρ→0

(
∂2αr/∂δ2

)
τ
/ρ2

r , (7)

D (T ) = lim
ρ→0

(
∂3αr/∂δ3

)
τ
/ρ3

r . (8)

As the limit is ρ → 0, they also determine the ideal curves, which prove a correct
extrapolation behavior of the correlation for high temperatures, pressures, and densi-
ties. See Sect. 5.

Figure 3 is deduced from the virial equation,

Z = 1 + Bρ + Cρ2 + Dρ3 + · · · . (9)

For ρ → 0, intercepts with the ordinate are B, the slopes of the isotherms correspond
to C , and the curvatures are D. As D can be neglected for densities ρ < ≈0.2ρc, the
isotherms are nearly straight lines for low densities. The absolute values for B, C , and
D are shown in Fig. 4. The second virial coefficient B passes through zero at the Boyle
temperature TBL, reaches a maximum at the Joule-Thomson inversion temperature TJT,
and approaches zero for high temperatures [32]. Not only the qualitative but also the
quantitative behavior of the virial coefficients is correct. Therefore, calculated virial
coefficients of Shaul et al. [33], Wheatley [33,34], Hellmann [36], and this work were
considered to validate the FEOS. All computed data for B (Shaul et al. [33], Wheatley
[35], and this work) are consistent and represented very well by the new FEOS. The
data for C of the same authors are also reproduced well. Only in the critical region,
the FEOS calculations for C are too low. For D, the behavior is quite similar to C
and qualitatively correct. Three computed datasets of Hellmann [36], Wheatley [35],
and this work agree very well. Although no data for D were used in the fit, the FEOS
represents all of them qualitatively as well as quantitatively. For C , there is an unusual
change in curvature for 3 < T < 100. For D, a second maximum occurs at T ≈ 5 in
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Fig. 4 Second, third, and fourth virial coefficients (B, C , and D) as functions of temperature. The dashed
line indicates the critical temperature. The dashed-dotted line indicates the Boyle temperature (TBL =
2.784), and the dotted line the Joule-Thomson inversion temperature (TJT = 20.09)

both the FEOS and data from direct numerical integration. These phenomena appear
to exist for this model fluid, although they are not common in real fluids.

Heat capacities and speed of sound are illustrated in Fig. 5. The residual isochoric
heat capacity of the saturated liquid and vapor phase meet in an absolute maximum
at the critical point. Compared to real fluids (water [26] or carbon dioxide [27]), the
maximum of the present FEOS is less pronounced. Obviously, the critical region is
described less accurately than for water [26] and carbon dioxide [27], which is a
consequence of insufficient data in the critical region and the neglect of non-analytic
terms. However, the critical region was not the main focus of this work. The speed of
sound should exhibit a steep decrease in the critical region. Again, the effect is not as
distinctive as for water [26] or carbon dioxide [27]. Nevertheless, the speed of sound
of the saturated liquid as well as the isobars show a linear trend with negative slope,
which indicates proper extrapolation behavior.

123



Int J Thermophys (2015) 36:25–43 33

Fig. 5 Typical plots of residual isochoric heat capacity cr
v (left) and speed of sound w (right) as functions

of temperature along isobars (0.02 < pc < 0.2)

Further qualitative physical behavior of other thermodynamic properties is
described by Lemmon and Jacobsen [29], Lemmon and Wagner [30], and Lemmon
[37].

4 Simulation Data and Comparison to the Equation of State

Table 2 gives an overview of which property and how many data points were published.
In this work, all literature data were used for comparison purposes only. As mentioned
before, the only available data from the literature are VLE data (69 state points in
total). This dataset was extended by nine VLE state points and 706 state points in the
homogeneous fluid phase (cf. Fig. 1).

Table 2 VLE simulation data of the LJTS model fluid with rc = 2.5σ from the literature

Author Year Property No. of data pointsa Reference

Adams and Henderson 1991 pv/ρ′/ρ′′ 5 [2]

Camp and Allen 1996 ρ′/ρ′′ 6 [3]

Chen 1995 ρ′/ρ′′ 1 [4]

Dunikov et al. 2001 ρ′/ρ′′ 17 [5]

Haye and Bruin 1993 ρ′/ρ′′ 6 [6]

Holcomb et al. 1993 ρ′/ρ′′ 1 [7]

Mareschal et al. 1997 pv/ρ′/ρ′′ 7 [8]

Nijmeijer et al. 1988 ρ′/ρ′′ 5 [9]

Rao and Levesque 1976 ρ′/ρ′′ 1 [10]

This work 2014 ρ′/ρ′′ 9 –

Trokhymchuk and Alejandre 1999 pv/ρ′/ρ′′ 10 [11]

Vrabec et al. 2006 pv/ρ′/ρ′′ 15 [14]

a The number of data points is the same for each property

123



34 Int J Thermophys (2015) 36:25–43

Fig. 6 Comparison with vapor pressure data from the literature. The FEOS is represented by the zero line,
the ancillary equation by the solid line, and error bars are simulation uncertainties (if given by the authors)

4.1 Vapor–Liquid Equilibrium

Prior work mainly focused on VLE data. In this work, a FEOS valid for the entire
fluid region was developed and used to set up ancillary equations for vapor pressure,
saturated liquid density, and saturated vapor density. Although ancillary equations are
not required when a full FEOS is available, they are useful for estimates in the iterative
procedures to find the saturation states. They should not be used for calculating proper
VLE data.

The vapor pressure, pv, may be represented by a modified Wagner equation [38],

ln

(
pv

pc

)
= Tc

T

[
N1θ + N2θ

1.5 + N3θ
3.25 + N4θ

4.85 + N5θ
6.63

]
, (10)

where N1 = −6.21, N2 = 1.5, N3 = −1.92, N4 = 2.2, N5 = −4.76, and θ =
(1 − T/Tc). The values of the critical parameters are given in Sect. 4.2. Comparison
with simulation data and the present FEOS is presented in Fig. 6. Except for the data
of Mareschal et al. [8], the agreement is within ±2.5 %.

The saturated liquid density ρ′ was represented by the ancillary equation

ρ′
ρc

= 1 + N1θ
0.334 + N2θ

0.667 + N3θ
1.25 + N4θ

1.92, (11)
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Fig. 7 Comparison with saturated liquid density data from the literature. The FEOS is represented by the
zero line, the ancillary equation by the solid line, and error bars are simulation uncertainties (if given by
the authors)

where N1 = 1.45, N2 = −0.172, N3 = −0.298, and N4 = 0.295. Comparison with
simulation data and the present FEOS is presented in Fig. 7. Except for 6 data points
out of 77, the agreement is within ±1 %.

The saturated vapor density ρ′′ may be represented by the ancillary equation

ln

(
ρ′′
ρc

)
= N1θ

1 + N2θ
1.5 + N3θ

5.94 + N4θ
0.41452, (12)

where N1 = 1.59809, N2 = −0.09975, N3 = −0.4774, and N4 = −2.33736.
Comparison with simulation data and the present FEOS is presented in Fig. 8. Except
for the dataset of Adams and Henderson [2], Dunikov et al. [5], and Mareschal et al.
[8], agreement is within ±3 %.

4.2 Critical Point

Critical parameters from the literature are given in Table 3. The critical values for
temperature and density of Vrabec et al. [14] were taken as a starting point for setting
up the present FEOS. As both parameters were included in the fitting process (not
constrained), their influence on thermodynamic properties was monitored carefully.
Special attention was given to the first and second derivatives of pressure with respect
to density, which vanish at the critical point. The critical temperature Tc = 1.086 and
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Fig. 8 Comparison with saturated vapor density data from the literature. The FEOS is represented by the
zero line, the ancillary equation by the solid line, and error bars are simulation uncertainties (if given by
the authors)

Table 3 Critical parameters of the LJTS model fluid with rc = 2.5σ from the literature

Author Year Reference Tc ρc pc

Dunikov et al. 2001 [5] 1.085(5) 0.317(3) 0.097(8)

Haye and Bruin 1993 [6] 1.078(2) – –

Shi and Johnson 2001 [12] 1.0795(2) 0.3211(5) –

Smit 1992 [13] 1.085(5) 0.317(6) –

This work 2014 – 1.086 0.319 0.101

Trokhymchuk and Alejandre 1999 [11] 1.073 0.323 0.0908

1.186 0.319 0.1098

Vrabec et al. 2006 [14] 1.0779 0.3190 –

the critical density ρc = 0.319 were found which are within the uncertainties of the
data by Dunikov et al. [5] and Smit [13]. The critical pressure pc = 0.101 can then be
calculated from the present FEOS.

4.3 Homogenous Fluid States

In this work, a comprehensive dataset for the homogenous fluid regions was simulated
to set up the FEOS which is valid for a wide range of temperature, density, and pressure.
The numerical values of the simulation data are given in the Supplementary Material
B.
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Fig. 9 Comparison of the present molecular simulation data with the FEOS as a function of density along
selected isotherms
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Fig. 9 continued
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Fig. 10 Comparison of additional molecular simulation data with the extrapolated FEOS at isotherm
T = 20 (left) and isochore ρ = 0.5 (right). These data were not used for the development of the FEOS

The accuracy of the FEOS was determined by relative deviations of all properties
at all state points depicted in Fig. 9 along randomly selected isotherms. Comparisons
using the complete dataset can be found in Supplementary Material C. Thermodynamic
consistency was verified and most of the simulation data were represented within their
statistical uncertainty.

The uncertainty of density calculated with the present FEOS is ±0.2 %. In the
extended critical region (1 < T < 1.5), the deviations increase to ±1 %. The uncer-
tainty in the residual internal energy is ±0.3 %, up to ±0.5 % for high temperatures.
Deviations for the residual isochoric heat capacity and the first volume derivative of
the residual internal energy at constant temperature are less than ±5 %. For higher
temperatures, the deviations for the residual isochoric heat capacity are below ±2 %.
Deviations of total isochoric heat capacity are also shown. Agreement is within ±2 %
and less than ±0.5 % for higher temperatures. Thus, the new FEOS can be classified
as a technical equation of state [23].

5 Extrapolation Behavior

Although the range of validity of the FEOS for the LJTS model fluid is defined by
0.6 < T/Tc < 10 and p/pc < 70 (based on the available molecular simulation data),
the FEOS can be extended in all directions (higher temperatures, pressures, densi-
ties, and lower temperatures), while maintaining a physically reasonable behavior.
As explained in Sect. 3, this was achieved by applying proper constraints to the fit,
based on experience from past FEOS fitting work on real substances [25,28,29]. Good
extrapolation behavior is also beneficial within the range of validity. Poor extrapola-
tion usually causes incorrect slopes in the validity range for properties such as the
heat capacities. The investigation of the extrapolation behavior includes four differ-
ent aspects: the representation of simulation data outside the given range of validity,
the functional form, the representation of ideal curves, and physically reasonable
behavior of different thermodynamic properties such as speed of sound or heat capac-
ities.

To study the extrapolation capability, additional data points were simulated along
the isochore ρ = 0.5 (15 < T < 19) and the isotherm T = 20 (0.1 < ρ < 0.6)
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Fig. 11 Pressure versus density diagram along isotherms (left) and ideal curves (right). pv: vapor pressure

curve; ID: ideal curve
(

∂αr

∂δ

)
τ

= 0, BL: Boyle curve
(

∂αr

∂δ

)
τ

+ δ
(

∂2αr

∂δ2

)
τ

= 0, JTI: Joule-Thomson

inversion curve
(

∂αr

∂δ

)
τ

+ δ
(

∂2αr

∂δ2

)
τ

+ τ
(

∂2αr

∂δ∂τ

)
= 0, JI: Joule inversion curve

(
∂2αr

∂δ∂τ

)
= 0

outside the range of validity. Figure 10 shows that for densities up to ρ = 0.6, the
data can be represented within ±0.05 %. The isochore ρ = 0.5 is predicted within
±0.05 %, too.

A reasonable behavior can be observed along the saturated liquid line for the speed
of sound, which is a straight line down to a reduced temperature of about T/Tc = 0.04.
The residual isochoric heat capacity (Fig. 5) shows an upward trend in the liquid phase
at low temperatures, which is common for many real fluids and has been validated
experimentally [25]. Pressure versus density to extreme conditions is presented in
Fig. 11 on the left. Obviously, extrapolation is smooth to extremely high temperatures,
pressures, and densities, which is controlled by the functional form of the FEOS. As
discussed in detail by Span and Wagner [32], the extrapolation to high temperatures
and pressures is mainly influenced by polynomial and exponential terms with power
li = 1. In the investigated region, δ = ρ/ρc reaches a high value, whereas τ = Tc/T
is decreasing. Therefore, the density exponent di must be high (but not too high to
prevent overestimation of the curvature) and the temperature exponent must be low.
The first polynomial term of the present FEOS with exponents t1 = 1 and d1 = 4,
which were found to be an effective combination by Lemmon and Jacobsen [29],
accounts for the correct behavior of the investigated isotherms. The density exponent
d1 is high enough to model the increasing temperature at increasing pressure and
density, but avoids unreasonably pronounced curvature of isotherms. The temperature
exponent t1 ensures that intersecting isotherms are avoided and isotherms converge
towards each other. Additionally, the corresponding coefficient n1 has to be positive
so that no negative pressures occur.

Finally, some ideal curves were investigated. Figure 11 shows the Boyle curve,
the Joule-Thomson inversion curve, the Joule inversion curve, and the ideal curve.
Shapes are similar to those of real fluids [32] without unreasonable inflection points
or deformations. Thus, these ideal curves indicate a qualitatively correct extrapolation
behavior of the FEOS extending to high temperatures and pressures.
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6 Conclusion

Based on molecular simulation data, a new FEOS was developed for the LJTS model
fluid. The equation is expressed in terms of the Helmholtz energy, can be implemented
easily in common software packages, and can be used to calculate all thermodynamic
properties, e.g., density, VLE data, heat capacities, speed of sound, or internal energy
by differentiation only. It is valid for temperatures 0.64 < T < 11 and for pressures
p < 6.8, corresponding to 0.6 < T/Tc < 10 and p/pc < 70. Uncertainties of the
FEOS were studied by comparison to simulation data. The uncertainty in density is
±0.2 %. In the extended critical region (1 < T < 1.5), deviations increase to ±1 %.
The uncertainty in the residual internal energy is 0.3 % to 0.5 % for high temperatures,
and 1 % for the residual enthalpy. Deviations for the residual isochoric heat capacity
and the first derivative of the residual internal energy with respect to volume at constant
temperature are less than ±5 %. For higher temperatures, deviations for the residual
isochoric heat capacity are below ±2 %.

Reference values are given in Table 4 to verify a computer implementation of the
FEOS. Additionally, the FEOS is given as a source code in the Supplementary Material
D.

This work is a first step to show that molecular simulation data can be used to set up
FEOS correlations for a wide temperature and pressure range. Work on a new equation
of state for the Lennard-Jones model is in progress.
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