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Abstract A three-dimensional model of equations for a homogeneous and isotropic
medium with temperature-dependent mechanical properties is established under the
purview of two-phase-lag thermoelasticity theory. The modulus of elasticity is taken as
a linear function of the reference temperature. The resulting non-dimensional coupled
equations are applied to a specific problem of a half-space whose surface is traction-
free and is subjected to a time-dependent thermal shock. The analytical expressions
for the displacement component, stress, temperature field, and strain are obtained in
the physical domain by employing normal mode analysis. These expressions are also
calculated numerically for a copper-like material and depicted graphically. Discussions
have been made to highlight the joint effects of the temperature-dependent modulus
of elasticity and time on these physical fields. The phenomenon of a finite speed of
propagation is observed graphically for each field.

Keywords Normal mode analysis · Temperature-dependent elastic modulus ·
Thermoelasticity · Three-dimensional modeling · Two-phase-lag model

1 Introduction

Conventional thermoelasticity is based on the principles of the classical theory of heat
conductivity, specifically on the classical Fourier’s law, which relates the heat flux
vector �q to the temperature gradient. In combination with the law of conservation of
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energy, this equation leads to the parabolic heat conduction equation. In non-classical
theories, the Fourier’s law and heat conduction equation are replaced by more general
equations. The subject of generalized thermoelasticity/non-classical thermoelasticity
covers a wide range of extensions of thermoelasticity. In contrast to the conventional
coupled thermoelasticity theory, which involves a parabolic-type heat transport equa-
tion, these generalized theories involving a hyperbolic-type heat transport equation are
supported by experiments exhibiting the actual occurrence of wave-type heat transport
in solids called the second-sound effect.

Generalized theories proposed by Lord and Shulman [1] and Green and Lindsay
[2] are the first two well-known generalized theories of thermoelasticity. In the first
model [1], the Fourier’s law of heat conduction is replaced by the Maxwell–Cattaneo’s
law that introduces one thermal relaxation time parameter in the heat conduction law,
whereas in the model of Green and Lindsay, two different relaxation times are intro-
duced in the constitutive relations for the stress tensor and the entropy. An interesting
review article by Chandrasekharaiah [3] contains many important results involving
many modifications with a list of references. The next generalization to thermoelastic-
ity is proposed by Green and Naghdi [4–6] who provided sufficient basic modifications
in the constitutive equations that permit the treatment of a much wider class of heat
flow problems labeled as GN-I, GN-II, and GN-III. GN models include a term called
“thermal displacement gradient” among the independent constitutive variables.

The generalized thermoelasticity theory with the dual-phase-lag effect has been
developed by Tzou [7] and Chandrasekharaiah [8]. Tzou [7] introduced two different
phase lags, one for the heat flux vector and the other for the temperature gradient.
According to this model, the classical Fourier’s law �q = −k �∇T has been replaced by
�q (

P, t + τq
) = −k �∇T (P, t + τT ), where the temperature gradient �∇T at a point P

of the material at time t + τT corresponds to the heat flux vector �q at the same point at
time t +τq . The delay time τT is supposed to be caused by the microstructural interac-
tions (small scale effects of heat transport in space, such as phonon–electron interaction
or phonon scattering) and is called the phase lag of the temperature gradient. The other
delay time τq is interpreted as the relaxation time due to the fast transient effects of the
thermal inertia (or small scale effects of heat transport in time) and is called the phase
lag of the heat flux. The stability of dual-phase-lag heat conduction was discussed by
Quintanilla and Racke [9]. Hetnarski and Ignaczak [10] examined thoroughly these
four models in a survey article by focussing on the theoretical significance of these
models.

The most recent development in thermoelasticity theory is the thermoelasticity
with three phase-lags (Roychoudhuri [11]). In this model, a phase-lag for the thermal
displacement gradient is also introduced in addition to the phase-lags for the heat
flux vector and the temperature gradient. According to this model, �q(P, t + τq) =
−

[
k �∇T (P, t + τT ) + K ∗ �∇v(P, t + τv)

]
, where �∇ν(v̇ = T ) is the thermal displace-

ment gradient, K ∗(of physical dimension conductivity/time) is a material constant
characteristic of the theory and τv is the delay time in the thermal displacement gra-
dient. The stability of the three phase-lag heat conduction equation and the relations
among the three material parameters are discussed by Quintanilla and Racke [12].
Prasad et al. [13] reported the effects of phase lags on wave propagation in a homo-
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geneous, isotropic, and unbounded solid due to a continuous line heat source. The
problem of magneto-thermoelastic interactions in a unified formulation of different
theories for a perfectly conducting medium has nicely been tackled by Das and Kanoria
[14]. Very recently, Prasad et al. [15] have contributed their research efforts in formu-
lating the boundary integral equation for the solution of equations in three-dimensional
Euclidean space under coupled thermoelasticity with three phase-lags.

The elastic modulus is an important physical property of materials reflecting the
elastic deformation capacity of the material when subjected to an applied external
load. Most of the investigations were done under the assumption of the temperature-
independent material properties, which limit the applicability of the solutions obtained
to certain ranges of temperature. At high temperature the material characteristics such
as the modulus of elasticity, Poisson’s ratio, the coefficient of thermal expansion,
and the thermal conductivity are no longer constants [16]. In recent years, due to the
progress in various fields in science and technology, it has become necessary to take
into consideration the real behavior of the material characteristics. Keeping these facts
in mind, several researchers [17–19] have examined the temperature dependence of
the elastic modulus on the behavior of two-dimensional solutions in a generalized
thermoelastic medium.

Many problems in engineering practice involve the determination of stresses and/or
displacements in bodies that are three-dimensional. Exact analytical solutions are
available only for a few three-dimensional problems with simple geometries and/or
loading conditions. Hence, numerical or experimental analyses are generally required
in solving such problems. Baksi et al. [20] have adopted an eigenvalue approach
along with Laplace and Fourier transforms to investigate a three-dimensional magneto-
thermoelasatic problem with rotation and a heat source. Ezzat and Youssef [21] have
devoted themselves to the vibrational analysis of a three-dimensional thermal shock
problem with one relaxation time. Employing normal mode analysis and an eigenvalue
approach to the governing equations of Green and Naghdi model II, Sarkar and Lahiri
[22] have solved a three-dimensional problem subject to a time-dependent heat source.

In spite of these recent studies of three-dimensional thermoelastic problems [20–
22], hardly any attempt is made to investigate three-dimensional thermoelastic prob-
lems with a temperature-dependent modulus of elasticity in the two-phase-lag model.
The main objective of this paper is to study the above mentioned three-dimensional
problem based on the two-phase-lag model by employing normal mode analysis. The
governing non-dimensional coupled equations in Cartesian coordinates are applied to
a thermal shock problem in an elastic body which fills the half-space. This is followed
by a numerical example of a copper-like material. Results of this analysis are also
presented graphically.

2 Formulation of the Problem with Basic Equations

In the present paper, we consider an isotropic, homogeneous, and thermoelastic
medium with temperature-dependent mechanical properties in three-dimensional
space which fills the region Ω , where Ω is defined by Ω = {(x, y, z) : 0 ≤ x ≤ ∞,

−∞ < y < ∞,−∞ < z < ∞} subjected to a thermal shock on the bounding plane
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to the surface x = 0. The body is initially at rest and the surface x = 0 is assumed to be
traction-free. Following Tzou [7] and Chandrasekharaiah [8] generalized thermoelas-
ticity theory with dual-phase-lag effect in the absence of body forces and internal heat
sources, we state the basic field equations as follows:

(a) The principle of balance of linear momentum leads to the equation of motion,

μui, j j + (λ + μ)u j,i j − β1θ,i = ρüi . (1)

(b) Equation of heat conduction
According to the modified Fourier’s law of heat conduction �q(P, t + τq) =
−k �∇T (P, t + τT ) and equation of energy conservation qi,i = −ρT0 Ṡ, we obtain
equation of heat conduction as

k

(
1 + τT

∂

∂t

)
∇2θ =

(
1 + τq

∂

∂t
+ 1

2
τ 2

q
∂2

∂t2

) (
ρcE θ̇ + β1T0ė

)
. (2)

(c) Constitutive equation

σi j = 2μei j + λeδi j − β1θδi j . (3)

(d) Geometrical equation

ei j = 1

2

(
ui, j + u j,i

)
. (4)

In the preceding equations, i, j = 1, 2, 3 refer to general coordinates, a comma fol-
lowed by a suffix denotes material derivative, a superimposed dot denotes the derivative
with respect to time and the tensor convention of summing over repeated indices is
used, λ and μ indicate Lame’s constants, ρ stands for the mass density, σi j stands
for the components of the stress tensor, θ = T − T0, T is the absolute temperature
of the medium, T0 is the reference temperature of the medium, k indicates thermal
conductivity, cE means the specific heat at constant strain, ui denotes the components
of the displacement vector, ei j is the strain tensor, qi indicates the component of heat
flux vector, S means the entropy per unit mass, β1 is a material constant given by
β1 = (3λ + 2μ)αt , αt is the coefficient of linear thermal expansion, e is the cubical
dilatation, ∇2 is the Laplacian operator, δi j is the Kronecker delta function, and τT

and τq are the phase lags of the temperature gradient and heat flux, respectively.
Our goal is to investigate the effect of the temperature dependence of the modulus

of elasticity keeping the other elastic and thermal parameters constant; therefore, we
assume

E = E0 f (θ), λ = E0λ0 f (θ), μ = E0μ0 f (θ), β1 = E0β10 f (θ), (5)

where f (θ) is a given non-dimensional function of temperature, λ0 = ν
(1+ν)(1−2ν)

,

μ0 = 1
2(1+ν)

, β10 = αt
(1−2ν)

and ν is the Poisson’s ratio. In case of a temperature-
independent modulus of elasticity, f (θ) ≡ 1 and E = E0.
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Taking into consideration Eq. 5, Eqs. 1–3 are reduced to the forms,

ρüi = E0 f (θ)
[
(λ0 + μ0) e,i +μ0∇2ui − β10θ,i

]

+E0 (λ0e − β10θ) f (θ),i +2E0μ0ei j f (θ), j , (6)

k

(
1 + τT

∂

∂t

)
∇2θ =

(
1 + τq

∂

∂t
+ 1

2
τ 2

q
∂2

∂t2

)
[
ρcE θ̇ + β10 E0 f (θ)T0ė

]
, (7)

σi j = E0 f (θ)
[
2μ0ei j + δi j (λ0e − β10θ)

]
, (8)

respectively.
In generalized thermoelasticity as well as in the coupled theory, only the infinitesi-

mal temperature deviations from the reference temperature are considered. Therefore,
we consider a special case when |T − T0| � 1 and f (θ) = (1 − α∗T0), where α∗ is
an empirical material constant of dimension ( 1

K ). Since f (θ) is independent of spatial
coordinates; hence, we have f (θ),i = 0. In view of this, Eq. 6 becomes

ρüi = E0 f (θ)
[
(λ0 + μ0) e,i +μ0∇2ui − β10θ,i

]
. (9)

Introducing the rectangular Cartesian coordinate system (x, y, z) having an origin
on the surface x = 0 with the x-axis vertical into the medium and the components
of the displacement vector �u as (u, v, w), the equation of motion, heat conduction
equation, and constitutive relations can be expressed in component form as

ρü = E0 f (θ)

[
(λ0 + 2μ0)

∂2u

∂x2

+μ0

(
∂2u

∂y2 + ∂2u

∂z2

)
+ (λ0 + μ0)

(
∂2v

∂x∂y
+ ∂2w

∂x∂z

)
− β10

∂θ

∂x

]
, (10)

ρv̈ = E0 f (θ)

[
(λ0 + 2μ0)

∂2v

∂y2

+μ0

(
∂2v

∂x2 + ∂2v

∂z2

)
+ (λ0 + μ0)

(
∂2u

∂x∂y
+ ∂2w

∂y∂z

)
− β10

∂θ

∂y

]
, (11)

ρẅ = E0 f (θ)

[
(λ0 + 2μ0)

∂2w

∂z2

+μ0

(
∂2w

∂x2 + ∂2w

∂y2

)
+ (λ0 + μ0)

(
∂2u

∂x∂z
+ ∂2v

∂y∂z

)
− β10

∂θ

∂z

]
, (12)

k

(
1 + τT

∂

∂t

) (
∂2θ

∂x2 + ∂2θ

∂y2 + ∂2θ

∂z2

)

=
(

1+τq
∂

∂t
+ 1

2
τ 2

q
∂2

∂t2

) [
ρcE θ̇+β10 E0T0 f (θ)

∂

∂t

(
∂u

∂x
+ ∂v

∂y
+ ∂w

∂z

)]
, (13)

σxx = E0 f (θ) [2μ0exx + λ0e − β10θ ] , (14)

σyy = E0 f (θ)
[
2μ0eyy + λ0e − β10θ

]
, (15)
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σzz = E0 f (θ)
[
2μ0ezz + λ0e − β10θ

]
, (16)

σxy = 2μ0 E0 f (θ)exy = μ0 E0 f (θ)

(
∂u

∂y
+ ∂v

∂x

)
, (17)

σxz = 2μ0 E0 f (θ)exz = μ0 E0 f (θ)

(
∂u

∂z
+ ∂w

∂x

)
, (18)

σyz = 2μ0 E0 f (θ)eyz = μ0 E0 f (θ)

(
∂v

∂z
+ ∂w

∂y

)
, (19)

where

exx = ∂u

∂x
, eyy = ∂v

∂y
, ezz = ∂w

∂z
, and e = exx + eyy + ezz .

Equations of motion (Eqs. 10–12) can be recast to the following forms as

ρ
∂ ü

∂x
= E0 f (θ)

[
μ0∇2 ∂u

∂x
+ (λ0 + μ0)

∂2e

∂x2 − β10
∂2θ

∂x2

]
, (20)

ρ
∂v̈

∂y
= E0 f (θ)

[
μ0∇2 ∂v

∂y
+ (λ0 + μ0)

∂2e

∂y2 − β10
∂2θ

∂y2

]
, (21)

ρ
∂ẅ

∂z
= E0 f (θ)

[
μ0∇2 ∂w

∂z
+ (λ0 + μ0)

∂2e

∂z2 − β10
∂2θ

∂z2

]
. (22)

Proceeding with the analysis, we introduce the dimensionless terms as

(x ′, y′, z′, u′, v′, w′) = c0η0(x, y, z, u, v, w), (t ′, τ ′
q,T ) = c2

0η0(t, τq,T ),

θ ′ = β10 E0θ

ρc2
0

, σ ′
i j = σi j

ρc2
0

(23)

where

c2
0 = (λ0 + 2μ0) E0

ρ
and η0 = ρcE

k
.

Transferring the above equations to the non-dimensional forms, one can obtain

α0
∂ ü

∂x
= δ∇2 ∂u

∂x
+ (1 − δ)

∂2e

∂x2 − ∂2θ

∂x2 , (24)

α0
∂v̈

∂y
= δ∇2 ∂v

∂y
+ (1 − δ)

∂2e

∂y2 − ∂2θ

∂y2 , (25)

α0
∂ẅ

∂z
= δ∇2 ∂w

∂z
+ (1 − δ)

∂2e

∂z2 − ∂2θ

∂z2 , (26)
(

1 + τT
∂

∂t

)
∇2θ =

(
1 + τq

∂

∂t
+ 1

2
τ 2

q
∂2

∂t2

) (
θ̇ + δ0ė

)
, (27)

123



958 Int J Thermophys (2014) 35:952–969

where

α0 = 1

f (θ)
= 1

1 − α∗T0
, δ = μ0

λ0 + 2μ0
, δ0 = β2

10 E0T0

ρcEα0(λ0 + 2μ0)

and we have dropped the primes for convenience.
In a similar manner, we can transform the constitutive relations in non-dimensional

forms. The dimensionless expressions for the constitutive relations are defined in
Appendix 1. By summing Eqs. 24–26, we arrive at

α0ë = ∇2e − ∇2θ. (28)

We will consider the invariant stress σ to be the mean value of the principal stresses
as follows:

σ = σxx + σyy + σzz

3
. (29)

Substituting the values of σxx , σyy , and σzz into the and above expression, one can
obtain

α0σ = δ1e − θ, (30)

where

δ1 = (3 − 4δ)

3
.

3 Normal Mode Analysis

Generally, Laplace transformation and Fourier transformation are employed to solve
a three-dimensional generalized thermoelastic problem. In the application of this
method, the partial differential equations can be converted into ordinary differen-
tial equations. By solving differential equations in the transformation domain and
adopting inverse Fourier transformation and inverse Laplace transformation in the
time domain, the solutions of the problem can be obtained. But this method entails
a tiresome process. The key problem is that it introduces a discrete error and trunca-
tion error in the process of numerical inverse integrated transformation, so the second
sound of heat conduction cannot be fully demonstrated. To compensate for the defects
of the above mentioned method, we solve the problem of generalized thermoelasticity
by employing normal mode analysis to the considered equations.

In this method, the solutions of the physical variables can be decomposed in terms
of normal modes in the following form:

(u, v, w, e, θ, σi j )(x, y, z, t) =
(

u∗, v∗, w∗, e∗, θ∗, σ ∗
i j

)
(x)e[ωt+ι(my+nz)], (31)
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where u∗(x), v∗(x), w∗(x), e∗(x), θ∗(x), and σ ∗
i j (x) are the amplitudes of the func-

tions, ι = √−1, ω is the angular frequency, and m and n are the wave numbers in y-
and z-directions, respectively.

By using the normal modes defined in Eq. 31 on Eqs. 27, 28, and 30 and then
eliminating e∗(x) from the resulting expressions, we obtain the following system of
ordinary differential equations:

(D2 − m2 − n2)θ∗(x) = γ1
[
(δ0 + δ1)θ

∗(x) + α0δ0σ
∗(x)

]
, (32)

(D2 − m2 − n2)σ ∗(x) = a1σ
∗(x) + a2θ

∗(x), (33)

where γ1, a1, and a2 are given in Appendix 2.
Elimination of θ∗(x) from Eqs. 32 and 33 yields the following fourth-order differ-

ential equation:

(D4 − L D2 + M)σ ∗(x) = 0, (34)

where

L =α1+α2, M =α1α2−α0δ0γ1a2, α1 =m2 + n2 + a1, α2 = m2 + n2 + (δ0 + δ1)γ1.

Adopting the same procedure, we can establish the following equation satisfied by
θ∗(x) as

(D4 − L D2 + M)θ∗(x) = 0. (35)

Since the intent is that the solutions vanish at infinity so as to satisfy the regularity
condition at infinity, we now consider the following solutions of Eqs. 34 and 35 as

σ ∗(x) =
2∑

i=1

Ri e
−λi x , (36)

θ∗(x) =
2∑

i=1

R′
i e

−λi x , (37)

where λi , Ri , and R′
i are defined in Appendix 3.

By virtue of Eqs. 31, 36, and 37, Eq. 30 leads to

e∗(x) = 1

δ1

2∑

i=1

(α0 + di )Ri e
−λi x . (38)

4 Application

In order to determine the constants R1 and R2, we need to consider the following
boundary conditions at the surface x = 0:
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(a) Mechanical boundary conditions

We will consider that the bounding plane to the surface x = 0 has no traction
anywhere, so we have

σ(x, y, z, t) = σxx (x, y, z, t) = σyy(x, y, z, t) = σzz(x, y, z, t) = 0,

which provides

σ ∗(x) = σ ∗
xx (x) = σ ∗

yy(x) = σ ∗
zz(x) = 0. (39)

(b) Thermal boundary condition

The bounding plane x = 0 is subjected to a time-dependent thermal shock of the
form,

θ(x, y, z, t) = f (x, y, z, t),

which, in view of Eqs. 23 and 31, gives

θ∗(x) = f ∗(m, n, ω). (40)

Applying the boundary conditions (Eqs. 39 and 40) into Eqs. 36 and 37 and then
solving the resulting system, one can find

R1 = f ∗(m, n, ω)

d1 − d2
,

R2 = − f ∗(m, n, ω)

d1 − d2
. (41)

Now, performing normal mode analysis over Eq. 24 and taking into account Eqs. 37
and 38, we arrive at

(D2 − λ2
u)u∗(x) = l1e−λ1x + l2e−λ2x , (42)

where λ2
u = m2 + n2 + α0ω2

δ
and

li = 1

δ

[
(1 − δ)

δ1
(α0 + di ) − di

]
λi Ri .

The solution of the differential (Eq. 42) takes the form,

u∗(x) = R3e−λu x + l1e−λ1x

λ2
1 − λ2

u

+ l2e−λ2x

λ2
2 − λ2

u

, (43)

where λ2
1 �= λ2

2 �= λ2
u and R3 is a constant to be determined.
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From Eqs. 14 and 30 after using Eqs. 23 and 31, we have

α0σ
∗
xx (x) = 2δDu∗(x) + (1 − 2δ)

δ1
α0σ

∗(x) +
(

1 − 2δ − δ1

δ1

)
θ∗(x). (44)

In view of the boundary conditions, the above equation transforms to

Du∗(x) = (δ1 + 2δ − 1)

2δδ1
f ∗ (m, n, ω) at x = 0, (45)

which with the help of Eq. 43 supplies the following value of R3 as

R3 = (1 − δ1 − 2δ)

2δδ1λu
f ∗ (m, n, ω) − λ1l1

λu
(
λ2

1 − λ2
u

) − λ2l2
λu

(
λ2

2 − λ2
u

) . (46)

Hence, the final solutions for the dimensionless stress σ , temperature θ , strain e, and
displacement u can be deduced from Eqs. 36–38 and Eq. 43 by using Eq. 31 as follows
(considering the real parts only):

σ(x, y, z, t) = eωt cos(my + nz)
[
R1e−λ1x + R2e−λ2x] , (47)

θ(x, y, z, t) = eωt cos(my + nz)

a2

[(
λ2

1 − α1

)
R1e−λ1x +

(
λ2

2 − α1

)
R2e−λ2x

]
,

(48)

e(x, y, z, t) = eωt cos(my + nz)

δ1a2

[(
λ2

1 − α1 + a2α0

)
R1e−λ1x

+
(
λ2

2 − α1 + a2α0

)
R2e−λ2x

]
, (49)

u(x, y, z, t) = eωt cos(my + nz)

[

R3e−λu x + l1
λ2

1 − λ2
u

e−λ1x + l2
λ2

2 − λ2
u

e−λ2x

]

.

(50)

5 Numerical Example and Discussion

With an aim to illustrate the theoretical results obtained in the preceding sections,
we now present some numerical results. The numerical work has been carried out
with the help of computer programming using the software Matlab. In the calculation
process, we consider the material medium as that of copper. Since ω is the complex
time constant, we have ω = ω0 + ιζ then eωt = eω0t (cos ζ t + ι sin ζ t). So for small
values of time, we can take ω = ω0(real). The numerical constants (in SI units) of the
problem are taken as [13]

E0 = 10.4 × 1010 kg ·m−1·s−2, v = 0.33, T0 = 293 K, ρ = 8954 kg·m−3

k = 386 W·m−1·K−1, αt = 1.78 × 10−5 K−1, cE = 383.1 J·kg−1·K−1

τT = 0.15 s, τq = 0.2 s, α = 0.001 K−1.
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Fig. 1 Profile of displacement distribution at α∗ = 0.001
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Fig. 2 Profile of temperature distribution at α∗ = 0.001

Values of other non-dimensional parameters arising in the present analysis are taken
as

f ∗ = 10, ω = 1.0, m = 1.2, n = 1.3.

Considering the above physical data, the non-dimensional field variables have been
evaluated and results are presented in the form of graphs. Figures 1, 2, 3, and 4 display
the distribution of values of the real part of displacement u, temperature θ , stress σ ,
and strain e for a wide range of x(0 ≤ x ≤ 4) and for a wide range of dimensionless
time t (0 ≤ t ≤ 0.4) at the position y = z = 1.0, when the modulus of elasticity is
taken as a linear function of the reference temperature (α∗ = 0.001). Figures 5, 6, 7,
and 8 represent the solutions of non-dimensional field quantities obtained in the case
of a temperature-independent modulus of elasticity (α∗ = 0.0). In Figs. 9, 10, 11, and
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Fig. 3 Profile of stress distribution at α∗ = 0.001
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Fig. 4 Profile of strain distribution at α∗ = 0.001

12, we have drawn the two-dimensional plots of the field variables in order to analyze
the effects of the temperature modulus of elasticity and time simultaneously taking
two values of the dimensionless time, namely, t = 0.1, 0.4.

Figures 1, 5, and 9 depict the variations of the displacement distribution with dis-
tance x . The displacement field starts with a maximum value in all the figures and
then diminishes to zero with the passage of time. Effects of the temperature-dependent
modulus of elasticity and time are quite pertinent on the displacement field and can
be easily noticed from the figures. The values of the displacement distribution are less
for α∗ = 0.001 compared to those for α∗ = 0.0; hence, the temperature-dependent
modulus of elasticity has a decreasing effect on the profile of the displacement dis-
tribution. From Fig. 9, we notice that the displacement field increases as the time t
increases and attains its maximum value at (x, y, z, t) = (0, 0, 0, 0.4). Also, it is clear
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Fig. 5 Profile of displacement distribution at α∗ = 0.0
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Fig. 6 Profile of temperature distribution at α∗ = 0.0

that the speed of wave propagation of this field variable is finite and coincides with
the physical behavior of the elastic materials.

Figures 2, 6, and 10 have been plotted to observe the variations of the temperature
field θ . Very near to the point of application of the source, there is a significant
difference in magnitudes of the temperature distribution and the values are maximum
which complies with the real situation. It is also noticed that as t increases the rate of
decay of the temperature field becomes fast. From the profile we find that considering
the temperature-dependent modulus of elasticity or not leads to different results, which
illustrates that the temperature-dependent modulus of elasticity has a salient effect on
the temperature distribution. More specifically, it has increased the magnitude of the
temperature distribution. Another important phenomenon observed is that the solution
vanishes outside a bounded region of space which shows the existence of a wave front.

123



Int J Thermophys (2014) 35:952–969 965

0
0.1

0.2
0.3

0.4

0
1

2
3

4
0

0.1

0.2

0.3

0.4

t
x

St
re

ss
 d

is
tr

ib
ut

io
n

Fig. 7 Profile of stress distribution at α∗ = 0.0
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Fig. 8 Profile of strain distribution at α∗ = 0.0

This is the difference between the hyperbolic heat conduction model and the Fourier
heat conduction model.

Variations of the stress distribution σ for the different cases considered have been
shown in Figs. 3, 7, and 11. The stress field increases sharply in the initial range to attain
its maximum value at x = 0.5 and then decreases to zero following a smooth pattern.
In these figures all the curves have a coincident starting point with the value zero
(according to the boundary condition). The plots also display that different results can
be obtained for the stress field while the temperature-dependent modulus of elasticity
is considered or not. The stress field has large values when α∗ = 0.001 as compared
to the case when α∗ = 0.0, which clearly indicates that the temperature-dependent
modulus of elasticity has an increasing effect on the stress distribution. The figures
also reveal that the time factor acts to increase the magnitude of the stress distribution.
The maximum impact zone of both the factors is around x = 0.4, and this impact dies
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Fig. 10 Temperature distribution versus x

out with the passage of time. Also, the stress distribution has non-zero values only in a
bounded region of space. Outside this region, the values vanish identically which is in
agreement with the experimental results. However, the stress field has a qualitatively
similar behavior for all the cases.

Dynamic effects of the temperature-dependent modulus of elasticity and time on
the strain have been studied in Figs. 4, 8, and 12. The strain field follows a similar
trend for all the cases considered having differences in magnitude. It is noted that
values of the strain field are a maximum numerically in the vicinity of the source
which is physically plausible and then diminish to zero as x diverges from the point
of the source application. The strain field exhibits significant sensitivity towards the
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Fig. 12 Strain distribution versus x

temperature-dependent modulus of elasticity and time. The temperature-dependent
modulus of elasticity causes lessening of the magnitude of the strain field while the
absolute values of the strain are larger as we increase the time. Hence, the time has
an increasing effect on the profile of the strain distribution while the temperature-
dependent modulus of elasticity has a decreasing effect. However, effects of these two
factors become indistinct with the increase of distance from the boundary.

6 Concluding Remarks

In this paper, a mathematical treatment has been presented to explore the effects of
the temperature-dependent modulus of elasticity and time on wave propagation in a
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three-dimensional model of thermoelasticity with two-phase-lags subjected to a time-
dependent heat source. The problem has been solved theoretically and exemplified
through a specific model. Though the figures are self explanatory in exhibiting the
different peculiarities which occur in the propagation of waves, yet the following
remarks may be added:

1. In all these figures, it is clear that the considered functions for the generalized
theories are localized in a finite region of space surrounding the heat source and
are identically zero outside this region. This is not the case for the coupled theory
where an infinite speed of propagation is inherent and, hence, all the considered
functions have a non-zero (although may be very small) value for any point in the
medium.

2. From the distribution of temperature, we have found a wave-type heat propagation
in the medium. With the passage of time, the heat wave front moves forward with
a finite speed.

3. The temperature-dependent modulus of elasticity has a prominent effect on all the
physical quantities. It has increased the magnitudes of the temperature and stress
fields while it acts to decrease the magnitudes of the displacement and strain fields.

4. Numerical values of all the fields are noted to be smaller for the case when t = 0.1
and the values increase with the increase in the value of time t .

Analysis of the displacement, temperature, stress, and strain generated in a body due
to the application of a thermal source is an interesting problem of thermoelasticity.
The problem assumes great significance when we consider the real behavior of the
material characteristics with appropriate geometry of the model. Hence, the inclusion
of the temperature-dependent modulus of elasticity to the three-dimensional vibra-
tional analysis of a thermoelastic medium makes it a more realistic model for these
studies.

Appendix 1

α0σxx = 2δ
∂u

∂x
+ (1 − 2δ)e − θ,

α0σyy = 2δ
∂v

∂y
+ (1 − 2δ)e − θ,

α0σzz = 2δ
∂w

∂z
+ (1 − 2δ)e − θ,

α0σxy = δ

(
∂u

∂y
+ ∂v

∂x

)
,

α0σxz = δ

(
∂u

∂z
+ ∂w

∂x

)
,

α0σyz = δ

(
∂v

∂z
+ ∂w

∂y

)
.
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Appendix 2

γ1 =
ω

(
1 + τqω + 1

2τ 2
q ω2

)

δ1 (1 + τT ω)
,

a1 = α0ω
2 − δ0γ1(1 − δ1),

a2 = ω2 − γ1

α0
(1 − δ1)(δ0 + δ1).

Appendix 3

R′
i = di Ri , di = λ2

i − α1

a2
,

where λ2
i (i = 1, 2) are the roots of the characteristic equation

λ4 − Lλ2 + M = 0,

satisfying the relations

λ2
1 + λ2

2 = L = α1 + α2, λ2
1λ

2
2 = M = α1α2 − α0δ0γ1a2.
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