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Abstract An experimental study of the temperature dependence of the binary
diffusion coefficients (BDCs) was conducted for five binary mixtures of gases:
H2−N2, H2−CO, H2−CH4, H2−C2H6, and H2−C3H8. Measurements were carried
out with the use of a steady-flow method in the temperature range from 250 K to 900 K
and the pressure range from 0.1 MPa to 15 MPa. The determination of the BDCs is
based on analysis of the volume fraction of the diffusing gas in the gas flow. The
experimental data were compared with the results of calculations by the proposed for-
mula evaluated within the framework of the elementary kinetic theory. The obtained
results exhibit considerably good agreement with the experimental data within the
experimental error. The results of investigations of the temperature dependence of the
BDCs show that this dependence can be fitted with a power law only at atmospheric
pressure.
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DT
12 Binary diffusion coefficient at pressure P0 and temperature T (cm2·s−1)

DP,T
12 Binary diffusion coefficient at pressure P and temperature T (cm2 ·s−1)

L Length of capillary tube (cm)
Leff Effective length of capillary tube (cm)
m Exponent of pressure dependence suggested in [1]
n Exponent of generalized temperature dependence
P Gas pressure (MPa)
P0 Gas pressure at z = 1 (MPa)
R Gas constant (J · mol−1 · K−1)

S Cross-sectional area of capillary tubes (cm2)

T, T 0 Gas temperature (K)
U Velocity of the gas in channel (cm · s−1)

Vi Molar volume of gas i at the given temperature T and pressure P
(cm3 · mol−1)

x Characteristic linear dimension (cm)
zi Compressibility factor
υ Gas volume flow rate (cm3 · s−1)

ρ Density of gas (g · cm−3)

η Viscosity of gas (Pa · s)

1 Introduction

According to its definition, the binary diffusion coefficients (BDCs) or interdiffusion
coefficients of gases characterize the velocity of spontaneous interpenetration of the
substances due to inhomogeneity of composition. Nowadays, the BDC are widely
used in the calculation of various heat and mass transfer setups, processes of chem-
ical kinetics and combustion, as well as to obtain data needed for the calculation of
the parameters of the intermolecular interaction of diverse molecules. Considering
the application of these coefficients in thermodynamic calculations, it is crucial to
investigate their dependences on temperature and pressure.

At present, the temperature dependence of the BDCs at elevated pressures is an
insufficiently explored area. As a rule, the pressure dependence of the BDCs is mea-
sured and analyzed at a fixed temperature. In a few existing papers on the temperature
dependence of BDCs, studies have been carried out at different pressures, mainly
at low temperatures [1–4]: from a temperature of 350 K and below in the narrow
temperature range from 100 K to 150 K.

On the other hand, in the rarefied gases the temperature dependence of BDCs
can be evaluated within the framework of the rigorous kinetic theory by generalizing
experimental data and restoring the parameters of an interaction potential, for example,
using the weighted least-squares method [5], or a variety of semi-empirical methods
based on the rigorous or elementary kinetic theories [6,7]. The accumulated extensive
experimental data of studies on the temperature dependence of the BDCs in the rarefied
gases show that a simple power law gives sufficient accuracy [6–9].

The power dependence of the BDCs on temperature corresponds to the potential
of point centers of force [10]. The exponent in the temperature dependence of the
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BDCs is not a constant, but a function of temperature; that should be considered in
calculations. Therefore, the range of temperatures in which it is possible to use the
obtained function of the temperature dependence of the BDCs should be listed along
with the exponent.

2 Experimental Setup and Technique

A well-established steady-flow method [11,12] was used for the measurements of
BDCs with the use of the diffusion apparatus [13], which allows implementation of
this method to measure BDCs in dense gases. A general diffusion cell apparatus is
shown in Fig. 1. Two channels 1 and 2 were connected by a set of thin narrow tubes—
capillary K with length of L and cross-sectional area S. Channels were blown with
gases A and B at the same flow rate. The resistance of the gap (capillary K) was much
greater than the channel resistance. As a result of diffusion through the capillary, there
were no pure gases at the outlet of the cell, just mixtures. It was necessary that there
was no pressure difference between the channels, so that the mass transfer was due to
a process of diffusion. Gases in channels 1 and 2 were supplied and taken away with
the help of two cylinders with pistons of the same diameter, so that the gas volume
flow rate υ in the two channels was the same before and after the capillary. Hence,
measurements of the BDCs were carried out in the average volume frame of reference.

Earlier we used the setup to measure the BDCs in the dense gases with the use
of a steady-flow method; it is described previously [14] in detail. As an analyzer of
the gas mixture, the Rayleigh interferometer was used. The length of the cuvette was
1 m, and it had been scaled by changing the argon pressure in the right half of the
cell. So after the experiment had been finished, the numerical fraction of the diffused
gas was measured by the Rayleigh interferometer. Further, the volume fraction was
calculated, using the value of the numerical fraction and the compressibility factors
of pure gases. The total error of calculation was less than 1 %. In our experiments,
the volume fraction of impurity was rather small in the range from 0.005 to 0.025.
Moreover, it is known that when the change of the volume fraction is comparatively
small, the BDC is almost independent of concentration (volume fraction) or depends
slightly [2,15].

Fig. 1 Diffusion cell in a
steady-flow method
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Calculations of the diffusion coefficient were evaluated using the known formula
[12] of the steady-flow method:

D12 = cυLeff

S (1 − c)
, (1)

where c is the volume fraction of the diffusing gas, Leff is the effective length of the
capillary tube, S is the cross-sectional area of the capillary tubes, and υ is a gas volume
flow rate. The values of the flow rate were adjusted in each experiment based on the
following conditions: the volume fraction of the second component in the gas blown
through the channel should not exceed 0.01 to 0.03. Thereby, the effects of mixing can
be neglected [9]. The effects of mixing consist of the pressure changes in the vessels
due to non-equivalence of the compressibility of the mixture and of the pure gases.
However, the increase of this pressure at low pressures remains negligible within the
error of the pressure measurement. Our own studies have shown that the changes in
the diffused gas volume fraction within 0.005 to 0.025 had no effect on the measured
value of the diffusion coefficient.

In [16] it was found that when an open end of the capillary tube was blowing, the
diffusing substance was washing out to a depth of li . The value of the depth of washing
out li depends on the Reynolds number and the capillary diameter d, and at Re < 20
is defined as follows:

li/d = 1.35 × 10−2 + 1.69 × 10−1 Re + 1.3 × 10−2 Re2 + . . . , (2)

where the Reynolds number is determined as

Re = U xρ

η
,

where U is the velocity of the gas in the channel, x is a characteristic linear dimension,
here it is the height of the gap, η is the dynamic viscosity of gas, and ρ is the density
of gas. That is, the effective length of the capillary tube is shorter than the actual one
by the value of li on each side of the tube, respectively. Our experiments had shown
that the Reynolds number in our setups varied from 0.1 to 20.

We used two more cells with geometrical parameters presented in Table 1, different
from those two described in [14]. These four cells allowed us to measure the BDCs

Table 1 Geometrical dimensions of additional diffusion cells used to measure the BDC by steady-flow
method

Number of
diffusion
cell

Geometrical dimensions of

Cells Capillary tubes

Length
(cm)

Width
(cm)

Height
(cm)

Cross-
sectional
area (cm2)

Length
(cm)

Diameter
(cm)

1 22.0 7.40 0.100 2.454 12.00 0.250

2 20.0 6.50 0.200 1.5705 15.00 0.200
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in the pressure range from 0.1 MPa to 15 MPa and the temperature range from 250 K
to 900 K. The experimental error of the measurement of temperature was in the limits
of 0.03 % and of pressure was in the range from 0.02 % to 0.7 %.

Additional studies showed that the measured values of the BDCs obtained with the
use of four cells under the same experimental conditions were consistent with each
other within the experimental error.

With a reliability of α = 0.95, the total error of the experiment remained the same:
from 1 % to 2 % for the whole set of the experimental data for all the examined systems
of gases. The error was estimated as a sum of a random measurement uncertainty and
a systematic measurement uncertainty.

3 Results of Measurements and Calculation of the BDCs

In the apparatus described above with the use of different diffusion cells, the exper-
imental study of the temperature dependence of the BDCs was carried out for the
following five binary mixtures of gases: H2−N2, H2−CO, H2−CH4, H2−C2H6, and
H2−C3H8. The measurements were obtained in the temperature range from 250 K
to 900 K and the pressure range from 0.1 MPa to 15 MPa. Samples of high purity
were taken: N2—99.996 %, H2—99.994 %, CH4—99.9 %, C2H6—99.5 %, C3H8—
99.97 %, and CO—99.8 %.

The results of the measurements are shown in Tables 2, 3, 4, 5, and 6.
To determine the exponents of the temperature dependence at the pressure of

0.1 MPa, the experimental data for the BDCs of these gaseous systems obtained
by other authors [8,17–20] were also processed, in addition to the values given in
Tables 2, 3, 4, 5, and 6. A well-known empirical formula for the BDC dependence on
temperature in the rarefied gases was used for evaluating the exponent n of a power
law:

Table 2 Temperature dependence of the binary diffusion coefficients of H2−N2 at different pressures

T (K) D12 (cm2 · s−1)

P = 0.1 MPa P = 4.0 MPa P = 7.0 MPa P = 10.0 MPa P = 15.0 MPa

250 0.586 0.0152 0.0088 0.0060 0.00421

300 0.800 0.0204 0.0124 0.0085 0.0060

350 1.04 0.0268 0.0163 0.0113 0.0079

400 1.31 0.0337 0.0205 0.0141 0.0098

500 1.92 0.0495 0.0301 0.0207 0.0145

600 2.61 0.068 0.0410 0.0282 0.0196

700 3.40 0.088 0.0532 0.0365 0.0251

800 4.27 0.110 0.0665 0.0456 0.0315

900 5.23 0.134 0.0811 0.0555 0.0380

Uncertainty
ε (%)

0.8 1.1 1.6 1.7 2.0
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Table 3 Temperature dependence of the binary diffusion coefficients of H2−CO at different pressures

T (K) D12 (cm2 · s−1)

P = 0.1 MPa P = 4.0 MPa P = 7.0 MPa P = 10.0 MPa P = 15.0 MPa

250 0.56 0.0132 0.008 0.0056 0.00400

300 0.77 0.0196 0.0116 0.0081 0.0056

350 1.01 0.0258 0.0152 0.0109 0.0074

400 1.27 0.0328 0.0196 0.0138 0.0094

500 1.88 0.0484 0.0289 0.0203 0.0142

600 2.58 0.066 0.0397 0.0279 0.0196

700 3.37 0.087 0.0514 0.0363 0.0263

800 4.25 0.109 0.065 0.0455 0.0335

900 5.22 0.134 0.079 0.0558 0.0420

Uncertainty
ε (%)

0.7 1.2 1.5 1.8 1.9

Table 4 Temperature dependence of the binary diffusion coefficients of H2−CH4 at different pressures

T (K) D12 (cm2 · s−1)

P = 0.1 MPa P = 3.5 MPa P = 7.0 MPa P = 10.5 MPa P = 14.0 MPa

250 0.53 0.0132 0.0063 0.0038 0.00291

280 0.66 0.0184 0.0085 0.0054 0.00405

320 0.83 0.0231 0.0117 0.0075 0.0058

400 1.24 0.0362 0.0182 0.012 0.0095

480 1.73 0.051 0.0252 0.0172 0.0136

560 2.27 0.067 0.0343 0.0230 0.0179

640 2.90 0.084 0.0435 0.0293 0.0228

720 3.60 0.106 0.054 0.0361 0.0281

800 4.34 0.129 0.065 0.0441 0.0337

900 5.40 0.159 0.081 0.0542 0.0411

Uncertainty
ε (%)

0.8 1.2 1.4 1.6 1.8

DT
12 = D0

12

(
T

T 0

)n

, (3)

where DT
12 represents the value of the BDC at pressure P0 and at temperature T, D0

12
represents the experimental value of the BDC at pressure P0 and temperature T 0, and
n is the exponent of the generalized temperature dependence.

It is helpful to present Eq. 3 in a logarithmic form for additional analysis:

lg
(

DT
12

)
= n · lg(T ) +

(
lg

(
D0

12

)
− n · lg(T 0)

)
. (4)
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Table 5 Temperature dependence of the binary diffusion coefficients of H2−C2H6 at different pressures

T (K) D12 (cm2 · s−1)

P = 0.1 MPa P = 3.5 MPa P = 7.0 MPa P = 10.5 MPa P = 14.0 MPa

250 0.429 – – – –
280 0.52 – – – –
320 0.65 0.0146 0.0033 0.00240 0.00221

400 0.95 0.0253 0.0115 0.0068 0.0050

480 1.31 0.036 0.0175 0.0113 0.0086

560 1.70 0.0481 0.0240 0.0158 0.0120

640 2.12 0.062 0.0310 0.0204 0.0158

720 2.61 0.076 0.0381 0.0252 0.0194

800 3.13 0.091 0.0461 0.030 0.0233

900 3.82 0.110 0.0559 0.0372 0.0283

Uncertainty
ε (%)

1.0 1.6 2.3 2.0 2.2

Table 6 Temperature dependence of binary diffusion coefficients of H2−C3H8 at different pressures

T (K) D12 (cm2 · s−1)

P = 0.1 MPa P = 3.5 MPa P = 7.0 MPa P = 10.5 MPa P = 14.0 MPa

250 0.328 – – – –
280 0.401 – – – –
320 0.50 – – – –
400 0.74 0.0160 0.0045 0.00298 0.00272

480 1.01 0.0258 0.0114 0.00680 0.00490

560 1.31 0.0356 0.017 0.0107 0.00789

640 1.64 0.0457 0.0221 0.0147 0.0108

720 2.00 0.0563 0.0278 0.0183 0.0137

800 2.40 0.0680 0.0337 0.0223 0.0165

900 2.92 0.083 0.0424 0.0283 0.0204

Uncertainty
ε (%)

1.1 1.7 2.1 2.0 2.2

As initial data for the calculations, only those values of the BDCs were taken that
had been obtained with the use of the following direct methods of measuring of the
BDC: Loschmidt’s cell, two-bulb, and steady-flow methods. The data calculated on the
base of experimental studies of other thermophysical properties of substances were
not taken into account. Single measurements which significantly deviated from the
calculated generalized dependences were also removed from the study. Table 7 shows
the generalized empirical dependences of the BDCs on temperature for the examined
systems at of 0.1 MPa. Table 7 also includes information about the temperature range
in which the study was done, the number of experimental points and references, as
well as the average deviation of the experimental values from this dependence. The
calculation was performed with the use of an ordinary least-squares method.
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Table 7 The power dependence of the BDC at pressure of 0.1 MPa for systems H2−N2, H2−CO,

H2−CH4, H2−C2H6, and H2−C3H8

System of
gases

Number of
experimental
points

Temperature
range (K)

Generalized
dependence

Average
deviation
(%)

References

H2−N2 72 200–1083.2 lg D = 1.708 lg T − 4.328 1.85 [8,16–18]

H2−CO 17 250–900 lg D = 1.742 lg T − 4.429 0.47 [8,17]

H2−CH4 31 115–900 lg D = 1.809 lg T − 4.613 1.22 [8,17,19]

H2−C2H6 16 250–900 lg D = 1.711 lg T − 4.472 0.23 [8]

H2−C3H8 15 250–900 lg D = 1.708 lg T − 4.579 0.38 [8]

In [21] within the framework of the elementary kinetic theory with the use of the
equation of molecular mass transfer obtained by Laranjeira [22], the following formula
for calculating the value of the BDCs at different pressures has been obtained:

DP,T
12 = DT

12 P0

P
z1z2 A, (5)

where DP,T
12 represents the integral value of the BDC at pressure P and temperature T

in the given range of the volume-fraction changes and P0 is the pressure of the gas when
the compressibility factor zi is equal to unity. The multiplier A here is a dimensionless
value that depends on the volume fraction. It is an integral characteristic in the given
range of the volume-fraction changes in the process of gas diffusion, the formula for
its calculation is given in [14,21].

The compressibility factor of the gas can be defined by the following equation:

zi = PVi/RT,

where R is the gas constant, P is the gas pressure; and Vi is the molar volume of gas
i at a given temperature T and pressure P .

Since the BDC dependence on temperature in the rarefied gases can be submitted
as shown in Eq. 3, Eq. 5 can be rewritten as follows:

DP,T
12 = D0

12

(
T

T 0

)n P0

P
z1z2 A. (6)

According to the results of our calculations, for all the studied systems, when the
changes of the volume fraction of the diffusing component were within limits of
0.03, the value of the multiplier A differed from unity by less than 1 %. That fact
helps to simplify the calculations by taking the ratio A equal to unity (A = 1). The
calculation error of the BDCs using Eq. 6 varies from 1 % to 3 % taking measurement
uncertainties and uncertainties in the calculation of the compressibility factors z1 and
z2 into account.
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Fig. 2 Temperature dependence of the experimental (symbols) and calculated (curves) values of the BDC
at different pressures for binary systems: (a) H2−N2, (b) H2−CO, (c) H2−CH4, (d) H2−C2H6, and (e)
H2−C3H8
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Fig. 3 Temperature dependence of the experimental (symbols) and calculated (curves) values of the BDC at
the same pressure of 7.0 MPa for binary systems: H2−N2, H2−CO, H2−CH4, H2−C2H6, and H2−C3H8

In [1] authors proposed to describe the dependence of diffusion coefficients on
temperature and pressure with a power law in the form of the product of powers
(T/T 0)n and (P0/P)m . As the authors stated, there is good agreement with experiment
at low temperatures for three pairs of gases. However, according to our calculations,
our experimental data are in good agreement with the values of the BDCs calculated
by the proposed formula in [1] which is valid only in a narrow temperature range.
Obviously, this is because exponent m changes its value depending on temperature.

Figure 2 shows graphs of the temperature dependence of the BDCs at different
pressures: 0.1 MPa, 4.0 MPa, 7.0 MPa, 10.0 MPa, and 15.0 MPa. Our experimental
values of the BDC are marked with symbols, while the ones calculated with the use of
Eq. 6 are presented as curves. For easier analysis the graphs are drawn in the following
form: lg(DP,T

12

/
DP

12) = f (lg(T
/

T 0)). It can be seen that there is a good agreement
between the measured and calculated values of the BDC of the gases. It should be noted
that temperature dependence of the BDC becomes rather complicated at pressures
greater than 0.1 MPa. The law of this dependence is determined by the individual
properties of the gases, in particular by the dependence of the compressibility factor
on temperature.

In Fig. 3, the graphs of the temperature dependences of the BDC values are presented
at the same pressure of 7 MPa in the temperature range from 400 K to 900 K for all
five systems studied. The graphs exhibit that the temperature dependence is practically
reduced to a power law for the systems H2−N2 and H2−CO, while it becomes more
complex for systems H2−CH4, H2−C2H6, and H2−C3H8. The last one is described
neither by a power law (4) nor by the formula suggested in [1]. However, at higher
temperatures (600 K or higher) the dependence is getting closer to a power law. It
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suggests that it is determined by the nature of the dependence of the compressibility
factor on temperature for these gases (H2, CH4, C2H6, and C3H8).
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