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Abstract The problem of the generalized thermoelastic medium for three different
theories under the effect of a gravity field is investigated. The Lord–Shulman (L–S),
Green–Lindsay (G–L), and classical-coupled (CD) theories are discussed. The modu-
lus of the elasticity is given as a linear function of the reference temperature. The exact
expressions for the displacement components, temperature, and stress components are
obtained by using normal mode analysis. Numerical results for the field quantities are
given in the physical domain and illustrated graphically in the absence and presence
of gravity. A comparison also is made between the three theories for the results with
and without a temperature dependence.

Keywords Diffusion · Gravity · Green–Lindsay theory · Lord–Shulman theory ·
Normal mode analysis · Temperature dependence · Thermoelasticity

1 Introduction

The effect of mechanical and thermal disturbances on an elastic body is studied by the
theory of thermoelasticity. This theory has two defects. This theory has been studied
by Biot [1]. He deals with a defect of the uncoupled theory that mechanical causes
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have no effect on temperature. This theory predicts an infinite speed of propagation of
heat waves which is a defect that it shares with the uncoupled theory. The generalized
theories of thermoelasticity are developed to remove this paradox [2]. The first theory
was studied by Lord and Shulman (L–S) [3]. They introduced the notation of a time-
dependent relaxation time model based on the concept of relaxing of the flux in a
classical Fourier’s model for the heat conduction [4]. The second theory was discussed
by Green–Lindsay (G–L) [4]. They introduced two different relaxation times in the
entropy expression and stress–strain relations [5]. All these theories predict a finite
speed of the thermal disturbance propagation.

The thermal stress in a material with temperature-dependent properties was studied
extensively by Noda [6]. Material properties such as the modulus of elasticity and
the thermal conductivity vary with temperature. When the temperature variation from
the initial stress is not strongly varying, the properties of materials are constants. In
the refractory industries, the structural components are exposed to a high temperature
change. In this case, neglecting the temperature dependence will result in errors in
material properties [7]. The dependence of the modulus of elasticity and the ther-
mal conductivity on a reference temperature in the generalized thermoelasticity for
an infinite material with a spherical cavity is discussed by Youssef [8]. Othman et
al. [9–12] studied the two-dimensional problem of generalized thermoelasticity with
temperature-dependent elastic moduli for different theories. However, the effect of
gravity on elastic surface waves is discussed by Biot [13]. The force of gravity was
assumed to create an initial stress of a hydrostatic nature. Sengupta et al. [14] studied
the effect of gravity on some problems of propagation of waves in an anisotropic elastic
solid medium. Ahamed [15] investigated the Stoneley waves in a non-homogeneous
orthotropic granular medium under the influence of a gravitational field. Vinh and Seri-
ani [16] studied the problem of Rayleigh waves in a non-homogeneous orthotropic
elastic medium under the effect of gravity. Abd-Alla et al. [17–21] investigated the
influence of gravity for different theories. In seismology and geophysics, the problem
of the propagation of Rayleigh waves under the effect of gravity is significant [22].

In the present work, we shall formulate the generalized thermoelastic medium with
temperature-dependent properties for three theories under the influence of gravity
and solve for the temperature, stress components, and displacement components. The
normal mode method is used to obtain the exact expression for the considered variables.
A comparison is carried out between the considered variables as calculated from the
generalized thermoelasticity based on L–S, G–L, and coupled theories in the absence
and presence of gravity. A comparison also is made between the three theories with
and without temperature dependence.

2 Formulation of the Problem

We consider a homogeneous isotropic elastic body in a half-space z ≥ 0 under the
effect of a constant gravitational field of acceleration g. We are interested in a plane
strain in the xz plane with displacement components u, w such that

u = u(x, z, t), w = w(x, z, t). (1)
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When the z axis positive downward, the body force components are

X = 0. Z = g. (2)

The governing equations of the problem are

(1) The stress–strain relation may be written as [5]

σi j = 2μei j + δi j [λekk − ν(θ + τ1θ̇ )], (3)

ei j = 1

2

(
∂u j

∂xi
+ ∂ui

∂x j

)
, (4)

where σi j ’s are the components of stress, ei j ’s are the components of strain, λ,μ’s
are Lame’s constants, v = (3λ+ 2μ) at , at is the thermal expansion coefficient,
θ = T − T0, where T is the temperature above the reference temperature T0, τ1
is the relaxation time, δi j is the Kronecker delta, and i, j = x, z.

(2) The dynamical equations of an elastic medium are given by [15]

ρü = ∂σxx

∂x
+ ∂σxz

∂z
+ ρg

∂w

∂x
, (5)

ρẅ = ∂σzx

∂x
+ ∂σzz

∂z
− ρg

∂u

∂x
. (6)

(3) The heat conduction equation is

K θ,i i = ρCE [θ̇ + (τ0 + τ2)θ̈ ] + νT0[ė + τ0ë], (7)

where K is the thermal conductivity, CE is the specific heat at constant strain,
and τ0, τ2 are the thermal relaxation times. In the above equations a dot denotes
differentiation with respect to time, and a comma followed by a subscript denotes
partial differentiation with respect to the corresponding coordinates.

We assume that [23]

λ=λ0(1 − α∗T0), μ=μ0(1 − α∗T0), ν = ν0(1 − α∗T0), β = β0(1 − α∗T0),

(8)

where λ0, μ0, v0, β0 are constants of the material and α∗ is the linear temperature
coefficient. For the case of a modulus of elasticity, the temperature is independent
when α∗ = 0.

By using Eq. 8 in Eq. 3, we get

ασxx = (2μ0 + λ0)exx + λ0ezz − ν0(θ + τ1θ̇ ), (9)

123



524 Int J Thermophys (2013) 34:521–537

ασzz = (2μ0 + λ0)ezz + λ0exx − ν0(θ + τ1θ̇ ), (10)

ασxz = 2μ0exz . (11)

By substituting from Eqs. 9–11 in Eqs. 5 and 6, we obtain

ρü = 1

α

[
(μ0 + λ0)

∂e

∂x
+ μ0∇2u − ν0

∂

∂x
(θ + τ1θ̇ )

]
+ ρg

∂w

∂x
, (12)

ρẅ = 1

α

[
(μ0 + λ0)

∂e

∂z
+ μ0∇2w − ν0

∂

∂z
(θ + τ1θ̇ )

]
− ρg

∂u

∂x
. (13)

Employing Eq. 7 and using Eq. 8, this yields

K θ,i i = ρCE [θ̇ + (τ0 + τ2)θ̈ ] + ν0T0

α
[ė + τ0ë]. (14)

For convenience, the following non-dimensional variables are used:

(u′, w′) = ω̃

c1
(u, w), (x ′, z′) = ω̃

c1
(x, z), t ′ = ω̃t, τ ′

0 = ω̃τ0, τ ′
1 = ω̃τ1,

τ ′
2 = ω̃τ2, σ ′

i j = σi j

ρc2
1

, θ ′ = ν0θ

ρc2
1

, (15)

where ω̃ = ρCE c2
1

K , c2
1 = (λ0+2μ0)

ρ
.

In terms of non-dimensional quantities defined in Eq. 15, the above governing
equations reduce to (dropping the prime for convenience)

ü = 1

α

[
β1
∂e

∂x
+ (1 − β1)∇2u − ∂

∂x
(θ + τ1θ̇ )

]
+ g

c1ω̃

∂w

∂x
, (16)

ẅ = 1

α

[
β1
∂e

∂z
+ (1 − β1)∇2w − ∂

∂z
(θ + τ1θ̇ )

]
− g

c1ω̃

∂u

∂x
, (17)

∇2θ = [θ̇ + (τ0 + τ2)θ̈ ] + δδ0

α
[ė + τ0ë], (18)

σxx = 1

α

[
∂u

∂x
+ (2β1 − 1)

∂w

∂z
− (θ + τ1θ̇ )

]
, (19)
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σzz = 1

α

[
∂w

∂z
+ (2β1 − 1)

∂u

∂x
− (θ + τ1θ̇ )

]
, (20)

σxz = 1

α
(1 − β1)

[
∂u

∂z
+ ∂w

∂x

]
, (21)

where β1 = μ0+λ0

ρc2
1
, δ = ν0

ρCE
, δ0 = ν0T0

ρc2
1
, α = 1

1−α∗T0
.

Now, we introduce the potential functions φ(x, z, t) and ψ(x, z, t) in non-
dimensional form that are given by

u = ∂φ

∂x
− ∂ψ

∂z
, w = ∂φ

∂z
+ ∂ψ

∂x
. (22)

By substituting from Eq. 22 in Eqs. 16–18, this yields

φ̈ = 1

α
[∇2φ − (θ + τ1θ̇ )] + g

∂ψ

∂x
, (23)

ψ̈ = 1

α
[(1 − β1)∇2ψ] − g

∂φ

∂x
, (24)

∇2θ = [θ̇ + (τ0 + τ2)θ̈ ] + δδ0

α

(
∂

∂t
+ τ0

∂2

∂t2

)
∇2φ. (25)

3 Solution of the Problem

The solution of the considered physical variables can be decomposed in terms of
normal modes and are given in the following form:

[θ, φ,ψ, σi j ](x, z, t) = [θ∗, φ∗, ψ∗, σ ∗
i j ](z)e(icx+ωt), (26)

where ω is a complex constant, i = √−1, c is the wave number in the x-direction,
and θ∗(z), ϕ∗(z), ψ∗(z), and σ ∗

i j (z) are the amplitudes of the field quantities.
By substituting from Eq. 26 in Eqs. 23–25, we get

(D2 − s1)φ
∗ − b0θ

∗ + ia0gψ∗ = 0, (27)

(D2 − s2)ψ
∗ − ia0a1gφ∗ = 0, (28)

(D2 − s3)θ
∗ − s4(D

2 − c2)φ∗ = 0, (29)
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where s1 = αω2 + c2, s2 = αω2a1 + c2, s3 = c2 + ω[1 + (τ0 + τ2)ω],

s4 = δδ0

α
ω(1 + τ0ω), a0 = αc

c1ω̃
, b0 = (1 + τ1ω), a1 = [1/(1 − β1)].

Eliminating θ∗(z), and ψ∗(z) between Eqs. 27–29, we obtain the sixth-order ordinary
differential equation satisfied for ϕ∗(z),

(D6 − E0 D4 + E1 D2 − E2)φ
∗ = 0, (30)

where

E0 = s1 + s2 + s3 + b0s4,

E1 = s1s2 + s3(s1 + s2)− a2
0 g2a1 + b0s4(c

2 + s2),

E2 = s3(s1s2 − −a2
0 g2a1)+ b0s4s2c2

Similarly, we can show that θ∗(z) and ψ∗(z), satisfy the equation,

(D6 − E0 D4 + E1 D2 − E2)(θ
∗, ψ∗) = 0. (31)

Equation 30 can be factored as

(D2 − k2
1)(D

2 − k2
2)(D

2 − k2
3)φ

∗ = 0, (32)

where k2
n (n = 1, 2, 3) are the roots of the characteristic equation of Eq. 30,

m6 − E0m4 + E1m2 − E2 = 0. (33)

The solution of Eq. 30 must be bounded as z → ∞. Then, it takes the form,

φ∗ =
3∑

n=1

Mn(c, ω)e
−kn z . (34)

Similarly,

ψ∗ =
3∑

n=1

M ′
n(c, ω)e

−kn z, (35)

θ∗ =
3∑

n=1

M ′′
n (c, ω)e

−kn z, (36)

where Mn,M ′
n , and M ′′

n are parameters depending on c and w.
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Substituting from Eqs. 34–36 in Eqs. 28 and 29, this yields

M ′
n = iNn Mn, M ′′

n = Gn Mn, (37)

where Nn = a0a1g
(k2

n−s2)
, Gn = s4(k2

n−c2)

(k2
n−s3)

.

Thus, we have

ψ∗ = i
3∑

n=1

Nn Mne−kn z, (38)

θ∗ =
3∑

n=1

Gn Mne−kn z . (39)

Using Eqs. 34 and 38 in Eq. 22, we get

u∗ = i
3∑

n=1

(c + kn Nn)Mne−kn z, (40)

w∗ = −
3∑

n=1

(kn + cNn)Mne−kn z . (41)

Using Eqs. 22 and 26 in Eqs. 19–21, we obtain

σ ∗
xx = 1

α

[
icu∗ + (2β1 − 1)Dw∗ − (1 + τ1ω)θ

∗] , (42)

σ ∗
zz = 1

α

[
Dw∗ + i(2β1 − 1)cu∗ − (1 + τ1ω)θ

∗] , (43)

σ ∗
xz = 1

α
(1 − β1)

[
Du∗ + icw∗] . (44)

Introducing Eqs. 39–41 in Eqs. 42–44, this yields

σ ∗
xx =

3∑
n=1

Rn Mne−kn z, (45)

σ ∗
zz =

3∑
n=1

Vn Mne−kn z, (46)
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σ ∗
xz = −i

3∑
n=1

Hn Mne−kn z, (47)

where

Rn = 1

α
[−c2 + 2ckn Nn(β1 − 1)+ (2β1 − 1)k2

n − (1 + τ1ω)Gn], (48)

Vn = 1

α
[k2

n + 2ckn Nn(1 − β1)− (2β1 − 1)c2 − (1 + τ1ω)Gn], (49)

Hn = 1

α
(1 − β1)[Nn(k

2
n + c2)+ 2ckn]. (50)

The normal mode analysis is, in fact, to look for the solution in the Fourier trans-
formed domain, assuming that all the field quantities are sufficiently smooth on the
real line such that normal mode analysis of these functions exists.

4 Boundary Conditions

In this section, we need to consider the boundary conditions at z = 0, in order to
determine the parameter Mn(n = 1, 2, 3).

(1) A thermal boundary condition that the surface of the half-space is subjected to

∂θ

∂z
= 0. (51)

(2) A mechanical boundary condition that the surface of the half-space is traction free

σxz = 0. (52)

(3) A mechanical boundary condition that the surface of the half-space is subjected
to

σzz = f (0.y, t) = − f ∗eωt+icx . (53)

f (y, t) is an arbitrary function of y and t ; and f ∗ is a constant. Using the expres-
sions of the variables considered into the above boundary conditions (Eqs. 51, 52,
and 53) we can obtain the following equations satisfied with the parameters:

3∑
n=1

knGn Mn = 0, (54)
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3∑
n=1

Hn Mn = 0, (55)

3∑
n=1

Vn Mn = − f ∗. (56)

Solving Eqs. 54–56, we get the parameter Mn (n = 1, 2, 3) defined as follows:

M1 = Δ1

Δ
, M2 = Δ2

Δ
, M3 = Δ3

Δ
, (57)

where

Δ1 = (k3G3 H2 − k2G2 H3) f ∗, Δ2 = −(k3G3 H1 − k1G1 H3) f ∗,
Δ3 = (k2G2 H1 − k1G1 H2) f ∗.

5 Numerical Results and Discussion

To illustrate the theoretical results obtained in the preceding section, to compare these
in the context of three theories of thermoelasticity, and to study the effect of gravity
and temperature on wave propagation in a thermoelastic medium with temperature-
dependent properties, we now present some numerical results for the physical constants

λ0 = 7.76 × 1010 N · m−2, μ0 = 3.86 × 1010 N · m−2, ρ = 8954 kg · m−3,

β0 = 0.32 × 109 N · m−2, K = 386 W · m−1 · K−1, T0 = 293 K,

CE = 383.1 J · kg−1 · K−1, αt = 1.78 × 10−4 K−1, f ∗ = 1,

g = 9.8 m · s−2, ω = ω0 + iξ, ω0 = 0.2, ξ = 0.9, c = 0.9,

τ0 = 0.3 s, τ1 = 0.9 s, τ2 = 0.6 s.

The computations were carried out for a value of time t = 0.7. The numerical tech-
nique, outlined above, was used for the distribution of the thermal temperature θ , the
displacement components u, w, and the stress components σxx , σzz , and σxz for the
problem under consideration. All the considered variables depend not only on space
z and time t but also on the thermal relaxation times τ0, τ1, and τ2. The results are
shown in Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, and 12. The graphs show the six curves
predicted by three different theories of thermoelasticity. In these figures, the solid lines
represent the solution in the coupled theory, the dotted lines represent the solution in
the generalized G–L theory, and the dashed lines represent the solution derived using
the L–S theory. Here all the variables are taken in non-dimensional forms and we
consider five cases:

(1) Equations of the coupled thermoelasticity (CD) theory when τ0 = τ1 = τ2 = 0.
(2) Lord and Shulman (L–S) theory when τ1 = τ2 = 0, τ0 > 0,
(3) Green and Lindsay (G–L) theory when τ0 = 0, τ1 ≥ τ2 > 0.
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Fig. 1 Horizontal displacement distribution u with temperature dependence and independent of temper-
ature
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Fig. 2 Vertical displacement distributionw with temperature dependence and independent of temperature

(4) Corresponding equations for the three theories in the absence of a gravity field
from the above mentioned cases by taking g = 0.

(5) Corresponding equations for temperature independence based on the three theories
from the above mentioned cases by taking the linear temperature coefficient α∗ =
0.

For a value of x , namely, x = 0.7, this value was substituted in performing the
computation. Figures 1, 2, 3, 4, 5, and 6 show comparisons among the displacement
components u, w, the temperature θ , and the stress components σxx , σzz , and σxz for
temperature dependence and independence in the presence of a gravity field.

Figure 1 depicts that the distribution of the horizontal displacement u begins from
negative values with temperature dependence, but it begins from positive values
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Fig. 3 Temperature distribution θ with temperature dependence and independent of temperature
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Fig. 4 Distribution of stress component σxx with temperature dependence and independent of temperature

independent of temperature. In the context of the three theories with temperature
dependence, the values of the horizontal displacement decrease to a minimum value
in the range 0 ≤ z ≤ 1, then increase to a maximum value in the range 1 ≤ z ≤ 2.9,
and also move in a wave propagation. However, in the context of the three theories
independent of temperature, the values of the horizontal displacement decrease to a
minimum value in the range 0 ≤ z ≤ 1.5, then increase to a maximum value in the
range 1.5 ≤ z ≤ 3.8, and also move in a wave propagation. Figure 2 shows that the
distribution of the vertical displacement w always begins from positive values. In the
context of the three theories with temperature dependence, the values of the vertical
displacement decrease to a minimum value in the range 0 ≤ z ≤ 1.5, then increase
in the range 1.5 ≤ z ≤ 3, and also move in a wave propagation. However, in the
context of the three theories independent of temperature, the values of the vertical
displacement decrease to a minimum value in the range 0 ≤ z ≤ 1.9, then increase
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Fig. 5 Distribution of stress component σzz with temperature dependence and independent of temperature
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Fig. 6 Distribution of stress component σxz with temperature dependence and independent of temperature

to a maximum value in the range 1.9 ≤ z ≤ 3.9, and also move in a wave propaga-
tion. The displacements u and w show different behaviors because the elasticity of
the solid tends to resist a vertical displacement in the problem under investigation.
Figure 3 exhibits that the distribution of the temperature θ begins from positive values
in the context of the G–L theory, but it begins from negative values in the context of
the CD and L–S theories dependent on and independent of temperature. In the context
of the CD theory with temperature dependence, the values of the temperature increase
to a maximum value in the range 0 ≤ z ≤ 1.9, then decrease in the range 1.9 ≤ z ≤ 9.
However, in the context of the L–S theory with temperature dependence, the values of
the temperature increase to a maximum value in the range 0 ≤ z ≤ 2.9, then decrease
in the range 2.9 ≤ z ≤ 9. For the case independent of temperature, in the context of
the CD and L–S theories, the values of the temperature increase to a maximum value
in the range 0 ≤ z ≤ 2.5, then decrease in the range 2.5 ≤ z ≤ 9. It also shows from
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Fig. 7 Horizontal displacement distribution u in the absence and presence of gravity field
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Fig. 8 Vertical displacement distribution w in the absence and presence of gravity field

the figure that in the context of the G–L theory, the values of the temperature increase
to a maximum value in the range 0 ≤ z ≤ 1.4, then decrease in the range 1.4 ≤ z ≤ 9
dependent on and independent of temperature. Figure 4 displays that the distribution of
the stress component σxx always begins from positive values. In the context of the CD
and G–L theories with temperature dependence, the values of the stress component σxx

increase to a maximum value in the range 0 ≤ z ≤ 0.1, then decrease to a minimum
value in the range 0.1 ≤ z ≤ 1.8, and also move in a wave propagation. However, in
the context of the L–S theory with temperature dependence, the values of the stress
component σxx increase to a maximum value in the range 0 ≤ z ≤ 0.2, then decrease
to a minimum value in the range 0.2 ≤ z ≤ 2, and also move in a wave propagation.
For the case independent of temperature, in the context of the three theories, the values
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Fig. 9 Temperature distribution θ in the absence and presence of gravity field

0 1 2 3 4 5 6 7 8 9
-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

z

xx

CD
L-S
G-L

without gravity 

with gravity 

σ

Fig. 10 Distribution of stress component σxx in the absence and presence of gravity field

of the stress component σxx increase to a maximum value in the range 0 ≤ z ≤ 0.3,
then decrease to a minimum value in the range 0.3 ≤ z ≤ 2.8, and also move in a
wave propagation. Figure 5 exhibits that the distribution of the stress component σzz

always begins from a negative value and satisfies the boundary condition at z = 0.
In the context of the three theories with temperature dependence, the values of the
stress component σzz decrease to a minimum value in the range 0 ≤ z ≤ 0.5, then
increase in the range 0.5 ≤ z ≤ 2.2, and also move in a wave propagation. However,
in the context of the three theories independent of temperature, the values of the stress
component σzz decrease to a minimum value in the range 0 ≤ z ≤ 0.5, then increase
to a maximum value in the range 0.5 ≤ z ≤ 2.6, and also move in a wave propagation.
Figure 6 describes the distribution of the stress component σxz and demonstrates that
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Fig. 11 Distribution of stress component σzz in the absence and presence of gravity field
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Fig. 12 Distribution of stress component σxz in the absence and presence of gravity field

it reaches a zero value and satisfies the boundary condition at z = 0. In the context of
the three theories with temperature dependence, the values of the stress component σxz

decrease to a minimum value in the range 0 ≤ z ≤ 0.5, then increase to a maximum
value in the range 0.5 ≤ z ≤ 1.8, and also move in a wave propagation. However, in
the context of the three theories independent of temperature, the values of the stress
component σxz decrease to a minimum value in the range 0 ≤ z ≤ 0.5, then increase
to a maximum value in the range 0.5 ≤ z ≤ 2.2, and also move in a wave propagation.
Figures 1, 2, 3, 4, 5, and 6 demonstrate that the temperature has a significant impact
on the physical quantities.

Figures 7, 8, 9, 10, 11, and 12 show comparisons among the displacement com-
ponents u, w, the temperature θ , and the stress components σxx , σzz , and σxz in the
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absence and presence of a gravity field for the case of a material with temperature
dependence.

Figure 7 depicts that the distribution of the horizontal displacement u begins from
negative values in the presence of a gravity field, but it begins from positive values in
the absence of a gravity field. In the context of the three theories and in the absence of
a gravity field, the values of the horizontal displacement increase to a maximum value
in the range 0 ≤ z ≤ 1.2, then decrease to a minimum value in the range 1.2 ≤ z ≤ 3,
and also move in a wave propagation. Figure 8 exhibits that the distribution of the
vertical displacement w begins from positive values in the presence of a gravity field
while it begins from zero in the absence of a gravity field. In the context of the three
theories and in the absence of a gravity field, the values of the vertical displacement
decrease to a minimum value in the range 0 ≤ z ≤ 1.1, then increase to a maximum
value in the range 1.1 ≤ z ≤ 2.9, and also move in a wave propagation. Figure 9 shows
that the distribution of the temperature θ begins from positive values in the context
of the three theories and in the absence and presence of a gravity field except in the
context of the CD and L–S theories and in the presence of a gravity field, it begins
from negative values. In the context of the CD and L–S theories and in the absence
of a gravity field, the values of the temperature increase to a maximum value in the
range 0 ≤ z ≤ 0.9, then decrease to a minimum value in the range 0.9 ≤ z ≤ 2.8,
and also move in a wave propagation. However, in the context of the G–L theory and
in the absence of a gravity field, the values of the temperature increase to a maximum
value in the range 0 ≤ z ≤ 0.8, then decrease to a minimum value in the range
0.8 ≤ z ≤ 2.5, and also move in a wave propagation. Figure 10 describes that the
distribution of the stress component σxx , in the context of the three theories, begins
from positive values in the presence of a gravity field, but it begins from negative
values in the absence of a gravity field. In the context of the three theories and in
the absence of a gravity field, the values of the stress component σxx decrease to a
minimum value in the range 0 ≤ z ≤ 0.5, then increase to a maximum value in the
range 0.5 ≤ z ≤ 2.5, and also move in a wave propagation. Figure 11 displays that
the distribution of the stress component σzz always begins from a negative value and
satisfies the boundary condition at z = 0. In the context of the three theories and in
the absence of a gravity field, the values of the stress component σzz decrease to a
minimum value in the range 0 ≤ z ≤ 0.5, then increase to a maximum value in the
range 0.5 ≤ z ≤ 2, and also move in a wave propagation. Figure 12 exhibits the
distribution of the stress component σxz and demonstrates that it reaches a zero value
and satisfies the boundary condition at z = 0. In the context of the three theories and
in the absence of a gravity field, the values of the stress component σxz increase to a
maximum value in the range 0 ≤ z ≤ 0.5, then decrease to a minimum value in the
range 0.5 ≤ z ≤ 2, and also move in a wave propagation. Figures 7, 8, 9, 10, 11, and
12 exhibit that the gravity field has an important effect on the physical quantities.

6 Conclusions

By comparing the figures that were obtained for the three thermoelastic theories,
important phenomena are observed:
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(1) The curves in the context of the CD, L–S, and G–L theories decrease exponentially
with increasing z; this indicates that the thermoelastic waves are unattenuated and
non-dispersive, while purely thermoelastic waves undergo both attenuation and
dispersion.

(2) The values of all the physical quantities converge to zero with increasing distance
z, and all functions are continuous.

(3) It is clear that the gravity field and temperature have important roles on the dis-
tribution of the field quantities.

(4) All the physical quantities satisfy the boundary conditions.
(5) Analytical solutions based upon normal mode analysis for the thermoelastic prob-

lem in solids have been developed and utilized.
(6) The method that was used in the present article is applicable to a wide range of

problems in thermodynamics and thermoelasticity.
(7) Deformation of the body depends on the nature of the applied forced as well as

on the type of boundary conditions.
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