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Abstract The propagation of plane waves in a thermo-microstretch elastic solid
half-space as proposed by Lord–Shulman as well as the classical dynamical coupled
theory are discussed. The problem has been solved numerically using a finite element
method. Numerical results for the displacement components, force stresses, tempera-
ture, couple stresses, and microstress distribution are obtained. The variations of the
considered variables through the horizontal distance are given and illustrated graph-
ically. Comparisons are made with the results predicted by the theory of generalized
thermoelasticity for different values of the relaxation time.
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1 Introduction

In the classical theory of elasticity, the points of the material have translational degrees
of freedom and the transmission of the load across a differential element of the surface
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is described by a force vector only. However, in the theory of micropolar elasticity,
there is an additional degree of freedom characterized by rotation of material points,
and there is an additional kind of stress called couple stress. Thus, in the classical
theory of elasticity, the effect of couple stress is neglected. Eringen [1] introduced the
theory of microstretch elastic solids. This theory is a generalization of the theory of
micropolar elasticity [2]. The material points of microstretch solids can stretch and
contract independently of their translations and rotations. Thus, in these solids, the
motion is characterized by seven degrees of freedom, namely, three for translation,
three for rotation, and one for stretch.

The transmission of the load across a differential element of the surface of a mi-
crostretch elastic solid is described by a force vector, a couple stress vector, and a
microstretch vector. The theory of a microstretch elastic solid differs from the theory
of micropolar elasticity in the sense that there is an additional degree of freedom called
stretch and there is an additional kind of stress called the microstretch vector. Materials
such as a porous elastic material filled with gas or inviscid fluid, asphalt, composite
fibers, etc., lie in the category of microstretch elastic solids. Eringen [3] extended
the theory of microstretch elastic solids to include heat conduction. In the framework
of the theory of thermo-microstretch elastic solids, Eringen established a uniqueness
theorem for the mixed boundary-initial value problem. The theory was illustrated
with the solution of a one-dimensional wave and compared with lattice dynami-
cal results. The asymptotic behavior of solutions and an existence result were pre-
sented by Bofill and Quintanilla [4]. Iesan and Quintanilla [5] investigated thermal
stresses in microstretch elastic plates. Svanadze and De Cicco [6] analyzed a funda-
mental solution in the theory of thermo-microstretch elastic solids. Iesan and Scalia
[7] discussed propagation of singular surfaces in thermo-microstretch continua with
memory. Othman and Lotfy [8] studied the effect of rotation on plane waves in a
generalized thermo-microstretch elastic solid with one relaxation time. The basic
results in the theory of microstretch elastic solids were obtained in the literatures
[9–12].

The theory of thermoelasticity (THE) deals with the effect of mechanical and ther-
mal disturbances on an elastic body. The theory of uncoupled THE consists of the heat
equation, which is independent of mechanical effects, and the equation of motion,
which contains the temperature as a known function. There are two defects in this
theory. First is that the mechanical state of the body has no effect on the temperature.
Second, the heat equation, which is parabolic, implies that the speed of propagation
of the temperature is infinite, which contradicts physical experiments. Biot [13] intro-
duced the theory of coupled THE to overcome the first shortcoming. The governing
equations for this theory are coupled, eliminating the first paradox of the classical
theory. However, both theories share the second shortcoming as the heat equation for
the coupled theory is also parabolic. To overcome this drawback, two generalizations
of the coupled theory were introduced. The first is due to Lord and Shulman [14], who
obtained a wave-type heat equation by postulating a new law of heat conduction to
replace the classical Fourier’s law. This new law contains the heat flux vector as well
as its time derivative. It also contains a new constant that acts as a relaxation time.
As the heat equation of this theory is of the wave-type, it automatically ensures finite
speeds of propagation of heat and elastic waves. The remaining governing equations
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for this theory, namely, the equations of motion and constitutive relations, remain the
same as those for the coupled and uncoupled theories.

The second generalization of the coupled theory of elasticity is what is known as the
theory of THE with two relaxation times or the theory of temperature-rate-dependent
THE. Mullar [15], in a review of the thermodynamics of thermoelastic solids, proposed
an entropy production inequality, with the help of which he considered restrictions
on a class of constitutive equations. A generalization of this inequality was proposed
by Green and Laws [16]. Green and Lindsay [17] obtained another version of the
constitutive equations. These equations were also obtained independently and more
explicitly by Suhubi [18]. This theory contains two constants that act as relaxation
times and modify all the equations of the coupled theory, not only the heat equation.
The classical Fourier’s law of heat conduction is not violated if the medium under
consideration has a center of symmetry. Kumar and Singh [19,20] discussed the prob-
lems of wave propagation in a micropolar generalized thermoplastic body with stretch
and in a generalized thermo-microstretch elastic solid. Othman [21] studied the Lord–
Shulman theory under the dependence of the modulus of elasticity on the reference
temperature in two-dimensional generalized THE. Othman and Singh [22] investi-
gated the effect of rotation on generalized micropolar THE for a half-space under five
theories. Abbas [23], Youssef and Abbas [24], Abbas and Abd-Alla [25], Abbas [26],
and Abbas and Othman [27] applied the finite element method in different generalized
thermoelastic problems.

The purpose of this paper is to obtain the normal displacement, temperature, normal
force stress, and tangential couple stress in a microstretch elastic solid concerned with
the LS and CD theories. The finite element method is used to obtain the expressions
for the considered variables. The distributions of the considered variables are repre-
sented graphically. A comparison is carried out between the temperature, stresses, and
displacements as calculated from the generalized THE Lord-Shulman (LS) and clas-
sical dynamical coupled (CD) theories for the propagation of waves in a semi-infinite
microstretch elastic solid for different values of the relaxation time.

2 Formulation of the Problem

Following Eringen [3] and Lord and Shulman [14], the constitutive equations and
field equations for a linear isotropic generalized thermo-microstretch elastic solid in
the absence of body forces are obtained. We consider a rectangular coordinate sys-
tem (x, y, z) originating on the surface y = 0 and the z-axis pointing vertically into
the medium (Fig. 1). The basic governing equations of linear generalized THE with
rotation in the absence of body forces and heat sources are

( λ + μ)∇(∇ · �u) + (μ + k)∇2 �u + k(∇ × �φ) + λ0∇φ∗ − γ̂∇T = ρ �̈u, (1)

K ∇2T =
(

∂

∂t
+ τ0

∂2

∂t2

) (
ρCE T + γ̂ T0e + γ̂1T0φ

∗) , (2)

(α + β + γ )∇(∇ · �φ) − γ∇ × (∇ × �φ) + k(∇ × �u) − 2k �φ = jρ
∂2 �φ
∂t2 , (3)
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Fig. 1 Geometry of the problem

α0∇2φ∗ − λ1φ
∗ − λ0(∇ · �u) + γ̂1T = ρ j0

2

∂2φ∗

∂t2 , (4)

σil = (λ0φ
∗ + λur,r )δil + (μ + k)ul,i + μui,l − kεilrφr − γ̂ T δil , (5)

mil = αφr,rδil + βφi,l + γφl,i , (6)

λi = α0φ
∗
,i + b0εilrφl,r , (7)

e = ∂u

∂x
+ ∂w

∂z
. (8)

The state of plane strain parallel to the xz-plane is defined by

u1 = u (x, z, t), u2 = 0, u3 = w(x, z, t), φ1 = φ3 = 0,

φ2 = φ2(x, z, t), φ∗ = φ∗(x, z, t). (9)

The field Eqs. 1–4 reduce to

(λ + μ)

(
∂2u

∂ x2 + ∂2w

∂ x ∂ z

)
+ (μ + k)

(
∂2u

∂ x2 + ∂2u

∂ z2

)
− k

∂ φ2

∂ z

+λ0
∂ φ∗

∂ x
− γ̂

∂ T

∂ x
= ρ

∂2u

∂ t2 , (10)

(λ + μ)

(
∂2u

∂ x ∂ z
+ ∂2w

∂ z2

)
+ (μ + k)

(
∂2w

∂ x2 + ∂2w

∂ z2

)
+ k

∂ φ2

∂ x

+λ0
∂ φ∗

∂ z
− γ̂

∂T

∂ z
= ρ

∂2w

∂ t2 , (11)

K

(
∂2T

∂ x2 + ∂2T

∂ z2

)
=
(

∂

∂t
+ τ0

∂2

∂t2

) (
ρCE T + γ̂ T0e + γ̂1T0φ

∗) , (12)

γ

(
∂2φ2

∂ x2 + ∂2φ2

∂ z2

)
− 2kφ2 + k

(
∂ u

∂ z
− ∂ w

∂ x

)
= jρ

∂2φ2

∂t2 , (13)

123



Int J Thermophys (2012) 33:2407–2423 2411

α0

(
∂2φ∗

∂ x2 + ∂2φ∗

∂ z2

)
− λ1φ

∗ − λ0

(
∂ u

∂ x
+ ∂ w

∂ z

)
+ γ̂1T = ρ j0

2

∂2φ∗

∂t2 , (14)

where γ̂ = (3λ + 2μ + k)αt1, γ̂1 = (3λ + 2μ + k)αt2 , and ∇2 = ∂2

∂ x2 + ∂2

∂ z2 .
The constants γ̂ and γ̂1 depend on mechanical as well as the thermal properties of

the body. The constitutive relations can be written as

σ xx = λ0φ
∗ + (λ + 2μ + k)

∂ u

∂x
+ λ

∂ w

∂z
− γ̂ T, (15)

σzz = λ0φ
∗ + (λ + 2μ + k)

∂w

∂z
+ λ

∂u

∂x
− γ̂ T, (16)

σxz = μ
∂u

∂z
+ (μ + k)

∂w

∂x
+ kφ2, (17)

σzx = μ
∂w

∂x
+ (μ + k)

∂u

∂z
− kφ2, (18)

mxy = γ
∂φ2

∂ x
, (19)

mzy = γ
∂φ2

∂z
, (20)

λx = α0
∂φ∗

∂ x
+ b0

∂φ2

∂z
, (21)

λz = α0
∂φ∗

∂ z
− b0

∂φ2

∂x
. (22)

For convenience, the following non-dimensional variables are used:

x ′
i = ω∗

c2
xi , u′

i = ρc2ω
∗

γ̂ T0
ui , t ′ = ω∗t, τ ′

0 = ω∗τ0, T ′ = T

T0
,

σ ′
i j = σi j

γ̂ T0
, φ′

2 = ρc2
2

γ̂ T0
φ2, φ

∗′ = ρc2
2

γ̂ T0
φ∗, m′

i j = ω∗

c2γ̂ T0
mi j ,

λ′
i = ω∗

c2γ̂ T0
λi , ω∗ = ρCE c2

2

K
, c2

2 = λ + 2μ + k

ρ
. (23)

Using Eq. 23 in Eqs. 10–22, we obtain the equations in non-dimensional form after
suppressing the primes as

∂2u

∂x2 + (a1 + a2)
∂2w

∂x∂z
+ (a2 + a3)

∂2u

∂z2 + a0
∂φ∗

∂x
− a3

∂φ2

∂z
− ∂T

∂x
= ∂2u

∂t2 , (24)

∂2w

∂z2 + (a1 + a2)
∂2u

∂x∂z
+ (a2 + a3)

∂2w

∂x2 + a0
∂φ∗

∂z
+ a3

∂φ2

∂x
− ∂T

∂z
= ∂2w

∂t2 , (25)

∂2T

∂x2 + ∂2T

∂z2 =
(

∂

∂t
+ τ0

∂2

∂t2

)[
T + ε1φ

∗ + ε2

(
∂u

∂x
+ ∂w

∂z

)]
, (26)
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∂2φ2

∂x2 + ∂2φ2

∂z2 + ζ1

(
∂u

∂z
− ∂w

∂x

)
− 2ζ1φ2 = ζ2

∂2φ2

∂t2 , (27)

∂2φ∗

∂x2 + ∂2φ∗

∂z2 − b1

(
∂u

∂x
+ ∂w

∂z

)
+ b2T − b3φ

∗ = b4
∂2φ∗

∂t2 , (28)

σxx = a0φ
∗ + ∂ u

∂x
+ a1

∂ w

∂z
− T, (29)

σzz = a0φ
∗ + ∂w

∂z
+ a1

∂u

∂x
− T, (30)

σxz = a2
∂u

∂z
+ (a2 + a3)

∂w

∂x
+ a3φ2, (31)

σzx = a2
∂w

∂x
+ (a2 + a3)

∂u

∂z
− a3φ2, (32)

mxy = a4
∂φ2

∂ x
, (33)

mzy = a4
∂φ2

∂z
, (34)

λx = a5
∂φ∗

∂ x
+ a6

∂φ2

∂z
, (35)

λz = a5
∂φ∗

∂ z
− a6

∂φ2

∂x
, (36)

where (a0, a1, a2, a3) = 1
ρc2

2
(λ0, λ, μ, k) , (a4, a5, a6) = ω∗2

ρc4
2
(γ, α0, b0) ,

(ε1, ε2) = T0γ̂
ρKω∗

(
γ̂1, γ̂

)
, (ζ1, ζ2) = c2

2
γ

(
k

ω∗2 , ρ j
)
, (b1, b2, b3) = c2

2
α0ω∗2

(
λ0,

ρc2
2 γ̂1

γ̂
, λ1

)
,

b4 = ρc2
2 j0

2α0
.

3 Initial and Boundary Conditions

The above equations are solved subject to initial conditions,

u = w = T = φ2 = φ∗ = 0, u̇ = ẇ = Ṫ = φ̇2 = φ̇∗ = 0, t = 0. (37)

The boundary conditions for the problem may be taken as

T (0, z, t) = T1 H(2l − |z|), σxx (0, z, t) = 0, σxz(0, z, t) = 0, mxy(0, z, t) = 0, λx (0, z, t) = 0,

(38)

where H is the Heaviside unit step.
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4 Finite Element Formulation

In this section, the governing equations of a microstretch-generalized thermoelastic
half-space are summarized, followed by the corresponding finite element equations.
In the finite element method, the eight-node isoparametric, quadrilateral element is
used for displacement components, temperature, and micro-rotation calculations. The
displacement components u, w, temperature T, micro-rotation φ2, and microstretch
φ∗ are related to the corresponding nodal values by

u =
m∑

i=1

Ni ui (t), w =
m∑

i=1

Niwi (t), T =
m∑

i=1

Ni Ti (t),

φ2 =
m∑

i=1

Niφ2i (t), φ∗ =
m∑

i=1

Niφ
∗
i (t), (39)

where m denotes the number of nodes per element and Ni ’s are the shape functions.
The weighting functions and the shape functions coincide. Thus,

δu =
m∑

i=1

Niδui (t), δw =
m∑

i=1

Niδwi (t), δT =
m∑

i=1

NiδTi (t),

δφ2 =
m∑

i=1

Niδφ2i (t), δφ∗ =
m∑

i=1

Niδφ
∗
i (t). (40)

It should be noted that appropriate boundary conditions associated with the govern-
ing Eqs. 24–28 must be adopted in order to properly formulate a problem. Essential
conditions are prescribed displacements u, w, temperature T , micro-rotation φ2, and
microstretch φ∗, while the natural boundary conditions are prescribed tractions, heat
flux, and mass flux which are expressed as

σxx nx + σxznz = τ̄x , σxznx + σzznz = τ̄z,

qx nx + qznz = q̄, mxynx = m̄, λx nx = λ̄, (41)

where nx and nz are direction cosines of the outward unit normal vector at the bound-
ary; τ̄x , τ̄z are the given tractions values; q̄ is the given surface heat flux; and m̄ and λ̄
are the given couple traction and microstress components, respectively. In the absence
of body forces, the governing equations are multiplied by weighting functions and then
are integrated over the spatial domain Ψ with the boundary Γ . Applying integration
by parts and making use of the divergence theorem reduce the order of the spatial
derivatives and allows for the application of the boundary conditions. Thus, the finite
element equations corresponding to Eqs. 24–28 can be obtained as
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me∑
e=1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣

Me
11 0 0 0 0

0 Me
22 0 0 0

Me
31 Me

32 Me
33 0 Me

35
0 0 0 Me

44 0
0 0 0 0 Me

55

⎤
⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

üe

ẅe

T̈ e

φ̈e
2

φ̈∗e

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

+

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0
0 0 0 0 0
Ce

31 Ce
32 Ce

33 0 Ce
35

0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u̇e

ẇe

Ṫ e

φ̇e
2

φ̇∗e

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

+

⎡
⎢⎢⎢⎢⎣

ke
11 ke

12 ke
13 ke

14 ke
15

ke
21 ke

22 ke
23 ke

24 ke
25

0 0 ke
33 0 0

ke
41 ke

42 0 ke
44 ke

45
ke

51 ke
52 ke

53 0 ke
55

⎤
⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ue

we

T e

φe
2

φ∗e

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Fe
1

Fe
2

Fe
3

Fe
4

Fe
5

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(42)

where the coefficients in Eq. 42 are given below:

Me
11=

∫
Ψ

[N ]T [N ] dΨ , Me
22=

∫
Ψ

[N ]T [N ] dΨ , Me
31 =

∫
Ψ

τ0ε2 [N ]T
[
∂ N

∂x

]
dΨ,

Me
32 =

∫
Ψ

τ0ε2 [N ]T
[
∂ N

∂z

]
dΨ, Me

33 =
∫
Ψ

τ0 [N ]T [N ] dΨ,

Me
35 =

∫
Ψ

τ0ε1 [N ]T [N ] dΨ , Me
44 =

∫
Ψ

ζ2 [N ]T [N ] dΨ,

Me
55 =

∫
Ψ

b4 [N ]T [N ] dΨ, Ce
31 =

∫
Ψ

ε2 [N ]T
[
∂ N

∂x

]
dΨ,

Ce
32 =

∫
Ψ

ε2 [N ]T
[
∂ N

∂z

]
dΨ, Ce

33 =
∫
Ψ

[N ]T [N ] dΨ , Ce
35 =

∫
Ψ

ε1 [N ]T [N ] dΨ ,

K e
11 =

∫
Ψ

([
∂ N

∂x

]T [
∂ N

∂x

]
+ (a2 + a3)

[
∂ N

∂z

]T [
∂ N

∂z

])
dΨ ,

K e
12 =

∫
Ψ

(a1 + a2)

[
∂ N

∂z

]T [
∂ N

∂x

]
dΨ, K e

13 = −
∫
Ψ

[
∂ N

∂x

]T

[N ] dΨ,

K e
14 = −

∫
Ψ

a3

[
∂ N

∂z

]T

[N ] dΨ, K e
15 =

∫
Ψ

a0

[
∂ N

∂z

]T

[N ] dΨ,

K e
21 =

∫
Ψ

(a1 + a2)

[
∂ N

∂x

]T [
∂ N

∂z

]
dΨ,

K e
22 =

∫
Ψ

([
∂ N

∂z

]T [
∂ N

∂z

]
+ (a2 + a3)

[
∂ N

∂x

]T [
∂ N

∂x

])
dΨ,

K e
23 = −

∫
Ψ

[
∂ N

∂z

]T

[N ] dΨ, K e
24 =

∫
Ψ

a3

[
∂ N

∂x

]T

[N ] dΨ,
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K e
25 =

∫
Ψ

a0

[
∂ N

∂z

]T

[N ] dΨ,

K e
33 =

∫
Ψ

([
∂ N

∂x

]T [
∂ N

∂x

]
+
[
∂ N

∂z

]T [
∂ N

∂z

])
dΨ,

K e
41 = −

∫
Ψ

ζ1 [N ]T
[
∂ N

∂z

]
dΨ, K e

42 =
∫
Ψ

ζ1 [N ]T
[
∂ N

∂x

]
dΨ,

K e
44 =

∫
Ψ

([
∂ N

∂x

]T [
∂ N

∂x

]
+
[
∂ N

∂z

]T [
∂ N

∂z

]
+ 2 [N ]T [N ]

)
dΨ,

K e
51 =

∫
Ψ

b1 [N ]T
[
∂ N

∂x

]
dΨ, K e

52 =
∫
Ψ

b1 [N ]T
[
∂ N

∂z

]
dΨ,

K e
53 = −

∫
Ψ

b2 [N ]T [N ] dΨ,

K e
55 =

∫
Ψ

([
∂ N

∂x

]T [
∂ N

∂x

]
+
[
∂ N

∂z

]T [
∂ N

∂z

]
+ b3 [N ]T [N ]

)
dΨ,

Fe
1 =

∫
Γ

[N ]T τ̄x dΓ , Fe
2 =

∫
Γ

[N ]T τ̄zdΓ , Fe
3 =

∫
Γ

[N ]T q̄dΓ ,

Fe
4 =

∫
Γ

[N ]T m̄dΓ , Fe
5 =

∫
Γ

[N ]T λ̄dΓ , (43)

Symbolically, the discretized equations of Eqs. 42 can be written as

Md̈ + Cḋ + K d = Fext, (44)

where M, C, K , and Fext represent the mass, damping, stiffness matrices, and exter-
nal force vectors, respectively, d = [u, w, T, φ2, φ

∗]T . On the other hand, the time
derivatives of the unknown variables have to be determined by the Newmark time
integration method (see Wriggers [28]).

5 Numerical Results and Discussion

With the view of illustrating the theoretical results obtained in the preceding sections
and concerned with Lord–Shulman theory, we present some numerical results. The
material chosen for this purpose is magnesium crystal (a microstretch thermoelastic
solid). The micropolar parameters are the following [20]:

ρ = 1.74 × 103 kg · m−3, j = 0.2 × 10−19 m2, λ = 9.4 × 1010 N · m−2,

γ = 0.779 × 10−9 N, k = 1010 N · m−2, μ = 4.0 × 1010 N · m−2.
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Fig. 2 Horizontal displacement distribution u for different values of τ0

The thermal characteristics were taken from Ref. [21]:

τ0 = 0.1, T0 = 298 K, αt1 = 0.05 × 10−3 K−1, αt2 = 0.04 × 10−3 K−1,

K = 1.7 × 102 J · m−1 · s−1 · K−1, CE = 1.04 × 103 J · kg−1 · K−1

The stretch parameters from Ref. [22] are as follows:

λ0 = 2.1 × 1010 N · m−2, λ1 = 0.7 × 1010 N · m−2, j0 = 0.19 × 10−19 m2,

α0 = 0.779 × 10−9 N, b0 = 0.9 × 10−9 N

The results for the temperature distribution T ; displacement components u, v,

stress components σxx , σxz, σzz ; the micro-rotation φ2; the microstretch φ∗, λx ,

and mxy under the LS theory for different values of the thermal relaxation time
(τ0 = 0, 0.1, 0.2) are shown in Figs. 2, 3, 4, 5, 6, 7, 8, 9, 10, and 11 for a ther-
moelastic solid with different values of the relaxation time: τ0 = 0 for the solid line,
τ0 = 0.1 for the dashed line, and τ0 = 0.2 for the dotted line.

Figure 2 depicts that the values of displacement components u are increasing in the
initial range 0 < x < 0.25 as τ0 increases; in the further range 0.25 < x < 1.0, the
values decrease as τ0 increases, then converge to zero. Figure 3 shows that the values
of displacement component w decrease as τ0 increases in the range 0 < x < 1.4,
then converge to zero. Figure 4 exhibits that the temperature under the influence of
thermal relaxation decreases sharply in the initial range 0 < x < 0.5 as τ0 increases;
in the further range x > 0.5, the values decrease as τ0 decreases. Figure 5 explains
that the values of micro-rotation φ2 decrease in the initial range 0 < x < 1.0, then
increase in the range 1.0 < x < 3.0 as τ0 increases; in the further range x > 3.0,
the values decrease as τ0 increases. Figure 6 depicts that the values of microstretch
φ∗ increase as τ0 increases. Figure 7 shows that the values of the stress components
σxx are decreasing in the initial range 0 < x < 0.38 as τ0 increases, in the further
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Fig. 3 Vertical displacement distribution w for different values of τ0
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Fig. 13 Vertical displacement w distribution

range 0.38 < x < 1.6, the values increase as τ0 increases. Figure 8 shows that the
values of the stress component σxz are increasing in the initial range ss as τ0 increases,
while they decrease in the range 0.2 < x < 0.5 as τ0 increases; in the further range
0.5 < x < 1.6, the values increase as τ0 increases and finally all curves converge to
zero. Figure 9 explains that the values of the stress component σzz initially coincide
within the range 0 < x < 0.2, while they decrease in the range 0.2 < x < 0.8 as τ0
increases; in a further range 0.8 < x < 1.9, the values increase as τ0 increases and
finally all curves converge to zero. Figure 10 shows the distribution of mxy are decreas-
ing in the initial range 0 < x < 0.2 as τ0 increases; in the further range 0.2 < x < 0.5,

the values decrease as τ0 increases, while they increase in the range 0.5 < x < 1.1 as
τ0 increases; finally, all curves converge to zero. Figure 11 depicts that the distribution
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Fig. 14 Temperature distribution
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Fig. 15 Stress σxx distribution

of microstress λx are increasing in the initial range 0 < x < 0.35 as τ0 increases; in
the further range 0.35 < x < 1.2, the values decrease as τ0 increases and finally all
curves converge to zero.

Figures 12, 13, 14, 15, 16, and 17 exhibit comparisons between the tempera-
ture distributions T ; the displacement components u, w; and the stress components
σxx , σxz, σzz versus the distance x for the LS theory in the case of general-
ized THE, micropolar thermoelasticity (THEM), and thermoelasticity with stretch
(THES).
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Fig. 17 Stress σzz distribution

6 Concluding Remarks

In this study, the finite element method is used to study the problem of the effect of
the thermal relaxation time on a microstretch thermoelastic solid. We can obtain the
following conclusions based on the above analysis:

1. The thermal relaxation time has a significant effect on the field quantities.
2. The presence of the microstretch plays a significant role in all the physical quan-

tities.
3. Numerical solutions based upon the finite element method on the THE problem

in solids have been developed and utilized.
4. The values of all the physical quantities converge to zero with an increase in the

distance x and all functions are continuous.
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