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Abstract An analytical solution to the axisymmetric problem of a radially polarized,
radially orthotropic piezoelectric hollow cylinder with a thermal gradient and subjected
to various boundary conditions is developed. The elastic coefficients, piezoelectric
coefficients, stress-temperature moduli, dielectric coefficient, pyroelectric coefficients,
thermal conductivity coefficient, and thermal expansion coefficients of the hollow
cylinder are assumed to be graded in the radial direction according to a simple power-
law distribution. The governing second-order differential equations are derived from
the equilibrium equation, the charge equation of electrostatics, and steady state heat
transfer equation through the radial direction of the inhomogeneous hollow cylinder.
The displacement, stresses, and potential field distributions in the cylinder are exam-
ined. The influence of the inhomogeneity parameter on the numerical results is inves-
tigated.

Keywords Electric potential · Inhomogeneous hollow cylinder · Piezoelectric ·
Thermal gradient

1 Introduction

In recent years, the use of piezoelectric materials in intelligent structures has attracted
extensive attention. Due to the intrinsic direct and converse piezoelectric effects,
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piezoelectric materials can be effectively used as sensors or actuators for the active
shape or vibration control of structures. The study of the coupling effect between elas-
tic and piezoelectric materials has become an important topic in modern science and
technology. An inhomogeneous piezoelectric material has a composition and proper-
ties varying continuously along certain radial or thickness directions. This material is
an intentionally designed composite so that it possesses desirable properties for some
specific applications. An advantage of this new kind of material is improvement in the
reliability of the lifespan of piezoelectric devices. Recently, there has been growing
interest in materials deliberately fabricated so that their electric, magnetic, thermal,
and mechanical properties vary continuously in space on the macroscopic scale. This
research subject is so new that only a few results can be found in the literature that
used exact solutions.

Many achievements have been obtained in responses for elastic and piezoelectric
hollow cylinders [1–6]. For piezoelectric media, Adelman and Stavsky [7,8] stud-
ied the axisymmetric free vibrations of radially and axially polarized piezoelectric
ceramic hollow cylinders. Shul’ga et al. [9] and Paul and Venkatesan [10] investigated
the axisymmetric and three-dimensional (3D) electroelastic waves in a hollow piezo-
electric ceramic cylinder. Wang and Gong [11] obtained the elastodynamic solution
for multilayered cylinders subjected to axisymmetric dynamic loads. Yin and Yue [12]
studied the transient plane-strain response of multilayered cylinders due to an axisym-
metric impulse. Han and Liu [13] studied elastic waves in a functionally graded piezo-
electric cylinder. Utilizing the Fourier transform technique, Ueda [14] investigated
the thermally induced fracture of a functionally graded piezoelectric layer. Lu et al.
[15] derived exact solutions of a simply supported functionally graded piezoelectric
plate/laminate under cylindrical bending. Wang et al. [16] obtained the dynamic solu-
tion of a multilayered orthotropic piezoelectric hollow cylinder for axisymmetric plane
strain problems. Wang and Dong [17] showed that the characteristics of wave propaga-
tion in piezoelectric cylindrically laminated shells are related to the large deformation,
rotator inertia, and thermal environment of the shells.

Some approximate 3D numerical modeling has also been developed for the static
and dynamic analyses of multilayered composites and functionally graded material
(FGM) circular hollow cylinders. For example, Wu and Yang [18] developed both the
Reissner mixed variational theorem based on meshless collocation and an element-
free Galerkin method for the approximate 3D analysis of multilayered composites and
FGM hollow cylinders under mechanical loads. Chen et al. [19] developed an analytical
solution of transversely isotropic FGM rotating discs, which can degenerate into the
solution for the corresponding isotropic FGM rotating discs. Asghari and Ghafoori
[20] presented a semi-analytical 3D elasticity solution for rotating functionally graded
hollow and solid disks. Chen et al. [21] used the state-space approach coupled with the
general linear spring-layer model to analyze 3D bending and free vibration of simply
supported, cross-ply laminated cylindrical panels with weak interfaces. In fact, the
formulation and analytical solution of the hollow cylinder may be easily obtained by
neglecting the dependence of all parameters to the axial coordinate z, i.e., assuming
planar conditions.

There are also many studies that have been carried out for inhomogeneous materials.
Among them, the special case that Young’s modulus has a power-law dependence on
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the radial coordinate, while the linear thermal expansion coefficient and Poisson’s ratio
are constants, has been considered by many scientists and engineers [22–24]. In the
present investigation, thermo-electro-elastic equations for linear piezoelectric inhomo-
geneous hollow cylinders are given. The governing equilibrium equations in a radially
polarized form are shown to reduce to a coupled system of second-order ordinary differ-
ential equations for the radial displacement and electric potential field. The analytical
solution for these equations is developed for various boundary conditions. The exact
expressions for responses of the radial displacement, radial stress, hoop stress, and
electrostatic potential in inhomogeneous piezoelectric hollow cylinders are obtained.

2 Formulation of the Problem

Let us consider a long cylinder of outer radius b and inner radius a and made of
an inhomogeneous orthotropic material. The cylindrical coordinate system (r, θ, z)
is used with the z-axis coinciding with the axis of the cylinder. The cylinder is in a
state of generalized planar strain, i.e., temperature, displacements, and stresses may be
only functions of the coordinates r and θ . In addition, the strain tensor is considered
to be symmetric about the z-axis. So, we have only the radial displacement ur which
is independent of θ and z. The material properties of the inhomogeneous hollow
cylinder are assumed to be functions of the radial direction. The relationship between
the physical properties and the radial direction r for the present cylinder is given by

P(r) = P0
( r

b

)2k
, (1)

where P0 is the material property of the homogeneous hollow cylinder and k is a
geometric parameter. The value of k equal to zero represents a fully homogeneous
hollow cylinder. The above power-law assumption reflects variable properties applied
only in the radial direction. The power-law exponent k may be varied to obtain different
distributions of the component materials through the radial direction of the cylinder.

The constitutive relations for an inhomogeneous long piezoelectric hollow cylinder
are given by [3,4]

σ11 = c11(r)
dur

dr
+ c12(r)

ur

r
+ e11(r)

dϕ

dr
− γ1(r)T (r),

σ22 = c12(r)
dur

dr
+ c22(r)

ur

r
+ e12(r)

dϕ

dr
− γ2(r)T (r),

D11 = e11(r)
dur

dr
+ e12(r)

ur

r
+ β11(r)

dϕ

dr
+ p11(r)T (r),

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2)

where ci j , ei j , γi , β11, and p11 are the elastic coefficients, piezoelectric coefficients,
stress-temperature moduli, dielectric coefficient, and pyroelectric coefficients, respec-
tively. In addition, σi j ’s are the stress components and D11 is the radial electric dis-
placement. Note that the stress-temperature moduli γi are given in terms of the elastic
coefficients ci j and the thermal expansion coefficients αi by the relations,

γ1 = c11α1 + c12α2 + c13α3,

γ2 = c12α1 + c22α2 + c23α3. (3)

123



Int J Thermophys (2012) 33:1288–1301 1291

The equilibrium equation in the absence of a body force in the radial direction is given
by

dσ11

dr
+ σ11 − σ22

r
= 0. (4)

In the absence of free charge density, the charge equation of electrostatics is

dD11

dr
+ D11

r
= 0. (5)

Substituting from Eq. 2 into Eq. 4, we get

c11
d2ur

dr2 +
(

dc11

dr
+ c11

r

)
dur

dr
+ 1

r

(
dc12

dr
− c22

r

)
ur + e11

d2ϕ

dr2

+
(

de11

dr
+ e11 − e12

r

)
dϕ

dr
− γ1

dT

dr
−

(
dγ1

dr
+ γ1 − γ2

r

)
T = 0. (6)

The elastic coefficients, piezoelectric coefficients, thermal expansion coefficients,
dielectric coefficient, and pyroelectric coefficients of the inhomogeneous hollow cylin-
der change continuously through the radial direction of the cylinder and obey the gra-
dation relation given in Eq. 1. Inserting the material properties c1i , e1i , and γi (i = 1, 2)
from Eq. 1 into the above ordinary differential equation, we obtain

c0
11

d2ur

dr2 + c0
11

r
(1 + 2k)

dur

dr
− 1

r2

[
c0

22 − 2kc0
12

]
ur

−
{
γ 0

1
d

dr
+ 1

r

[
γ 0

1 (1 + 2k) − γ 0
2

]}
T

+e0
11

d2ϕ

dr2 + 1

r

[
e0

11(1 + 2k) − e0
12

] dϕ

dr
= 0, (7)

where c0
1i , e0

1i , and γ 0
i represent the elastic constants, piezoelectric constants, and

stress-temperature moduli, respectively, for the homogeneous hollow cylinder.

3 Solution of the Problem

Introducing the following dimensionless forms:

R = r

b
, S = a

b
, u = ur

b
, Φ =

√
β0

11

c0
11

ϕ

b
,

ci = c0
i2

c0
11

, ei = e0
i2√

c0
11β

0
11

, σi = σi i

c0
11

, (i = 1, 2), (8)

D1 = D11√
c0

11β
0
11

, Ti (R) = γ 0
i T (r)

c0
11

, Tp(R) = p0
11T (r)√
c0

11β
0
11

.
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Then, Eq. 2 may be written in the following simple form:

σ1 = R2k
(

du

dR
+ c1

u

R
+ e1

dΦ

dR
− T1(R)

)
, (9)

σ2 = R2k
(

c1
du

dR
+ c2

u

R
+ e2

dΦ

dR
− T2(R)

)
, (10)

D1 = R2k
(

e1
du

dR
+ e2

u

R
− dΦ

dR
+ Tp(R)

)
. (11)

Also, the charge equation should be

dD1

dR
+ D1

R
= 0. (12)

One can easily get the radial electric displacement from the above equation as

D1(R) = C

R
, (13)

where C is a constant. Substituting the above equation into Eq. 11 yields

dΦ

dR
= e1

du

dR
+ e2

u

R
+ Tp(R) − C

R1+2k
. (14)

So, one can get the dimensionless stresses in the form

σ1 = R2k
[
(1 + e2

1)
du

dR
+ (c1 + e1e2)

u

R
− T1(R) + e1Tp(R)

]
− e1

C

R
, (15)

σ2 = R2k
[
(c1 + e1e2)

du

dR
+ (c2 + e2

2)
u

R
− T2(R) + e2Tp(R)

]
− e2

C

R
. (16)

In addition, the equilibrium differential equation given in Eq. 7 may be rewritten in
the following form:

R2 d2u

dR2 + (1 + 2k)R
du

dR
+ (k2 − μ2)u + Ψ (R) = 0, (17)

where

μ2 = k2 − 2k(c1 + e1e2) − (c2 + e2
2)

1 + e2
1

, (18)

and the function Ψ (R) is given by

Ψ (R) = 1

1 + e2
1

[
R2 dTp1

dR
+ R(1 + 2k)Tp1 − RTp2 + e2C

R2k

]
, (19)
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in which

Tp1 = e1Tp − T1, Tp2 = e2Tp − T2. (20)

The general solution of Eq. 17 may be obtained as follows:

u(R) = R−k−μ [A + F1(R)] + R−k+μ [B − F2(R)] , (21)

where A and B are additional arbitrary constants. The functions F1 and F2 are given
by

F1 = 1

2μ

∫
Rk+μ−1Ψ (R)dR, F2 = 1

2μ

∫
Rk−μ−1Ψ (R)dR. (22)

The solution of the present problem is completed when the temperature is determined.
Since the variation of the temperature field is assumed to occur in the radial direction
only, then the steady state heat transfer equation through the radial direction of the
inhomogeneous hollow cylinder obeys the following equation:

[
d2

dr2 +
(

1

κ(r)

dκ(r)

dr
+ 1

r

)
d

dr

]
T (r) = 0, (23)

where the thermal conductivity coefficient κ varies in the radial direction according
to Eq. 1. Then

[
R2 d2

dr2 + R(1 + 2k)
d

dR

]
T (R) = 0, (24)

and its solution is given by

T = 1

1 − S2k

[
Tb − Ta S2k + (Ta − Tb)S2k

R2k

]
, (25)

in which Ta and Tb are the inner and outer temperatures, respectively. Substituting
Eq. 21 with the aid of Eq. 25 into Eqs. 15 and 16 gives the radial and circumferential
stresses in the following forms:

σ1 = R2k

{
(1 + e2

1)

[
R−k−μ−1

(
e1e2 + c1

1 + e2
1

− k − μ

)
(A + F1) + R−k−μ dF1

dR

−R−k+μ dF2

dR
+ R−k+μ−1

(
e1e2 + c1

1 + e2
1

− k + μ

)
(B − F2)

]

+e1kp1 − k11 + (e1kp2 − k12)R−2k

}
− e1

C

R
, (26)
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σ2 = R2k

{
(c1 + e1e2)

[
R−k−μ−1

(
c2 + e2

2

c1 + e1e2
− k − μ

)
(A + F1) + R−k−μ dF1

dR

−R−k+μ dF2

dR
+ R−k+μ−1

(
e1e2 + c1

1 + e2
1

− k + μ

)
(B − F2)

]

+e2kp1 − k21 + (e2kp2 − k22)R−2k

}
− e2

C

R
, (27)

where

(ki1, ki2) = γ 0
i

c0
11(1 − S2k)

(
Tb − Ta S2k, (Ta − Tb)S2k

)
,

(
kp1, kp2

) = p0
11√

c0
11β

0
11(1 − S2k)

(
Tb − Ta S2k, (Ta − Tb)S2k

)
. (28)

In addition, the first derivative of the electrostatic potential is given, using Eq. 11, by

dΦ

dR
= R−k−μ−1[e2 − e1(k + μ)](A + F1) + R−k+μ−1[e2 − e1(k − μ)](B − F2)

+e1

(
R−k−μ dF1

dR
− R−k+μ dF2

dR

)
+ kp1 + kp2 R−2k − C R−(1+2k). (29)

The electrostatic potential is given by integrating the above equation which yields a
fourth constant D.

Finally, Eq. 19 yields

Ψ (R) = 1

1 + e2
1

{[
k21 − e2kp1 + (e1kp1 − k11)(1 + 2k)

]
R + e2C R−2k

+ [
kp2(e1 − e2) − k12 + k22

]
R1−2k

}
. (30)

4 Boundary Conditions

The elastic solution for the inhomogeneous hollow cylinder with variable piezo-
electro-elastic properties is completed by the application of the boundary conditions.
For the present inhomogeneous hollow cylinder, the solution requires that one bound-
ary condition be satisfied at each radius. These may be a given radial displacement
and/or radial stress or some combination. In addition, the solution requires also two
conditions applied on the value of the electric potential on the inner and outer radii
of the cylinder. We can now formulate a variety of commonly encountered situa-
tions. The boundary conditions at the radii of the hollow cylinder of the inner radius
r = a(R = S) and outer radius r = b(R = 1) may readily be formulated as discussed
below. The system of linear algebraic equations for the constants A, B, C , and D can
be solved for the cases of the following boundary conditions.
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4.1 Case 1

The cylinder is subjected to free inner and outer radii and a uniform potential difference
across the cylindrical annulus. For convenience, it is assumed that the inner radius
potential is zero and the potential on the outer radius is a nonzero constant.

σ1(S) = 0, σ1(1) = 0, Φ(S) = 0, Φ(1) = 1. (31)

4.2 Case 2

The cylinder is subjected to clamped inner and outer radii, and the inner radius potential
is nonzero while the outer radius is

u(S) = 0, u(1) = 0, Φ(S) = 1, Φ(1) = 0. (32)

4.3 Case 3

The cylinder is subjected to an internal uniform pressure, free outer radius, and a
uniform potential difference prescribed across the annulus (the inner radius potential
is zero while the outer radius is nonzero).

σ1(S) = 1, σ1(1) = 0, Φ(S) = 0, Φ(1) = 1. (33)

4.4 Case 4

In this case, the cylinder has mixed boundary condition, i.e., clamped at its inner radius
and free at its outer radius. In addition, it is assumed that the inner radius potential is
zero and the potential on the outer radius is a nonzero constant.

u(S) = 0, σ1(1) = 0, Φ(S) = 0, Φ(1) = 1. (34)

4.5 Case 5

Finally, the cylinder is subjected to an external uniform pressure, free inner radius,
and zero electric potential difference across the cylindrical annulus.

σ1(S) = 0, σ1(1) = 1, Φ(S) = 0, Φ(1) = 0. (35)

5 Numerical Results

Numerical results have been obtained graphically to show the distribution of the radial
displacement, radial stress, hoop stress, and electric potential through the radial direc-
tion of the inhomogeneous hollow cylinders. The results of the present investigations
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Fig. 1 Distribution of displacement, stresses, and electrostatic potential through the radial direction of the
hollow cylinder according to Case 1

are displayed in Figs. 1, 2, 3, 4, and 5 corresponding to the five cases studied. Two
hollow cylinders with S = 0.2 and 0.5 are considered. The plots depict results for
Ta = 0 ◦C and Tb = 100 ◦C . The basic material properties are taken as [3]

c0
11 = c0

33 = 111 GPa, c0
13 = c0

23 = 115 GPa, c0
12 = 77.8 GPa,

c0
22 = 220 GPa, e0

11 = e0
13 = −5.2 C · m−2, e0

12 = 15.1 C · m−2,

β0
11(×109) = 5.62 C2 · N−1 · m−2, p0

11(×105) = −2.5 N · m−2 · K−1,

α0
1 = α0

3 = 0.0001 K−1, α0
2 = 0.00001 K−1. (36)

Figures 1, 2, 3, 4, and 5 depict the variation of the displacement, stresses, and poten-
tial distributions along the radial direction of the inhomogeneous hollow cylinder with
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Fig. 2 Distribution of displacement, stresses, and electrostatic potential through the radial direction of the
hollow cylinder according to Case 2

different values of the inhomogeneity exponent k. It is seen easily from all figures that
the radial displacement and radial stress satisfy the mechanical boundary conditions
while the electrostatic potential satisfies fully the electric boundary conditions.

Figure 1 shows that when k increases, the radial displacement and potential are
increasing while the radial stress is decreasing. The hoop stress starts its curves with the
behavior of the radial stress, then reflects the behavior to be as the radial displacement
and potential. This is done at R ∼= 0.6 for S = 0.2 and at R ∼= 0.73 for S = 0.5. The
radial stress according to this case (purely electrical) shows an interesting maximum at
the interior surface. The maximum radial stress shifts to the outer radius as k increases,
independent of the value of S. Also, the interior displacement of the same radial point
is decreasing as S increases for k = 1 while it decreases for other values of k.
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Fig. 3 Distribution of displacement, stresses, and electrostatic potential through the radial direction of the
hollow cylinder according to Case 3

Figure 2 shows the results of a clamped cylinder with a uniform potential difference
across the cylindrical annulus. The radial displacement is interestingly a maximum
at the interior surface. The maximum displacement shifts to the inner radius as the
inhomogeneity coefficient k increases, independent of the value of S. Also, the interior
displacement decreases as S increases.

Figure 3 shows the results of an internal uniform pressure with a uniform poten-
tial difference across the cylindrical annulus. The radial displacement is significantly
decreasing at the inner radius, especially for higher values of k. This is done of course
from the radial stress at the inner radius. For k > 1, the radial stress is directly
decreasing along the radial direction for S = 0.2. For k = 1 (S = 0.2) and all values
of k(S = 0.5), the stress has a maximum shift to the inner radius. In Fig. 4, the elec-
trostatic potential has a changing trend similar to that of Fig 1. In these two cases, the
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Fig. 4 Distribution of displacement, stresses, and electrostatic potential through the radial direction of the
hollow cylinder according to Case 4

outer radius was free from radial stress. The inner radial stress may be negative for
k = 1 only.

Figure 5 shows the results of an external uniform pressure with a zero electrostatic
potential. The radial displacement shows similar behavior in comparisons with that of
Fig. 3. Here, the inner radius is free of the radial stress. For k = 2, the radial stress is
directly increasing along the radial direction to reach its maximum at the outer radius.
While for k < 1, its maximum shifts to the outer radius.

It should be noted that the radial displacement u experiences a change of sign in
Cases 4.1 and 4.3 for free inner and outer radii (Fig. 1) or for a free outer radius (Fig. 3).
Also, the radial stress σ1 experiences a change of sign in Cases 4.2 and 4.4 for clamped
inner and outer radii (Fig. 2) or for a clamped inner radius (Fig. 4). However, the hoop
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Fig. 5 Distribution of displacement, stresses, and electrostatic potential through the radial direction of the
hollow cylinder according to Case 5

stress experiences a change of sign in all cases studied. In fact, all the cylindrical cross
sections are in circumferential compression at the inner radii and in circumferential
tension at the outer radii. This phenomenon does not occur in purely mechanical
cylindrical orthotropic problems. Finally, all cases show the resulting induced electric
effect. Although the boundary conditions require that the electric potential be zero or
unity at the inner and outer radii, an electric potential has developed in the interior of
the cross section.

6 Conclusion

An exact solution for inhomogeneous hollow cylinders subjected to electric, thermal,
and mechanical load is obtained. All material coefficients are assumed to have the
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same exponent-law dependence on the radial direction of the hollow cylinder. The
distributions of the dimensionless displacement and stresses as well as dimensionless
electric potential curves are drawn and discussed in detail for various boundary con-
ditions. The obtained solution is valid for arbitrary electric, thermal, and mechanical
loads applied on the hollow cylinder. The results show that the inhomogeneity expo-
nent has a great effect on the radial displacement, stresses, and electric potential. By
selecting a proper value of k and suitable mechanical and electrical loads, it is possi-
ble for engineers to design such a cylinder that can meet some special requirements.
Finally, this article considers the case in which the material coefficients follow a power
function in the radial variable and then the present technique is applicable to other
material inhomogeneities. In addition, the analysis approach presented in this study
can be applied on all radially polarized piezoelectric cylinders.
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