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Abstract The so-called characteristic curves of Brown—the Amagat (Joule inver-
sion), Boyle, and Charles (Joule–Thomson inversion) curves—of hydrogen are
calculated with several equations of state. This work demonstrates that not all equa-
tions can generate physically reasonable Amagat curves. After inclusion of corrections
for soft repulsion (based on the Weeks–Chandler–Andersen perturbation theory) and
quantum effects into the simplified perturbed-hard-chain theory (SPHCT) equation
of state, this equation is able to not only generate an Amagat curve, but also predict
pVT data, residual Gibbs energies, and heat capacities of several gases at and above
100 MPa reasonably well.
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List of symbols

A Helmholtz energy
B 2nd virial coefficient
C p Isobaric heat capacity
CV Isochoric heat capacity
c Chain length parameter of the SPHCT EOS
d Apparent hard-sphere diameter
d0 d at zero density
H Enthalpy
h Planck’s constant
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kB Boltzmann’s constant
m Molecular mass; chain length parameter of the PC-SAFT EOS
N Number of molecules
n Amount of substance
p Pressure
R Universal gas constant
r Intermolecular distance
T Temperature
U Internal energy
u Pair potential
V Volume
v∗ EOS size parameter
y Background correlation function
Z Compressibility factor
αp Isobaric thermal expansivity
δ Perturbation theory integral, Eq. 20
ε Lennard-Jones potential energy parameter
κT Isothermal compressibility
� Thermal de Broglie wavelength
πT Internal pressure
ρ Density
σ Lennard-Jones potential size parameter
ξ Reduced density

Subscripts
att Attraction
c Critical
hs Hard sphere
m Molar property

Superscripts
r Residual property
˜ Reduced property

1 Introduction

Equations of state for fluids play a major role not only in fundamental thermodynam-
ics, but also in many applied sciences, from chemical engineering to geochemistry.
Nowadays there are thousands of equations of state in use, which differ not only quan-
titatively (i.e., in the deviation with which a given set of experimental data can be
correlated), but also qualitatively.

In order to assess these qualitatitve features, Brown [1] proposed the calculation
of several characteristic curves for equations of state, among them curves that he
called the Amagat, Boyle, and Charles curves. (Their definitions are given in the
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following section.) The curves were later used in the IUPAC “Guidelines for publica-
tion of equations of state” [2]; their calculation has become a kind of standard test for
so-called reference equations of state.

Of these characteristic curves, the Amagat (or Joule inversion) curve is rather diffi-
cult to obtain; in fact, it does not exist for most equations of state. Most users of equa-
tions of state, however, have never been aware of this shortcoming, for the Amagat
curve is located at rather extreme pressures or temperatures (100 to 200 times the crit-
ical pressure, 20 times the critical temperature). For most substances, these conditions
cannot be reached experimentally, and therefore the Amagat curve is not of practical
relevance, but rather “science fiction.”

But there are exceptions: for hydrogen, a substance of rapidly increasing tech-
nological importance, parts of the Amagat curve are experimentally accessible with
standard autoclave technology. For methane and some other components of natural
gas, the Amagat curve could be reached in deep reservoirs. Conversely, equations of
state that are used to model such reservoirs or applied to compressed hydrogen should
be able to produce an Amagat curve.

Here, however, a problem is encountered:

• High-quality reference equations of state of the Bender/Jacobsen-Stewart [3,4]
or Wagner–Setzmann [5] type have the quality and flexibility to generate Ama-
gat curves—but determining parameters for new fluids is a time-consuming and
demanding task, and they can be used for pure fluids only. A notable exception is
the GERG equation [6], an extension of the Bender/Jacobsen-Stewart-type equa-
tion toward mixtures by a heroic effort; but its valid pressure range is usually below
the Amagat curve region.

• On the other hand, semiempirical or theoretical equations of state can be applied
to mixtures—but they usually fail to produce Amagat curves because they contain
hard-core repulsion terms, whereas the Amagat curve is related to soft repulsion.

Of course there have been many attempts over the previous decades to account for soft
repulsion in equations of state using temperature-dependent molecular size parame-
ters, but this approach can lead to unphysical behavior, as pointed out already by
Trebble et al. [7,8]. In this work, we compare the behavior of several equations of
state. We demonstrate how a theory-based equation of state can be equipped with soft-
repulsion features, and thus can be made fit for thermodynamic studies under extreme
conditions.

2 Theory

2.1 The Characteristic Curves

The characteristic curves proposed by Brown [1], sometimes referred to as “ideal”
curves, are loci where a fluid shows some of the features of an ideal gas. As a exam-
ple, Fig. 1 shows the first-order characteristic curves of hydrogen, computed from the
equation of state of Leachman et al. [9], along which some first-order derivatives of
the compressibility factor have “ideal values.”
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Fig. 1 Characteristic curves of hydrogen, computed with the empirical equation of state of Leachman et
al. [9]. A Amagat (Joule inversion) curve, B Boyle curve, C Charles (Joule–Thomson inversion) curve, open
circle critical point. The coordinates have been distorted with the function x → x/(1 + 3xc) with x = T,

p for better visibility of details

2.1.1 The Boyle Curve

This curve is defined by any one of the following mathematical criteria (p pres-
sure, V volume, T temperature, Z = pV/(n RT ) compressibility factor, n amount of
substance):

(
∂ Z

∂V

)
T

= 0

(
∂ Z

∂p

)
T

= 0

(
∂p

∂V

)
T

= − p

V
(1)

Along the Boyle curve, the compressibility factor does not depend on volume or
pressure during isothermal changes. This curve exists for practically all equations of
state. It starts at zero pressure at the Boyle temperature (the temperature at which the
2nd virial coefficient goes to zero), passes over a maximum, and ends near (but not
at) the critical point on the saturation curve (more accurately, on the spinodal).

2.1.2 The Charles Curve

The Charles curve or Joule–Thomson inversion curve is the locus along which the
isenthalpic expansion coefficient vanishes. The mathematical criterion is any one of
these (H enthalpy):
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)
p
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T

(2)

This curve originates at a point on the T axis where the slope of the 2nd virial coeffi-
cient function, B(T ), matches that of a secant from the origin:

dB

dT
= B

T
(3)

It passes over a maximum and ends on the saturation curve at a lower temperature
than the Boyle curve. The Charles curve is always outside the Boyle curve.

2.1.3 The Amagat Curve

It is also known as the Joule inversion curve. Along this curve, the internal pressure
changes its sign. This happens because high pressure or high temperature (collisions
at high speed) forces the molecules into the repulsive regions of their pair potentials.
The mathematical criterion is any one of the following (U internal energy):

(
∂ Z

∂T

)
V

= 0

(
∂ Z

∂p

)
V

= 0

(
∂U

∂V

)
T

= 0

(
∂p

∂T

)
V

= p

T
(4)

This curve owes its existence to softly repulsive pair potentials; this is discussed in
Sect. 2.2. It starts on the T axis at the (usually very high) temperature where the 2nd
virial coefficient has a maximum (dB/dT = 0) and runs to lower temperatures, pass-
ing through a maximum. It encloses the Boyle and the Charles curves. If an equation
of state cannot generate a maximum of the 2nd virial coefficient, its Amagat curve
does not exist.

2.2 Thermodynamic Considerations

Many equations of state, especially those with a theoretical foundation, are of the
van der Waals type, i.e., they consist of a repulsion and an attraction term. Here, we
are considering a special, although very common, equation type having the general
structure

p = RT

Vm
Zhs(ξ) − patt(ξ, T̃ ). (5)

The repulsion term contains the compressibility factor of the hard-sphere (or another
hard-core) fluid, which depends on the reduced density ξ = v∗/Vm only; v∗ denotes a
characteristic volume. The attraction term patt usually depends on the reduced density
and the reduced temperature T̃ = T/T ∗, with T ∗ denoting a characteristic tem-
perature. For properly designed equations of state, however, the temperature depen-
dence decreases with increasing temperature. It is therefore permissible to neglect the
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attraction term in calculations of properties that depend on temperature derivatives at
high temperatures.

Real molecules are no hard-core particles, but allow some interpenetration of their
repulsive cores. This “soft repulsion” is accounted for in equations of state of the
type (5) by letting the dimensions of the hard cores become temperature-depen-
dent. It should be noted that, as long as chemical reactions or deformations of mol-
ecules are ruled out, soft repulsion is the only mechanism that can bring about a
positive configurational energy in classical fluids1; the contribution of the attractive
potential well is always negative. Therefore, a change of the sign of the internal
pressure,

πT =
(

∂U

∂V

)
T

, (6)

and thus the existence of the Amagat curve, is related to soft repulsion.
An accurate study of the high-temperature/high-pressure limiting behavior of cubic

equations of state was published by Trebble and Bishnoi [7] and by Salim and Trebble
[8]. In this special case, the repulsion term is

Zhs = Vm

Vm − v∗ , (7)

and its contributions to the internal energy and the residual isochoric heat capacity are

U r
m(Vm, T ) = −pT v∗′ with v∗′ = dv∗

dT
(8)

and

C r
V,m(Vm, T ) = −p

[
2v∗′ + T v∗′′ + p(v∗′)2

R

]
. (9)

As the curvature of v∗(T ) must be positive at least at high temperatures, and as the
second and third term will overrule the first one at high temperatures or pressures,
C r

V,m will necessarily turn negative under such conditions.
While negative total isochoric heat capacities are of course in conflict with the ther-

modynamic stability rules, this is not necessarily the case for residual heat capacities.
Still, negative C r

V,m should usually not occur in reality: as a fluid is compressed from
a low-density, ideal-gas state to liquid-like densities, the interaction with neighbor
molecules lets translational degrees of freedom become vibrational ones, and rota-
tional degrees of freedom librational ones. Each vibrational and librational degree of
freedom, however, contributes up to R to the molar isochoric heat capacity, whereas
translational and rotational degrees contribute R/2 only. Therefore, real fluids should

1 Quantum fluids are discussed in Sect. 2.4.
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have higher isochoric heat capacities, and C r
V,m should be positive. Negative C r

V,m

values are usually artifacts.2

Consequently, Salim and Trebble recommended keeping the size parameter temper-
ature-independent. This avoids the prediction of unphysical values, but either makes
equations of state inaccurate at high temperatures or pressures, or it tempts the devel-
opers of equations of state to compensate for this deficiency by creating a very com-
plicated attraction term, which usually leads to further problems.

Incidentally, the internal pressure of cubic equations of state (disregarding the attrac-
tion term) is

πT = p2v∗′

R
. (10)

Unless v∗(T ) has an extremum or the attraction term has a very unusual temperature
dependence at high temperatures (so that it cannot be neglected at high temperatures),
the internal pressure cannot change sign, and hence the Amagat curve cannot exist for
cubic equations of state.

The dilemma can eventually be avoided using noncubic equations of state. In
this more general case, the residual internal energy (without attraction contri-
butions) is

U r
m(Vm, T ) = −RT 2(Zhs − 1)

v∗′

v∗ (11)

and for the isochoric heat capacity

C r
V,m(Vm, T ) = − RT

v∗ (Z − 1)

[
2v∗′ + T v∗′′ − T

(v∗′)2

v∗

]
− Vm

v∗′

v∗ (p′T − p).

(12)

At high pressures and temperatures there must be a positive contribution to the internal
energy. When Z − 1 is positive, Eq. 11 implies v∗′ < 0, i.e., the apparent hard-body
size decreases with temperature.

In Eq. 12, the first and the third terms give positive contributions to the heat capac-
ity. The second term contains the curvature of v∗ with respect to temperature, which
should be positive at least at high temperatures; consequently this term can give a
large negative contribution. The last term of Eq. 12 contains the expression (p′T − p),
which is the internal pressure, (∂U/∂V )T . This property is positive inside the Amagat
curve and negative outside; at very high temperatures, it gives a positive contribution
to C r

V,m. It is therefore no longer possible to make a general prediction about the
limiting behavior of the residual isochoric heat capacity: properly designed noncubic
equations of state can have positive C r

V,m values at high temperatures.

2 An exception can be caused by quantum effects, which decrease the number of accessible energy levels
with increasing density. This will be discussed in Sect. 2.4.
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For the sake of completeness we briefly consider the behavior of residual isobaric
heat capacities: the difference of isobaric and isochoric heat capacities is given by the
well-known relation,

C p,m − CV,m = α2
pV Tm

κT
, (13)

where αp is the isobaric thermal expansivity and κT the isothermal compressibility.
For an ideal gas this difference amounts to R. Hence, the residual isobaric heat capacity
can be written as

C r
p,m = C r

V,m + α2
pV Tm

κT
− R. (14)

Because of the −R term, C r
p,m can possibly become negative even if C r

V,m > 0. For
most fluids under most conditions the second term on the right-hand side of Eq. 14
outweighs the −R. But liquid water near its freezing temperature is a known exception.

2.3 Perturbation Theory

A powerful method for dealing with soft repulsions between molecules was proposed
by Weeks, Chandler, and Andersen more than three decades ago [10]. We summarize
the approach for the reader’s convenience.
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Fig. 2 Apparent reduced hard-sphere diameter for a truncated Lennard-Jones potential as a function of
reduced temperature. + Eq. 19; — interpolation function, Eq. 22; – ··– PC-SAFT, Eq. 28 [19,20]
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Fig. 3 δ integral for a truncated Lennard-Jones potential as a function of reduced temperature. + evaluation
of the integral, Eq. 20; — interpolation function, Eq. 23

Consider a steep, softly repulsive pair potential, e.g., a truncated Lennard-Jones
12-6 potential:

u(r) =
{

r ≤ σ : 4ε
((

σ
r

)12 − (
σ
r

)6
)

r > σ : 0
(15)

Here, ε denotes the potential well depth, and σ the zero distance of the potential. As
we merely want to introduce a softness correction into an existing equation of state,
the truncation of the Lennard-Jones potential at r = σ is preferable over one at the
minimum, r = 21/6σ . It can then be shown that the Helmholtz energy of a fluid with
this interaction potential is—to a good approximation—the same as that of a hard-
sphere fluid with a collision diameter determined in such a way that the integral of the
so-called blip function vanishes:

∞∫
0

(
exp

(
−u(r)

kBT

)
− exp

(
−uhs(r)

kBT

))
yhs(r, ξ)r2 dr = 0 with ξ = π

6
Nd3

(16)
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Here, ξ is the reduced density with respect to the hard-sphere diameter d. yhs(r, ξ)

denotes the background correlation function of a hard-sphere fluid. The second expo-
nential term represents a Heaviside step function (i.e., a single unit step) located at the
distance d.

Verlet and Weis proposed a method for solving this equation for d [11,12]. As the
integrand of Eq. 16 differs from zero over a rather narrow range only, it is sufficient
to approximate yhs(r) by the first two terms of its Taylor expansion around d:

yhs(r̃ , ξ) = y0(ξ) + y1(ξ)(r̃ − 1) + · · · with r̃ = r

d
(17)

With this approximation the following expression for the hard-sphere diameter can be
obtained from Eq. 16,

d = d0

1 − y1(ξ)δ
2y0(ξ)

, (18)

where d0 is an effective hard-sphere diameter at zero density,

d̃0 = d0

σ
=

∞∫
0

(
exp

(
− ũ(r̃)

T̃

)
− 1

)
dr̃ (19)
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Fig. 4 Characteristic curves of hydrogen, computed with the SPHCT equation of state [15]. For an
explanation of the symbols see Fig. 1. There is no Amagat curve for this equation
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Fig. 5 Characteristic curves of hydrogen, computed with the soft-core SPHCT equation of state (this work).
For an explanation of the symbols, see Fig. 1. The arrows indicate the effect of the quantum correction

with

ũ(r̃) = 1

ε
u

( r

σ

)
, T̃ = kBT

ε

and δ a perturbation integral of higher order:

δ =
∞∫

0

(r̃ − 1)2 d

dr̃
exp

(
− ũ(r̃)

T̃

)
dr̃ (20)

y0(ξ) and y1(ξ) in Eq. 19 are properties of the hard-sphere reference fluid only. Verlet
and Weis proposed a universal approximation function:

y1(ξ)

2y0(ξ)
= 1 − 4.25ξ ′ + 1.362ξ ′2 − 0.8751ξ ′3

(1 − ξ ′)2 with ξ ′ = ξ − 1

16
ξ2 (21)

d̃0 and δ depend on temperature only; for the truncated Lennard-Jones potential
Eq. 15, the integrals Eqs. 19 and 20 were evaluated numerically and approximated by
(see Figs. 2, 3)
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Fig. 6 Characteristic curves of hydrogen, computed with the PC-SAFT equation of state [19,20]. For an
explanation of the symbols, see Fig. 1

d̃0 = 1 + f11T̃ + f12T̃ 2

1 + f21T̃ + f22T̃ 2
(22)

and

δ = gT̃ 3/2

1 + 1
4 T̃

(23)

with f11 = 0.437 814 2, f12 = 0.009 951 898, f21 = 0.474 555 8 and f22 = 0.013
387 17, and g = 0.001 394 056. As ξ and ξ ′ depend on d, it is necessary to solve
Eq. 18 iteratively. This is a complication, but even a simple successive substitution
scheme converges well [12]; we propose to use Steffensen’s accelerated substitution
method, which guarantees 2nd-order convergence [13].

If the iteration is turned off, i.e., if a temperature-dependent, but density-indepen-
dent hard-sphere diameter d = d0 is used, the WCA perturbation theory reduces to
the so-called Barker–Henderson (BH) approximation.

2.4 Equation of State

It should be emphasized that the Weeks–Chandler–Andersen perturbation theory
leads to a temperature- and density-dependent effective hard-sphere diameter.

123



Int J Thermophys (2010) 31:227–252 239

0 1 2 3 4 5 10 20

T
~

1

2

3

4

5

10

20

p~

sSPHCT/
BH

A

A

CB

Fig. 7 Characteristic curves of hydrogen, computed with the soft-core SPHCT equation of state with
density-independent size parameter, temperature dependence taken from: — Barker–Henderson perturba-
tion theory, – ··– PC-SAFT equation of state. For an explanation of the other symbols, see Fig. 1

Several authors realized that using this diameter with a hard-sphere equation would
lead to equations of state for realistic fluids of high quality, but they regarded this
approach as not feasible, or at least inconvenient [14], because the calculation of the
hard-sphere diameter requires an iteration.

It turns out however that the iteration with Steffensen’s method is reliable and very
fast. Alternatively, one could represent d̃(ξ, T̃ ) by a suitable 2-dimensional interpola-
tion function. But the evaluation of such a function would introduce inaccuracies and
probably not save much time over the iteration.

For the demonstration of the effect of the softness correction we use the simplified
perturbed-hard-chain theory (SPHCT) equation of state [15]. It contains a hard-sphere
term with a modification to account for chain molecules and an attractive term based
on an approximate theory of the square-well fluid. The expression for the residual
Helmholtz energy is

Ar
m

RT = c(4ξ−3ξ2)

(1−ξ)2 − zc ln
(

1 + 6
π

√
2

ξ
(

exp
(

1
2T̃

)
− 1

))
with ξ̃ = v∗

V = π
6

Nσ 3

V .

(24)

Here, c is a parameter accounting for nonspherical shape (density-dependent degrees
of freedom); z = 18 is a coordination number.
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The “soft-core SPHCT” equation of state (sSPHCT) is obtained from Eq. 24
simply by replacing σ in the repulsion term with the perturbation theory diameter
d from Eq. 18. As this is a function of temperature and density, it is no longer possible
to give an explicit expression for the pressure. Instead, we use numerical differentia-
tion. The formula

Z = 1 + ρ

RT

(
Ar

m(ρ + �ρ, T ) − Ar
m(ρ − �ρ, T )

2�ρ
+ O(�ρ2)

)
(25)

with �ρ ≈ 10−5ρ and ρ = n/V (using “double precision” arithmetic) was found to
be adequate for most purposes [16]. For the implementation in the ThermoC program
package [17], a 4-point formula was used, which is even good to order O(�ρ4).

For calculation of thermodynamic properties of hydrogen, it is advisable to include
quantum corrections. Here, we use the 1st-order term of the perturbation expansion
with respect to Planck’s constant h for the hard-sphere fluid [18]:

�Am,qc

RT
= 3

√
2
�

d

ξ − ξ2

2

(1 − ξ)3 with � = h√
2πmkBT

(26)

� is the thermal de Broglie wavelength, and m is the molecular mass. The softness
correction is applied to d and ξ .
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Fig. 8 Characteristic curves of hydrogen, computed with the Peng–Robinson equation of state [21].
For an explanation of the symbols, see Fig. 1
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It should be noted that this quantum correction gives a positive contribution to the
internal energy,

�Um,qc

RT
= −T

∂(Am,qc/RT )

∂T
, (27)

which decreases with increasing temperature. Consequently, there is a negative con-
tribution to the residual isochoric heat capacity.

3 Results and Discussion

3.1 Characteristic Curves

The characteristic curves, discussed in Sect. 2.1 should all exist, have a single maxi-
mum and no inflection points. As mentioned before, the Amagat curve must enclose
the Charles curve, and this must enclose the Boyle curve.

The substance-specific parameters of all equations of state used here were calcu-
lated from the critical pressure and temperature.

The empirical equation of Leachman et al. [9] represents an actual summary of
all available, critically assessed experimental data. Although these data do not extend
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Fig. 9 Characteristic curves of hydrogen, computed with three equation of state for the Lennard-Jones
fluid: · · · · · · Johnson et al. [23], - - - Kolafa and Nezbeda [14], — Mecke et al. [24]. For an explanation of
the symbols, see Fig. 1
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Fig. 10 Prediction of the residual molar Gibbs energy of hydrogen at 100 MPa with several equations of
state. — Leachman et al. [9], - - - SPHCT [15], – ·– sSPHCT (this work), WCA perturbation theory, · · · · · ·
sSPHCT, BH perturbation theory, – ··– sSPHCT, PC-SAFT temperature dependence. The arrow indicates
the effect of the quantum corrections

into the Amagat region, the extrapolation qualities of this equation appear to be good
enough to calculate a realistic-looking Amagat curve (see Fig. 1).

The original SPHCT equation of state [15] contains a hard-core repulsion term and
therefore cannot produce an Amagat curve (see Fig. 4).

After inclusion of the soft-core correction, however, the Amagat curve can be cal-
culated (see Fig. 5), and is remarkably close to the result of the empirical equation of
Leachman et al. The predicted maximum of the Amagat curve is at 135 MPa, whereas
the empirical equation gives 105 MPa to 116 MPa. For a prediction without any addi-
tional adjustable parameters, this is quite good. The deviations of the Amagat curves
at low temperatures may be due to insufficient corrections for quantum effects; the
convergence of the perturbation expansion of which Eq. 26 is the first term is uncertain
at high densities.

The more modern PC-SAFT equation [19,20] contains a hard-chain repulsion term
with a semiempirical temperature-dependent core diameter, but no density depen-
dence of the softness correction. The prediction of the Amagat curve gives unphysical
results (see Fig. 6). It must be noted of course that this equation was designed primarily
for chain molecules under technical conditions, but not for the extreme application
considered in this work.

Ar
m

RT
= m

4ξ − 3ξ2

(1 − ξ)2 − (m − 1) ln g+ − 6ξ0

T̃

(
2I1 + m

I0

hT̃

)
(28)
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Fig. 11 Prediction of the residual molar Gibbs energy of hydrogen at 100 MPa with several equations of
state. — Leachman et al. [9], - - - SPHCT [15], – ·– sSPHCT (this work), – ··– PC-SAFT [19,20], · · · · · ·
Peng–Robinson [21]. The arrow indicates the effect of the quantum corrections

with

ξ0 = mv∗

Vm

ξ = ξ0

(
1 − 0.12e−3/T̃

)

g+ = 1 − ξ
2

(1 − ξ)3

h = 1 + m
8ξ − 2ξ2

(1 − ξ)4 + (1 − m)
20ξ − 27ξ2 + 12ξ3 − 2ξ4

(1 − ξ)2(2 − ξ)2

Here, m denotes the number of chain segments, v∗ their molar volume, and g+ the
contact value of the radial distribution function of the hard-sphere fluid; the Ii are
polynomials of the reduced density with fixed coefficients.

The failure of the PC-SAFT equation to produce an acceptable Amagat curve may
be due to two reasons, namely,

(a) using a density-independent size parameter
(b) or a less than optimal choice of its temperature dependence.

It must be noted that the temperature dependence of the hard-sphere diameter of
the PC-SAFT equation differs somewhat from the perturbation theory result, Eq. 19.
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Fig. 12 Prediction of the residual molar Gibbs energy of argon at 100 MPa with several equations of state.
— Tegeler et al. [25]; for an explanation of the other symbols, see Fig. 11

The deviations are not very large, as Fig. 2 shows, but there is an important quali-
tative difference: the temperature function of the PC-SAFT equation is based on a
Boltzmann factor and thus contains an inflection point.

In order to identify the reason for the problems of the PC-SAFT equation, we
computed the characteristic curves of an sSPHCT equation with the temperature depen-
dence of the size parameter either given by Eq. 22 (i.e., density-independent, equiv-
alent to Barker–Henderson perturbation theory) or by the PC-SAFT size parameter
function. The results are shown in Fig. 7, with the temperature dependence obtained
from BH perturbation theory, the SPHCT equation generates a meaningful Amagat
curve; the effect of the density dependence introduced by the WCA theory is rather
small. With the PC-SAFT temperature dependence, a physically unreasonable Amagat
curve is obtained. It seems therefore that cause (b) is responsible for the failure of the
PC-SAFT equation, and that temperature dependencies based on simple Boltzmann
functions should be avoided.

The Peng–Robinson equation [21] is representative of the class of cubic equations
of state. It uses a temperature-dependent attraction parameter for improved represen-
tation of the saturation curve; the temperature function α(T ) was proposed by Soave
[22] and contains Pitzer’s acentric factor ω as an additional parameter.

Ar
m

RT
= − ln(1− ξ) − a

2
√

2RT v∗ ln
(

1+(
√

2+1)ξ

1−(
√

2−1)ξ

)
(29)
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Fig. 13 Prediction of the residual molar Gibbs energy of methane at 200 MPa with several equations of
state. — Setzmann and Wagner [5]; for an explanation of the other symbols, see Fig. 11

with

a = acα(T )

ξ = v∗

Vm

α(T ) =
(

1 + m(ω)

(
1 −

√
T

Tc

))2

As this equation of state contains a van der Waals repulsion term with fixed covolume,
it should not be able to produce an Amagat curve (see Fig. 8). But contrary to expec-
tations, it does. This Amagat curve, however, does not depend on pressure: it is not
the consequence of molecular softness, but an artifact caused by the shape of α(T ),
which has a double zero at T/Tc = (1 + 1/m)2. Consequently, this equation should
not be used beyond this temperature (c. 446 K for our parameter set). It is possible, of
course, to set α(T ) to a constant value beyond some temperature, but this can create
problems with some derivatives.

If an adequate accounting for molecular softness is the key to the modeling of
dense fluids, it is only logical to test some equations of state for the Lennard-Jones
fluid, the system with probably the most comprehensive set of computer simulation
data. Fig. 9 shows the characteristic curves of the Lennard-Jones equations of Johnson
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Fig. 14 Prediction of the residual molar Gibbs energy of hydrogen at 100 MPa with several Lennard-Jones
fluid equations of state. — Leachman et al. [9], – ·– sSPHCT (this work), · · · · · · Johnson et al. [23], – ··–:
Kolafa and Nezbeda [14], – – – Mecke et al. [24]

et al. [23], Kolafa and Nezbeda [14], and Mecke et al. [24]. The equation of Johnson
et al. is a modified Benedict–Webb–Rubin equation; the other two equations consist
of a hard-sphere term and a 2-dimensional polynomial as the attraction term. The
three equations give almost coinciding results for the Boyle and Charles curves, but
evidently the equation of Johnson et al. is not as reliable as the other two at extreme
pressures and densities. Only the equation of Mecke et al. gives an Amagat curve with
the correct shape; for the other two equations, the Amagat curve turns upwards at low
temperatures.

3.2 Thermodynamic Functions

An important feature of equations of state is their capability to estimate caloric prop-
erties; these would, for instance, be needed to assess the influence of pressure on
chemical reactions. Figure 10 shows predictions of the residual molar Gibbs energy of
hydrogen at 100 MPa obtained with several SPHCT-based models: original SPHCT,
soft-core SPHCT (sSPHCT) with the temperature dependencies of the PC-SAFT equa-
tion, and sSPHCT using BH and WCA perturbation theories. It can be seen that the
PC-SAFT temperature dependence gives an improvement over the original SPHCT
equation, but leads to distortions and a not very good slope. The results from BH and
WCA perturbation theory agree well at low temperatures, but at high temperatures
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Fig. 15 Prediction of the residual molar Gibbs energy of argon at 100 MPa with several equations of state.
— Tegeler et al. [25], – ·– sSPHCT (this work), · · · · · · Johnson et al. [23], – ··– Kolafa and Nezbeda [14],
– – – Mecke et al. [24]

the WCA method with its temperature- and density-dependent collision diameter is
clearly better.

Figure 11 shows the same function, but here comparison is made between different
equations of state (with their parameters fitted to the critical pressure and tempera-
ture). The Peng–Robinson equation gives a surprisingly good prediction under these
conditions. The SPHCT equation gives far too high values; inclusion of the softness
corrections proposed here improves the predictions very much, and after adding quan-
tum corrections, the agreement with the reference equation of Leachman et al. is
reasonably good.

Calculations of the residual molar Gibbs energy for argon at 100 MPa (Fig. 12)
and for methane at 200 MPa (Fig. 13) show similar trends. The prediction of the
Peng–Robinson equation tends to be somewhat too low that of the SPHCT equation is
systematically too high. But after inclusion of the softness correction, this simple equa-
tion performs comparable to, and sometimes better than, the sophisticated PC-SAFT
equation; furthermore, it behaves better in the vicinity of the Amagat curve.

It is interesting to observe that the three equations for the Lennard-Jones fluid do
not match the reference curve for hydrogen very well (Fig. 14). For argon the equation
of Mecke et al. is almost on top of the reference curve, whereas the other two equations
deviate significantly (Fig. 15).
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Fig. 16 Pressure of hydrogen as a function of the molar volume at 300 K, calculated with several equations
of state. For an explanation of the symbols, see Fig. 11

A comparison of pressure isotherms of hydrogen (Fig. 16) reveals that the sSPHCT
prediction follows the empiricial correlation closely beyond 1 GPa, whereas the other
equations used here diverge at too large molar volumes. This could possibly be cor-
rected by fitting the size parameters of these equations to the high-pressure part of the
isotherm, but then the critical point and the vapor–liquid equilibrium would be shifted.

Residual isochoric heat capacities of fluids are supposed to be positive (with the
exception of quantum fluids at low temperatures). On the other hand, one must con-
clude from Sect. 2.2 that a temperature-dependent molecular size parameter is likely
to cause negative C r

V,m values at high pressures or temperatures for all van der Waals-
type equations of state having the structure of Eq. 5. It is therefore interesting to check
the predictions of isochoric heat capacities for the equations of state used in this work.
Figure 17 shows the boundaries of the negative C r

V,m regions for hydrogen. These do
not correspond to experimental data, but usually indicate a breakdown of the theory
or method, and should be avoided in calculations.

• The sSPHCT equation (both with full WCA and BH perturbation theory) can be
used down to about 8 cm3 · mol−1, with the full method being more stable at high
temperatures (for comparison: the critical molar volume is about 73.8 cm3 ·mol−1).

• The PC-SAFT equation predicts negative C r
V,m values below about 17 cm3 ·mol−1

• The empirical equation of Leachman et al. has a small region of negative C r
V,m

below 200 K, i.e., for cold, compressed hydrogen. This region is probably not an
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ical equation of state of Leachman et al. [9], – ·– sSPHCT (this work), WCA perturbation theory, · · · · · ·
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fluid, · · · · · · Johnson et al. [23], – ··– Kolafa and Nezbeda [14], – – – Mecke et al. [24]. The SPHCT and
PR equations do not have regions of negative C r

V,m in the indicated temperature range

artifact, but real, and the result of quantum effects (see Eq. 26). The pressure along
the curve varies from 200 MPa at 25 K to 10 GPa at 200 K.

• The three equations of state for the Lennard-Jones fluid can be used above 10 cm3 ·
mol−1 (Johnson et al. [23]) or 15 cm3 · mol−1 (Kolafa and Nezbeda [14], Mecke
et al. [24]). The equation of Mecke et al. has an additional boundary where its
pressures turn negative.

• The SPHCT and PR equations do not give negative C r
V,m values in the temper-

ature range of Fig. 17, but are of course very inaccurate at high pressures and
temperatures.

It thus turns out that, of the theoretical equations of state suited for high-pressure
studies, the sSPHCT equation has the largest stable density range.

Figure 18 shows predictions of the residual isobaric heat capacity of hydrogen at
100 MPa for several equations of state. Again it turns out that the sSPHCT method
gives reasonably good results, whereas the PC-SAFT equation predicts a region of
negative residual heat capacities3 and a wrong slope.

3 As discussed above, residual isobaric heat capacities can have negative values. In our example, however,
the experimental data are positive.
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4 Conclusion

Soft repulsion can be represented by means of a temperature- and density-dependent
collision diameter, which can be obtained from WCA perturbation theory. This implies
an iterative procedure, but there are efficient iteration schemes that keep the numerical
effort tolerable.

Equations of state containing a hard-core equation as a repulsion term usually do
not yield Amagat curves, one of Brown’s characteristic curves for the assessment of
the quality of equations of state. Introduction of the softness correction proposed here
leads to physically reasonable Amagat curves.

The temperature dependence of the softness correction is rather critical. A com-
mon semiempirical function based on a Boltzmann factor is shown to cause distorted
Amagat curves and inferior predictions of thermodynamic functions at high pressures.

It seems that a carefully constructed, theory-based repulsion term in an equation
of state is of central importance if the equation is to cover a wide range of densi-
ties and temperatures. Deficiencies of the repulsion term cannot be compensated by
sophisticated repulsion terms.

We conclude that the application range of equations of state can be significantly
extended by properly accounting for soft repulsion, and that even simple equations of
state with a good theoretical background (like the SPHCT equation used in this work)
can be reliable tools for high-pressure studies.
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A1. Steffensen’s Accelerated Substitution Method

For the successive substitution method the equation to be solved is cast in the form

x = f (x), (30)

where f (x) is the so-called step function. Substitution of an approximation for the
solution, x0, into the equation yields an improved approximation, x1 = f (x0), which

in turn can be substituted into the equation. The method converges only if
∣∣∣d f (x)

dx

∣∣∣ < 1,

and then usually with merely linear convergence order.
Steffensen’s method consists of a linear extrapolation of two successive substitution

steps:

x1 = f (x0)

x2 = f (x1)

x2,S = x0 − (x1 − x0)
2

x2 − 2x1 + x0
(31)

x2,S is then used for the next iteration cycle. As long as the denominator in the extrapo-
lation formula is different from zero, the xi,S converge—even when the slope criterion
is not fulfilled—with quadratic convergence order.
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