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Abstract This paper investigates the steady-state thermal performance of a radial
fin of rectangular profile made of a functionally graded material. The thermal conduc-
tivity of the fin varies continuously in the radial direction following a power law. The
boundary conditions of a constant base temperature and an insulated tip are assumed.
Analytical solutions for the temperature distribution, heat transfer rate, fin efficiency,
and fin effectiveness are found in terms of Airy wave functions, modified Bessel
functions, hyperbolic functions, or power functions depending on the exponent of the
power law. Numerical results illustrating the effect of the radial dependence of the
thermal conductivity on the performance of the fin are presented and discussed. It is
found that the heat transfer rate, the fin efficiency, and the fin effectiveness are highest
when the thermal conductivity of the fin varies inversely with the square of the radius.
These quantities, however, decrease as the exponent of the power law increases. The
results of the exact solutions are compared with a solution derived by using a spatially
averaged thermal conductivity. Because large errors can occur in some cases, the use
of a spatially averaged thermal-conductivity model is not recommended.
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List of Symbols
a Parameter in thermal-conductivity expression
A Constant
Ai Airy function of the first kind
Bi Airy function of the second kind
C1, C2 Constants
d Constant
D Denominator
f1, f2 Constants
F Function of rb, rt, and n
h Convective heat transfer coefficient
I Modified Bessel function of first kind
J Bessel function of the first kind
k Fin thermal conductivity
K Modified Bessel function of second kind
m Fin parameter
n Exponent
q Fin heat transfer rate
r Radial coordinate
T Temperature
w Fin thickness
Y Bessel function of the second kind

Greek Symbols
ε Fin effectiveness
η Fin efficiency
θ Excess temperature

Subscripts
a Ambient
b Fin base
t Fin tip

1 Introduction

Functionally graded materials (FGM) are finding increasing use in rocket heat shields,
heat exchanger tubes, thermoelectric generators, heat-engine components, plasma
facings for fusion reactors, and electrically insulating metal/ceramic joints. The con-
tinuous spatial variation of thermophysical properties, such as the thermal conductivity
and the heat capacity, can offer advantages that are not available with the use of homo-
geneous materials. For example, a thin functionally graded thermal shield can sustain
steep temperature gradients without excessive thermal stresses. Similar advantages
can be realized with functionally graded heat exchanger tubes and heat engine com-
ponents. Because radial fins of rectangular profile are often manufactured integrally
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with the tubes to enhance the heat transfer rate from the tube, it is important to have
a knowledge of the heat transfer characteristics of radial fins made of functionally
graded materials if the performance of such a finned heat exchanger is to be properly
evaluated.

The analysis of heat transfer in a radial fin made of a homogeneous material having
a rectangular profile and spatially uniform thermal conductivity is well documented in
the literature [1,2]. For a fin made of a functionally graded material, the spatial depen-
dence of thermal conductivity must be taken into account to accurately predict the
thermal performance of the fin. According to Babaaei and Chen [3], the vast majority
of research studies such as those by Noda [4], Eslami et al. [5], and Hosseini et al.
[6] use a Fourier conduction model to investigate heat conduction in heterogeneous
materials. Following this research approach, which is adequate for steady-state heat
conduction analysis, it is assumed that heat conduction in the functionally graded fin
obeys the Fourier law.

Some workers [7–9] have studied radial fins with a two-dimensional heat conduc-
tion model and have found that when the Biot number based on the thickness of the
fin is of the order of 0.1, the error between the one-dimensional and two-dimensional
models is negligible. Indeed, it has been established that the fin is effective as a heat
transfer enhancement device only when the Biot number is small [10]. Thus, for a
properly designed fin, heat conduction is predominantly in the radial direction.

The thermal conductivity of the fin is assumed to vary with the radial coordinate
according to the power law whose exponent is a measure of the nonhomogeneity of
the fin material. Such a power-law type of spatial variation of the thermal conductivity
has been adopted by Sahin [11] in the study of optimal distribution of insulation on a
flat hot surface and by Babaei and Chen [3] in analyzing one-dimensional, transient
hyperbolic heat conduction in a functionally graded hollow sphere.

Based on the foregoing discussion, this paper uses a one-dimensional steady-state
Fourier heat conduction model to investigate the thermal performance of a functionally
graded radial fin of rectangular shape in which the thermal conductivity varies as a
power function of the radial coordinate. The standard boundary conditions of a constant
base temperature and an adiabatic tip are used to derive exact analytical solutions for
the temperature distribution, the heat transfer rate, the efficiency, and the effectiveness
of the fin. These solutions appear in terms of the Airy wave functions, the modified
Bessel functions, the hyperbolic functions, or the power functions depending on the
exponent of the power law variation. Numerical results illustrating the effect of a var-
iable thermal conductivity on the performance of the fin are presented and discussed.
The paper also develops a solution based on a spatially averaged thermal-conductivity
model and compares its predictions with those of exact solutions.

2 Analysis

Figure 1 shows a radial fin of rectangular profile made of a functionally graded mate-
rial. The fin has base radius rb, tip radius rt , and thickness w. The fin is operating
in a convective environment which is characterized by the heat transfer coefficient h
and ambient temperature Ta. The radial coordinate r is measured from the centerline
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Fig. 1 Radial fin of rectangular profile

(shown dotted) of the tube to which the fin is attached. Unlike the standard analysis,
which assumes the fin material to be homogeneous with uniform thermal conductivity,
the present analysis models the nonhomogeneity of the fin by allowing the fin thermal
conductivity k to vary as a power function of radial coordinate r , that is,

k = arn (1)

where n and a are constants. Such a power dependence of the thermal conductivity
occurs in some aerospace and automotive structures [11]. The fin is assumed to be at
a constant temperature Tb at the base (r = rb) and its tip (r = rt) to be adiabatic.

With the use of Eq. 1, the one-dimensional steady-state heat conduction equation
for the fin together with the boundary conditions may be written as

d2θ

dr2 + (n + 1)
1

r

dθ

dr
− m2r−nθ = 0, (2)

r = rb, θ = θb, (3a)

r = rt,
dθ

dr
= 0 (3b)

where θ = T − Ta and m2 = 2h/aw.
The fin heat transfer rate q may be found as

q = −(ar bn)2πrbw
dθ

dr

∣
∣
∣
∣
r=rb

. (4)

The fin efficiency η defined as the ratio of actual heat transfer rate and the ideal heat
transfer rate for a fin of infinite thermal conductivity is given by

η = q/qideal = q/h2π
(

r2
t − r2

b

)

θb. (5)

Finally, the fin effectiveness ε defined as the ratio of actual heat transfer and the heat
transfer without fin may be obtained from

ε = q/2πrbwhθb (6)
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3 Exact Solutions

The exact analytical solution of Eq. 2 is found to be

θ = r−n/2
[

C1 Jp

(

i
2m

2 − n
r2−n/2

)

+ C2Yp

(

i
2m

2 − n
r2−n/2

)]

(7)

where p = abs[n/2 − n] and C1 and C2 are constants of integrations which may be
found by applying the boundary conditions of Eqs. 3a and 3b. The symbols J and Y
represent the Bessel functions of the first and second kind, respectively. We study the
cases of n = −1,−2, 1, and 2 as a representative sample. The case of n = 0 (constant
thermal conductivity) is well known but would be included here for completeness.
Case 1: n = −1.

In this case, the solution of Eq. 2 subject to the boundary conditions, Eqs. 3a and
3b, is found to be

θ

θb
= Ai ′(m2/3rt)Bi(m2/3r) − Bi ′(m2/3rt)Ai(m2/3r)

Ai ′(m2/3rt)Bi(m2/3rb) − Ai(m2/3rb)Bi ′(m2/3rt)
(8)

where Ai and Bi are the Airy functions of the first and second kind, respectively,
and the primes denote the derivatives. Tables of Airy functions and their derivatives
are provided by Abramowitz and Stegun [12] . The calculation of Airy functions is
greatly facilitated by the use of the popular symbolic algebra packages such as Maple
and Mathematica which provide a library of many built-in special functions [13].

The solution for q is found to be

q = 2πawθbm2/3
[

Ai ′(m2/3rb)Bi ′(m2/3rt) − Ai ′(m2/3rt)Bi ′(m2/3rb)

Ai ′(m2/3r t)Bi(m2/3rb) − Ai(m2/3rb)Bi ′(m2/3rt)

]

. (9)

Once q has been obtained from Eq. 8, the fin efficiency η and fin effectiveness ε may
be calculated from Eqs. 5 and 6, respectively.
Case 2: n = −2.

The solutions for θ and q are given by

θ/θb =
{

(cosh f1+ sinh f1)

{[

(cosh f2+ sinh f2)
2 +1

]

cosh

(
1

2
mr2

)

−
[

(cosh f2+ sinh f2)
2 − 1

]

sinh

(
1

2
mr2

)}}/ {

(cosh f1+ sinh f1)
2

+(cosh f2+ sinh f2)
2
}

, (10)

q = 2πawmθb
sinh f2 cosh f1− cosh f2 sinh f1

cosh f1 cosh f2− sinh f1 sinh f2
, (11)

with f1 = (1/2)mr2
b and f2 = (1/2)mr2

t .
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Case 3: n = 1.
For n = 1, the solutions for θ and q are given by

θ

θb
=

√
rb

[

I1(2m
√

r)K1(2c2) + c2 I1(2m
√

r)K0(2c2) − K1(2m
√

r)I1(2c2) + c1 K1(2m
√

r)I0(2c2)
]

√
r [−I1(2c2)K1(2c1) + c2 I0(2c2)K1(2c1) + K1(2c2)I1(2c1) + c2 K0(2c2)I1(2c1)]

,

(12)

q = −2πawθbrb
N

D
, (13)

where

N = I1(2c2)K1(2c1) − K1(2c2)I1(2c1) − c2 K0(2c2)I1(2c1)

+ c1 K1(2c2)I0(2c1) − c2 I0(2c2)K1(2c1) + c1c2 [K0(2c2)I0(2c1)

+ I0(2c2)K0(2c1)] ,

D = c2 [I0(2c2)K1(2c2) + K0(2c2)I (2c1)] + K1(2c2)I1(2c1) − I1(2c2)K1(2c1),

c1 = m
√

rb, c2 = m
√

rt,

and I, K are modified Bessel functions of first and second kinds, respectively, and
with subscripts denoting the order of the function.
Case 4: n = 2.

For n = 2, the solutions for θ and q are given by

θ

θb
=

[

(1 + d)r2d − (1 − d)r2d
t

(1 + d)r2d
b − (1 − d)r2d

t

]
[rb

r

]1+d
, (14)

q = 2πawm2r2
b θb

[

r2d
t − r2d

b

(1 + d)r2d
b − (1 − d)r2d

t

]

, (15)

where d = (1 + m2)1/2.
Case 5: n = 0 (constant thermal conductivity).

For n = 0 which corresponds to a constant thermal conductivity, the solutions for
θ and q are as follows:

θ

θb
= I0(mr)K1(mrt) + K0(mr)I1(mrt)

I0(mrb)K1(mrt) + K0(mrb)I1(mrt)
, (16)

q = 2πawmrbθb
K1(mrb)I1(mrt) − I1(mrb)K1(mrt)

K 0(mrb)I1(mrt) + I0(mrb)K1(mrt)
. (17)

4 Numerical Results

The exact solutions presented in the foregoing section show that the excess temperature
θ and the fin heat transfer rate q depend on the base radius rb, the tip radius rt , the base
temperature excess θb, the fin thickness w, the thermal conductivity parameter a, and
the conventional fin parameter m. Because of six variables, the results are presented
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Fig. 2 Temperature
distributions in the fin for Case 1
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Fig. 3 Variations of heat
transfer rate, fin effectiveness,
and fin efficiency with fin
parameter m for Case 1
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for a specific annular fin of base radius rb = 0.01 m, tip radius rt = 0.02 m, thickness
w = 0.005 m and with a base excess temperature of 100 ◦C. A convection heat transfer
coefficient of 10 W · m−2 · K−1 is assumed to exist on the exposed surfaces of the fin.

It should be pointed out that since the thermal conductivity of the fin varies with the
distance r , the transverse Biot number given by Bi = hw/arn is not a constant for all
radial locations. In particular, for negative values of n and large values of r , the Biot
number may exceed 0.1 which is traditionally used as the limit for the applicability of
the one-dimensional heat model conduction used in this work [14].

The results for the five cases are now discussed.
Case 1: n = −1.

The value of the thermal conductivity parameter a was varied to give
m = (10, 15, 20, 25, and 30) m−3/2. The temperature distributions for these values
of m are shown in Fig. 2. As a decreases, that is, the thermal conductivity of the fin
decreases, and thus, m increases (h and w are fixed), the temperature distribution
in the fin becomes progressively steeper. This behavior is synonymous with that of
a constant thermal conductivity fin. The fin heat transfer rate, the fin effectiveness,
and the fin efficiency as functions of m are illustrated in Fig. 3. As expected, with the
increase in m (decrease in thermal conductivity), all three quantities decrease. Because
of the low value of h (10 W · m−2 · K−1), the fin effectiveness is high. As the thermal
conductivity decreases, i.e., m increases, the fin effectiveness decreases.
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Cases: 2, 3, 4, and 5.
The results for Cases 2, 3, 4, and 5 exhibit the same characteristics as the results

for Case 1 and will be omitted in favor of comparative results for all five cases.

5 Comparative Results

Consider an annular fin of base radius rb = 0.01 m, tip radius rt = 0.02 m, and thickness
w = 0.005 m operating with a base excess temperature θb = 100 ◦C in a convective
environment which provides a heat transfer coefficient of 30 W·m−2 ·K−1. The thermal
conductivity parameter a is chosen as 10 W · m−(n+1) · K−1.

To aid the discussion, Table 1 has been prepared showing the thermal conductivities
kb and kt at the base and tip, respectively, for the five values of n. The effect of varying
the thermal conductivity exponent n on the fin tip temperature excess is shown in
Fig. 4. Because the thermal conductivities for n = −2 are the highest, the highest tip
temperature occurs for n = −2. As n increases, the thermal conductivities decrease
and consequently the tip temperature also decreases. For n = 1 and n = 2, the tip is
virtually at the temperature of the environment because of the low values of thermal
conductivities.

The effect of varying the exponent n on the fin heat transfer rate is depicted in Fig. 5.
As n increases, the heat dissipation capacity of the fin diminishes. This diminution is
caused by the reduction in thermal-conductivity values. Figure 5 shows that the high-
est heat dissipation from the fin occurs when its thermal conductivity varies inversely
with the square of the radius, i.e., n = −2. For this case, the tip temperature (Fig. 4)
is about 88 ◦C, a departure of only 12 ◦C from the base to the tip. Thus the entire

Table 1 Thermal conductivities
(W · m−1 · K−1) at the base and
tip of the fin

n = −2 n = −1 n = 0 n = 1 n = 2

kb 1000 100 10 1 0.1

kt 250 50 10 1 0.4
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Fig. 4 Variation of fin tip temperature with exponent n with a = 10 W · m−(n+1) · K−1
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Fig. 6 Fin efficiency as a function of exponent n with a = 10 W · m−(n+1) · K−1

exposed surface (bottom and top) is providing efficient heat dissipation by convection
to the surroundings. From a design perspective, the fin material should have the highest
attainable thermal conductivity at the base of the fin and the material should be graded
so the thermal conductivity progressively decreases toward the fin tip.

Figure 6 is a plot of the fin efficiency as a function of exponent n. The fin efficiency
drops significantly as n increases. For n = 1 and n = 2, the fin efficiency is <10 %.
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Fig. 7 Effect of exponent n on fin effectiveness with a = 10 W · m−(n+1) · K−1
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Table 2 Average thermal conductivities in W · m−1 · K−1 of the fin

n = −2 n = −1 n = 0 n = 1 n = 2

500 69.31 10 1.5 0.23

Obviously, such functional grading of the fin material would not serve any useful
purpose.

The effect of the exponent n on the fin effectiveness is illustrated in Fig. 7. Like the
fin efficiency, the fin effectiveness also decreases as n increases and is <10 for n = 1
and n = 2 which as noted earlier would result in poor fin design.

6 Average Thermal-Conductivity Model

The spatially average thermal conductivity for the fin may be derived by integrating
Eq. 1 with respect to r from the base of the fin to the tip of the fin which gives

k̄ = aF(rb, rt, n) = a
1

rt − rb

1

n + 1

(

rn+1
t − rn+1

b

)

, n �= −1, (18)

k̄ = aF(rb, rt, n) = a
1

rt − rb
ln(rt/rb), n = −1. (19)

For the specific fin under consideration, the average values of the thermal conduc-
tivity calculated from Eqs. 18 and 19 are provided in Table 2.

One may now define a new fin parameter m̄ as

m̄ = m√
F(rb, rt, n)

(20)

and use it in Eqs. 16, 17, 5, and 6 to calculate the tip temperature, the heat transfer rate,
the fin efficiency, and the fin effectiveness for the variable thermal conductivity of the
fin. The results from the average thermal-conductivity model and the actual results are
compared in Table 3 for the specific fin under consideration. The values based on the
average thermal conductivity model are given in parentheses. For the tip temperature,
the average thermal conductivity model over predicts the actual value by about 36 %

Table 3 Tip temperature, heat transfer rate, fin efficiency, and fin effectiveness: comparison of actual and
average thermal-conductivity model values

n −2 −1 0 1 2

m̄ 4.90 13.16 34.64 89.44 228.41

θt 87.80 (86.48) 43.46 (43.89) 4.84 0.014 (0.019) 0(0)

q 519.7 (508.7) 345.3 (324.6) 123.3 36.76 (44.46) 11.22 (16.87)

η 0.919 (0.899) 0.6107 (0.5737) 0.2180 0.065 (0.0786) 0.0200 (0.0298)

ε 55.13 (53.97) 36.63 (34.43) 13.08 3.90 (4.72) 1.180 (1.789)
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for n = −1. In so far as the heat transfer rate is concerned, the values predicted by the
average thermal conductivity model are lower than the exact values. The error between
the two values is 2 % for n = −2 and 6 % for n = −1. For n = 1 and n = 2, the values
predicted by the average thermal conductivity model are higher than the exact values.
The error between the two values is 21 % for n = −1 and 50 % for n = 2. Regarding
the fin efficiency, the average model under-predicts the exact values for n = −2 and
n = −1 and over-predicts the exact values for n = 1 and n = 2. The maximum error
between the two values is 49 % and occurs when n = 2. Finally, the results for the
fin effectiveness indicate that the average model under-predicts the exact values for
n = −2 and n = −1 but over-predicts the exact values for n = 1 and n = 2. The
maximum error between the two results is 52 % and occurs when n = 2.

7 Conclusions

Some exact analytical solutions are reported for heat transfer in an annular fin of rectan-
gular profile with the thermal conductivity varying with the radial coordinate. These
solutions appear in terms of Airy functions, modified Bessel functions, hyperbolic
functions, or power functions depending on the form of variation chosen. A spatially
averaged thermal-conductivity model has also been described. The average model can
introduce significant error in predicting the fin-tip temperature, the fin heat transfer
rate, the fin efficiency, and the fin effectiveness. The error can be 2 % on the low side
and as much as 52 % on the high side. These figures pertain to a specific fin situation
studied in this paper and may vary from situation to situation. It is recommended that
the exact solutions presented in the paper should be used and not the average model
solutions, because the latter can introduce large errors under certain circumstances.
The best fin design is achieved when the thermal conductivity of the fin varies inversely
with the square of the radius. Although the values of the exponent n < −2 were not
investigated, it is anticipated that the lower the value of n, the better is the performance
of the fin. Future effort would be directed to determine if an optimum value of n exists
that maximizes the fin performance.

Acknowledgments The authors would like to express their gratitude to the referee for his meticulous
review and pointing out some discrepancies in the original submission which have now been corrected.

References

1. F.P. Incropera, D.P. DeWitt, Fundamentals of Heat and Mass Transfer, 5th edn. (Wiley & Sons,
New York, 2002)

2. A.D. Kraus, A. Aziz, J.R. Welty, Extended Surface Heat Transfer (Wiley, New York, 2001)
3. M.H. Babaei, Z.T. Chen, Int. J. Thermophys. 29, 1457 (2008)
4. N. Noda, J. Therm. Stresses 22, 477 (1999)
5. M.R. Eslami, M.H. Babaei, R. Poultangari, Int. J. Pres. Ves. Pip. 82, 522 (2005)
6. S.M. Hosseini, M. Akhlaghi, M. Shakeri, Heat Mass Transfer 43, 669 (2006)
7. W. Lau, C.W. Tan, J. Heat Transfer T. ASME 95, 549 (1973)
8. M.M. Yovanovich, J.R. Culham, T.F. Lemczyk, J. Thermophys. Heat Transfer 2, 152 (1988)
9. J.B. Aparacido, R.M. Cotta, Heat Transfer Eng. 11, 49 (1990)

10. A. Bejan, Heat Transfer (Wiley, New York, 1993)

123



1648 Int J Thermophys (2009) 30:1637–1648

11. A.Z. Sahin, J. Thermophys. Heat Transfer 11, 153 (1997)
12. M. Abramowitz, I.G. Stegun, Handbook of Mathematical Functions (Dover Publications,

New York, 1972)
13. A. Aziz, Heat Conduction with Maple (R.T. Edwards, Inc., Philadelphia, PA, 2006)
14. L.M. Jiji, Heat Conduction (Begell House, Inc., New York, 2000)

123


	Thermal Performance of a Functionally Graded Radial Fin
	Abstract
	1 Introduction
	2 Analysis
	3 Exact Solutions
	4 Numerical Results
	5 Comparative Results
	6 Average Thermal-Conductivity Model
	7 Conclusions
	Acknowledgments


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


