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Natural Convection along a Vertical Thin Cylinder
with Uniform and Constant Wall Heat Flux
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A theoretical investigation is carried out to study natural convection around
a vertical thin cylinder, or a needle, heated at uniform and constant wall
heat flux in order to compare the analytical solutions of the present work
with previous experimental results. The local non-similarity solution with the
first level of truncation, proposed by Minkowycz and Sparrow, is used. The
temperature and velocity distributions are calculated for fluids with several
Prandtl numbers. The analytical solutions of this work are compared to
experimental results carried out with needles of diameters ranging from 0.6
to 1.5 mm and fluids with Prandtl numbers in the range Pr = 0.7–730. The
agreement is reasonable good.

KEY WORDS: local non-similarity solution; natural convection; uniform
heat flux; vertical thin cylinder.

1. INTRODUCTION

Several papers have been published on natural convection around vertical
isothermal cylinders. Elenbaas [1] employed the Langmuir stagnant film
model, and the natural convection problem was simplified as a heat con-
duction one. Also employing the stagnant film model, Sparrow and Gregg
[2],[3] solved this problem by a series expansion. Minkowycz and Sparrow
[4] studied the natural convection along a vertical cylinder with a constant
surface temperature by a local non-similarity solution. Kuiken [5] and
Fujii and Uehara [6] studied the heat transfer of non-isothermal vertical
cylinders with large curvatures by series solutions.
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The aim of the present paper is to study analytically the problem
of natural convection along a vertical needle with uniform and constant
wall heat flux, which is the thermal boundary condition used in previ-
ous experiments. Experimental measurements of the thermal conductivity
of fluids and porous media have been carried out with thermal probes,
consisting of needles with diameters ranging from 0.6 to 1.5 mm, heated
at a uniform and constant wall heat flux [7]–[15]. Comparisons of the
analytical solutions of this work with the experimental results of Refs. 9
and 15 are carried out.

2. ANALYSIS

A vertical needle, immersed in a fluid, is heated at a uniform and
constant wall heat flux, qw. The fluid properties are assumed as constant
except for the density, which is considered variable only to the extent it
contributes to the buoyancy forces.

Under steady-state conditions, the governing equations of this prob-
lem, in cylindrical co-ordinates, are similar to those studied by Minkowycz
and Sparrow [4]:
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where u and w are the velocity components, respectively, in axial and
radial directions, and T is the temperature. The boundary conditions are

u(x, r)=w(x, r)= ∂T (x, r)

∂r
+ qw

k
=0 at r= r0 (4)

u(x, r)=w(x, r)=T (x, r)−T∞ =0 at r→∞ (5)

For the local non-similarity solution, two new co-ordinates η and ξ are
introduced;
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The stream function is defined as

ψ=2
√

2νr1/4
0 (Gr∗0 )

1/4x3/4f (ξ, η) (8)

where f is the dimensionless stream function. The dimensionless temper-
ature is defined as

θ = T −T∞
qwr0/k

. (9)

The velocity components are obtained from

u= 1
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Equations (1)–(3) can be rewritten, in terms of the new variables as
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As a first approximation, the terms with the partial derivatives, with
respect to ξ , on the right-hand side of Eqs. (11) and (12) are neglected.
Rearranging the terms on the left-hand side of Eqs. (11) and (12), the
local non-similarity equations with the first level of truncation [4], can be
obtained as follows:
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The boundary conditions, Eqs. (4) and (5), become, in dimensionless form:

f (ξ, η)=f ′(ξ, η)=0, θ ′(ξ, η)+ 1
2
ξ =0 atη=0; (15)

f ′(ξ, η)= θ(ξ, η)=0 atη=∞. (16)
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The local non-similarity solution of the higher level of truncation has
higher precision but the solution of the first level of truncation is accu-
rate enough that the difference between the solution of the first and third
levels of truncation, according to Ref. 4, is negligible for natural convec-
tion over a cylinder. The conclusions of Ref. 4 can also be applied to the
present analytical solutions because the main difference is due to the ther-
mal boundary conditions.

3. RESULTS AND DISCUSSION

The numerical method suggested in Ref. 4 was employed to solve
Eqs. (13)–(16). The velocity and temperature distributions have been
obtained for fluids with various Prandtl numbers. For each fluid the maxi-
mum f ′, or f ′

max, increases as ξ increases. When η reaches a certain value,
f ′ attains its maximum value and then decreases gradually with a contin-
uous increase of η. Finally, f ′ approaches zero as η→∞. The maximum
f ′, or f ′

max, is higher for a smaller Prandtl number. The corresponding
critical η, ηc, changes with ξ . Although the location of the maximum f ′,
or f ′

max, increases with ξ for natural convection, the location of f ′
max, ηc,

appears to be a weak function of ξ , as found in Ref. 4 for a constant sur-
face temperature.

The dimensionless temperatures for different value of ξ and Prandtl
numbers, indicate that, for a fixed ξ , θ decreases sharply when η is
smaller. With increasing η, the rate of decrease of θ becomes smaller. As
η is approaching infinity, θ approaches zero. For a fixed Pr and η, θ
increases with ξ . The dimensionless temperature on the needle surface, θ0,
is reported in Fig. 1 for Pr = 0.708, 7.02, and 50, i.e., for air, water, and
oil. Figure 1 shows that θ0 increases with ξ and decreases with Pr. Similar
conclusions can be drawn for Pr = 2.5 and 10, as reported in Fig. 2.

The heat transfer coefficient and the local Nusselt number can be
determined from the following relations:

h= k

r0θ (ξ,0)
(17)
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. (18)

The mean Nusselt number can be obtained by
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Fig. 1. Dimensionless temperature on the needle surface for air,
water, and oil.
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Fig. 2. Dimensionless temperature on the needle surface for water
at two temperatures.

Since θ (ξ ,0) is a function of ξ only, both Nu/Gr∗
0 and Num/Gr∗

0 are also
functions of ξ . The local Nu and mean Num Nusselt numbers, reported vs.
ξ in Figs. 3 and 4, respectively, show that both increase as ξ increases. The
ratio Num/Nu is equal to 2 at ξ = 0.01, but it decreases with increasing ξ
for the three fluids (Pr = 0.708, Pr = 7.02, Pr = 50). For ξ = 2 the ratio
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Fig. 3. Local Nusselt number for air, water, and oil.
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Fig. 4. Mean Nusselt number for air, water, and oil.

Num/Nu is equal to 1.29 for air (Pr = 0.708), 1.35 for water (Pr = 7.02),
and 1.35 for oil (Pr = 50).

The analytical predictions of this work are compared to the experi-
mental data measured in water, [9], with the Prandtl number variable in
the range from 2.5 to 10. The experimental data of Ref. 9, obtained with
a maximum uncertainty of ±15%, and the analytical results of the present
work are reported in Table I and Fig. 5.

The analytical results of the present work for Pr = 2.5, continuous
line, are not reported between ξ = 50 and 60 because they are coincident
with those obtained for Pr = 10 (dotted line). The comparison shows that
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Table I. Comparisons among the Analytical Results of this Work
and the Experimental Data of Gori et al. [9]

Experimental data of Gori et al. [9] This work

Pr Nu Gr∗
0 Nu/Gr∗

0 Nu/Gr∗
0 Deviation

10.49 97.2 2.3×10−4 4.2×10+5 4.5×10+5 7%
10.03 102.1 3.4×10−4 3.0×10+5 3.0×10+5 −1%

9.50 108.4 5.0×10−4 2.2×10+5 2.2×10+5 1%
9.24 113.0 5.9×10−4 1.9×10+5 1.7×10+5 −11%
9.21 93.5 1.2×10−3 7.7×10+4 8.5×10+4 10%
8.93 98.5 1.7×10−3 5.7×10+4 5.7×10+4 0%
8.82 102.1 1.9×10−3 5.5×10+4 5.5×10+4 0%
8.65 113.5 8.2×10−4 1.4×10+5 1.2×10+5 −14%
6.69 92.1 4.4×10−3 2.1×10+4 2.3×10+4 11%
6.03 89.3 4.8×10−3 1.9×10+4 2.1×10+4 14%
6.01 90.5 4.8×10−3 1.9×10+4 2.1×10+4 15%
3.98 108.9 1.9×10−2 5.7×10+3 5.6×10+3 −1%
3.91 110.7 1.3×10−2 8.4×10+3 8.0×10+3 −5%
3.69 115.9 2.3×10−2 5.0×10+3 4.7×10+3 −7%
3.61 113.8 2.4×10−2 4.7×10+3 4.4×10+3 −5%
3.55 117.9 2.6×10−2 4.6×10+3 4.2×10+3 −8%
3.47 120.0 2.7×10−2 4.4×10+3 4.0×10+3 −9%
3.41 114.8 2.8×10−2 4.1×10+3 3.9×10+3 −5%
2.64 116.4 5.4×10−2 2.2×10+3 2.1×10+3 −3%
2.59 115.9 5.7×10−2 2.0×10+3 2.1×10+3 2%
2.53 111.7 6.0×10−2 1.9×10+3 1.9×10+3 1%
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Fig. 5. Comparison with the experimental data of Gori et al. [9].
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Table II. Comparisons among the Analytical Results of This Work, Experimental data of
Gori and Coppa [15], and Eq. (20)

Nu Nu Nu

Experiments
Gori and

Fluid Pr Gr∗
0 Coppa [15] Eq. (20) This work Deviation

Air 0.7 2.28×10−3 62.5 59.3 62.7 0.3%
Dibutyl phthalate 730 2.96×10−5 77.4 69.1 77.3 −0.1%
Ethylene glycol 186 2.94×10−4 68.2 74.3 76.2 11.7%
Silicon oil 71.8 1.06×10−2 86.4 92.8 96.7 11.9%

Nu

10

100

This work

Experimental data [9]

air
dibutyl
phtalate

ethylene
glycol

silicon
oil

Ra

Experiments [15]

104 105 106 107 108

This work

Experimental data [9]

air
dibutyl
phtalate

ethylene
glycol

silicon
oil

Experiments [15]

Fig. 6. Comparison with the experimental data of Gori and Coppa [15].

the experimental data are predicted with an average deviation of 6.7% and
a maximum deviation of 15%, i.e., within the experimental uncertainty.

The present analytical approach has been used to predict the experi-
mental data of Ref. 15, reported in Table II and Fig. 6. The experiments
have been performed with air, dibutyl phthalate, ethylene glycol, and sili-
con oil with an overall uncertainty of ±1–2%. The Rayleigh numbers are
3.9×104 for air, 4.3×105 for dibutyl phthalate, 1.3×106 for ethylene gly-
col, and 1.4×107 for silicon oil. Figure 6 presents the analytical solutions
of this work, which appear in agreement with the experiments, with a
maximum deviation of 11.8%. The percent difference is also reported in
Table II.

The analytical results of the present work are also compared to the
data predicted by the following empirical relation, modified on the basis
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Fig. 7. Comparison with Eq. (20) for air.

Fig. 8. Comparison with Eq. (20) for water.

of the expression of Ref. 16:

Nu= 4
3

[
7Gr0∗Pr2

5 (20+21Pr)

]1/4

+
[

4 (272+315Pr)
35 (64+63Pr)

]
L

D
(20)

for the Prandtl numbers of 0.708, 7.02, and 50. Comparisons with air,
reported in Fig. 7, show a maximum difference of 25% at Ra = 5×109.
Comparisons with water, reported in Fig. 8, show a maximum difference
of 12%, while comparisons with oil, reported in Fig. 9, show a maximum
difference of 16% for Ra = 2×1012.



1536 Gori, Serranò, and Wang

Fig. 9. Comparison with Eq. (20) for oil.

4. CONCLUSIONS

The local non-similarity solution with the first level of truncation is
employed in this work to study natural convection around a needle with
uniform and constant wall heat flux. The temperature distribution and
the velocity profile are obtained in a wide range of Prandtl numbers. The
present analytical solutions are compared to experimental results, obtained
with needles used to measure the thermal conductivity of fluids. The ana-
lytical results of this work are in good agreement with the experimental
data and with an empirical expression correlating previous experimental
data from the literature.

ACKNOWLEDGMENTS

The authors thank ASI (Agenzia Spaziale Italiana) for partial sup-
port. The authors thank Dr. G. Foschi for help given during the prepa-
ration of the manuscript.

NOMENCLATURE
Symbols
D Diameter of the needle (m)
f Dimensionless stream function
f ′ = ∂f

∂η

g Acceleration of gravity (m·s−2)
Gr∗

0 = gβqwr4
0 /(kν) Modified Grashof number

h Heat transfer coefficient (W·m−2·K−1)
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hm Mean heat transfer coefficient (W·m−2·K−1)
k Thermal conductivity (W·m−1·K−1)
L Needle length (m)
Nu = h x / k Nusselt number
Num=hmx/k mean Nusselt number
Pr = ν / α Prandtl number
qw Wall heat flux (W·m−2)
r Radial coordinate (m)
Ra = Gr∗

0Pr Rayleigh number
r0 Needle radius (m)
T Temperature (K)
T∞ Stagnant temperature (K)
u Axial velocity (m·s−1)
w Radial velocity (m·s−1)
x Axial coordinate (m)

Greek Symbols
α Thermal diffusivity (m2·s−1)
β Coefficient of thermal expansion (K−1)
η Pseudo-similarity variable, Eq. (6)
ν Kinematics viscosity (m·s−1)
θ Dimensionless temperature, Eq. (9)
θ ′ = ∂ θ

∂ η

θ0 Dimensionless wall temperature
ρ Density (kg·m−3)
ξ Stretched x coordinate, Eq. (7)
ψ Stream function, Eq. (8), (m3·s−1)

Subscript
c Critical
m Mean
max Maximum
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8. F. Gori and M. Pietrafesa, Proc. 10th Int. Heat Transfer Conf., Vol. 5, Brighton, United
Kingdom (1994), pp. 349–354.

9. F. Gori, P. Coppa, and M. Pietrafesa, Adv. Eng. Heat Transfer, Proc. Second Baltic Heat
Transfer Conf., Southampton (1995), pp. 101–111.

10. F. Gori, C. Marino, and M. Pietrafesa, Int. Commun. Heat Mass Transfer 28:1091 (2001).
11. F. Gori and S. Corasaniti, 5th World Conf. Exptal. Heat Transfer, Fluid Mechanics and

Thermodyn., Vol. 2 (2001), pp. 1257–1262.
12. F. Gori and S. Corasaniti, HTD-24152, Int. Mech. Eng. Cong. Expo. (IMECE), ASME

(2001), pp. 1–8.
13. F. Gori and S. Corasaniti, Microgravity and Space Station Utilization 2:23 (2001).
14. F. Gori and S. Corasaniti, J. Heat Transfer 126:1001 (2002).
15. F. Gori and P. Coppa, Proc. ESDA 2002:6th Biennial Conf. Eng. Systems Design Anal.,

Instanbul, Turkey, July 8–11 (2002).
16. E. J. Le Fevre and A. J. Ede, Proc. IX Congress for Appl. Mech., Vol. 4, Brussels (1956),

pp. 175–183.


