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Abstract
The assessment of genetic diversity and karyotypes can help to identify new spe-
cies and taxonomic units and contribute to species conservation. Ecological niche 
modeling can be used to predict species distribution and to estimate the impact 
of climate changes on its survival. The Alouatta guariba group is one of the most 
threatened primates in the Americas, with two endemic Atlantic Forest subspecies: 
A. g. guariba and A. g. clamitans, referred to as Northern and Southern popula-
tions, respectively. Although extensively studied, the distribution and the genetic 
diversity of these subspecies remains unclear. We assessed species relationships and 
genetic diversity in the A. guariba group and evaluated the potential future distribu-
tion of populations. We sequenced the mitochondrial cytochrome b gene of 14 cap-
tive and 108 free-living individuals to generate a maximum likelihood phylogenetic 
tree and median-joining haplotype network and to estimate the nucleotide diversity 
between the taxa. We conducted neutrality tests to test for population expansion. 
We also linked ten new karyotypes, obtained from cell cultures from blood samples 
of captive individuals, with the positions of the clades in the gene tree. Finally, we 
used ecological niche modeling to predict the potential distribution of the Northern 
and Southern populations. We found three lineages within the A. guariba group: 
North A and North B associated with A. g. guariba, and South C associated with 
A. g. clamitans. The results showed that A. guariba group is a species complex, 
with reduced haplotype and nucleotide diversity within each lineage, compared with 
other Alouatta species. The neutrality tests and median-joining analysis suggest 
a recent diversification and expansion of each lineage, and the geographical data, 
based on the localities of the individuals that we analyzed genetically, increase the 
geographic distribution of A. g. guariba, expanding the distribution farther south in 
southeastern Brazil than previously described. Our findings show the distribution of 
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the A. guariba group and genetic diversity of recently expanding populations, con-
tributing to the assessment of this Critically Endangered species. We also suggest 
that environmental losses and climate change are major factors in the drastic popula-
tion decline of the A. guariba group.

Keywords Alouatta · Karyotype · Mitochondrial gene · Phylogeny · spatial · 
distribution modeling

Introduction

Primates exhibit a considerable level of genetic diversity within genera, and related 
species may show different levels of genetic diversity (Osada, 2015). Legislative 
definitions around the world include taxonomic levels of species, subspecies, varie-
ties, and genetically distinct populations, allowing the protection of genetic diversity 
and evolutionary processes at different levels (Coates et al., 2018). Identifying line-
ages, which may be endemic, rare, or endangered, helps to implement private or 
public policies to conserve specific areas (Winters et al., 2012). Furthermore, the 
maintenance of genetic diversity is an essential condition for populations to evolve 
and adapt to environmental change, strengthening the ability of species and popula-
tions to survive (Hoban et al., 2021). In particular, human-induced climate change 
presents numerous potential threats to nonhuman primate species, many of which 
are already threatened by human activities, such as deforestation, hunting, and trade 
in exotic animals (Chapman et al., 2006; Ribeiro et al., 2009; Wiederholt & Post, 
2010).

Platyrrhines are abundant and very diverse, with high species richness, including 
around 171 species mainly inhabiting the Amazonia and Atlantic Forest (Estrada et 
al., 2017). Despite being well studied, their genetic diversity is still insufficiently 
understood, and several new species and subspecies have been described or revali-
dated in the past 10 years (Boubli et al., 2016; Costa-Araújo et al., 2021; Dalponte 
et al., 2014; Gualda-Barros et al., 2012; Marsh, 2014). The main threats to primates 
are loss of habitat due to agriculture, followed by logging and wood harvesting, with 
the Atlantic Forest retaining the largest area of agricultural production (Estrada et 
al., 2017).

The family Atelidae encompasses the largest-sized platyrrhine genera, includ-
ing howler monkeys of the genus Alouatta Lacépède, 1799. Howler monkeys 
are well-adapted to several morphoclimatic domains, with a wide distribution 
through southern Mexico to northern Argentina (Rylands, 2000), and the number 
of recognized species ranges from nine to 15 (Cortés-Ortiz et al., 2015a; Gre-
gorin, 2006; Rylands & Mittermeier, 2009). The Alouatta guariba group encom-
passes two subspecies endemic to the Atlantic Forest: Alouatta guariba clamitans 
Cabrera, 1940 and A. g. guariba (Humboldt, 1812). The exact geographical dis-
tribution of these two subspecies is not well established (Fig.  1). Based on the 
IUCN Red List distribution, A. g. clamitans, also called the Southern Atlantic 
Forest population, occurs in the southern Atlantic Forest from Rio Grande do Sul 
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(RS) to the south of Bahia (BA) (Buss et al., 2021), and A. g. guariba, also called 
the Northern Atlantic Forest population, occurs from the south of Bahia state to 
northeastern Minas Gerais state (Neves et al., 2021). However, the last taxonomic 
revision of the Brazilian species of Alouatta (Gregorin, 2006), based on morpho-
logical features, extended the distribution of A. g. guariba to Espírito Santo and 
northern Rio de Janeiro states, and narrowed the distribution of A. g. clamitans in 
the southeast region (Fig. 1). Although Gregorin (2006) elevated both subspecies 
to the level of species, most studies and the IUCN Red List (Buss et al., 2021; 
Neves et al., 2021), continue to refer to them as subspecies.

Previous studies hypothesized that A. guariba is a species complex based on 
karyotypes (de Oliveira et al., 1998; Steinberg et al., 2017), molecular mark-
ers (de Mello Martins et al., 2011; Harris et al., 2005), and morphological data 
(Gregorin, 2006), without a clear geographic distribution of each taxon. Like 
some other Alouatta species, A. guariba males have one fewer chromosome than 
females due to the translocation of the Y chromosome to an autosome (Koiff-
mann & Saldanha, 1974). The A. guariba group has two karyotypes, with a dip-
loid number (2n) of 45 for males and 46 for females in the Southern population 
(de Oliveira et al., 2000; Steinberg et al., 2017), and 49 for males and 50 for 

Fig. 1  Maps with localities of the samples used in analyses and the geographic distribution of A. guariba 
group based on IUCN (Top right, Buss et al., 2021; Neves et al., 2021) and morphological data (Bottom 
right, Gregorin, 2006). In the top and bottom right maps, the area delimited in grey shows the distribu-
tion of A. guariba guariba, and white the distribution of A. guariba clamitans. Numbers refer to locali-
ties listed in Table S1. Brazilian states are Espírito Santo (ES), Rio de Janeiro (RJ), Minas Gerais (MG), 
São Paulo (SP), Paraná (PR), Santa Catarina (SC), and Rio Grande do Sul (RS), Goiás (GO) and Mato 
Grosso do Sul (MS), and Federal District (DF). The samples used from ES, RJ, MG, SP, and RS states 
were obtained in 2013, 2014, 2017, 2018, and 2019.



520 C. Povill et al.

1 3

females in the Northern population (de Oliveira et al., 1998,  2000). These dif-
ferences in karyotype have led some authors to assume that the populations are 
reproductively isolated (de Oliveira et al., 2000; Steinberg et al., 2017). Studies 
based on phylogenetic analyses of mitochondrial markers proposed that the two 
clades obtained for the A. guariba group are linked to A. guariba guariba and A. 
guariba clamitans (Harris et al., 2005; de Melo Martins et al., 2011). Among the 
morphological characters that differentiate A. g. guariba from A. g. clamitans, 
pelage coloration is the most conspicuous, with homogeneous coloration without 
sexual dichromatism in A. g. guariba, and presence of sexual dichromatism in A. 
g. clamitans (Gregorin, 2006).

Alouatta guariba guariba is considered to be among the 25 most-threatened pri-
mates (Mittermeier et al., 2022; Neves et al., 2021) due to habitat loss, hunting, 
traffic, and deaths during outbreaks of yellow fever, which reduced both populations 
considerably: the South mainly in 2008/2009 (Almeida et al., 2012; de Almeida et 
al., 2019; Estrada et al., 2018) and the North in 2017/2021 (Agostini et al., 2017; 
Sacchetto et  al., 2020). The last outbreaks may have moved A. g. guariba from 
Vulnerable to Endangered (Bicca-Marques et al., 2017; Estrada et al., 2018). The 
Atlantic Forest is considered a world biodiversity hotspot, suffering from long-term 
deforestation, and is completely fragmented, with approximately 12% of its original 
coverage remaining (Hansen et al., 2013; INPE, 2020; Rezende et al., 2018; Ribeiro 
et al., 2009).

We assessed species relationships and genetic diversity in the A. guariba group 
and evaluated the potential future distribution of the Northern and Southern popula-
tions. To do this, we: (i) assessed the cytochrome b and karyotype diversity in A. 
guariba group, concentrating on the Northern population, which is less studied and 
sampled than the Southern population, and (ii) evaluated the potential future distri-
bution of populations from the northern and southern Atlantic Forest to shed light 
on the long-term conservation prospects for the group.

Methods

Ethical Note

We obtained blood samples from free-living and captive Alouatta in accordance 
with methods and protocols approved by the Institutional Ethics Committee for 
Animal Experimentation (Protocol CEUA/IOC‐029/2016, license L‐037/2016), 
the Brazilian Ministry of the Environment (SISBIO = System of Authorization and 
Information in Biodiversity, license number 54707–4 to R. Lourenço-de-Oliveira), 
and Rio de Janeiro’s Environment agency (INEA 012/2016 and 019/2018). Veteri-
narian staff collected blood samples from captive animals at Centro de Primatologia 
do Rio de Janeiro (CPRJ) and Zoo Parque de São Paulo (RTM). Sample collection 
and management of free-living animals are described in two recent publications 
(Abreu et al., 2019; Teixeira et al., 2022). Live, free-living animals were released at 
the same location as they were caught. We also obtained muscle tissue from roadkill 
animals under licenses IBAMA for operation 1187/2013 and ABIO 514/2014 to C. 
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Bueno (deposited in Mammal collection of Museu Nacional), as well as from indi-
viduals that died during the yellow-fever outbreak from samples held in the mam-
malian collection of the Centro de Coleções Taxonômicas of Universidade Federal 
de Minas Gerais (UFMG). We obtained samples in accordance with the ethical 
treatment guidelines of Conselho Nacional de Controle de Experimentação Animal 
(CONCEA), normative resolution n. 28 (Pissinatti et al., 2016).

Sampling

We obtained blood and muscle samples for DNA analysis from 122 howler mon-
keys, 14 in captivity and 108 free-living, including animals killed by yellow fever 
and found run over during road monitoring. The samples included 117 animals from 
the Northern population (Espírito Santo, Rio de Janeiro, Minas Gerais, São Paulo 
states) and five from the Southern population (Rio Grande do Sul; Fig. 1; Table S1). 
We stored muscle samples in a freezer at − 20  °C. We stored blood samples in a 
refrigerator at 8 °C and processed them within 2 days.

We isolated DNA from 21 muscle samples using the phenol–chloroform proto-
col (Sambrook & Russel, 2001). We isolated DNA from 101 blood samples with a 
saline protocol (Miller et al., 1988), Promega® Wizard Genomic DNA Purification 
Kit®, or QIamp® DNA Blood mini kit according to the kit or protocol available 
when we obtained the sample.

We karyotyped ten of the animals from the Northern population: seven from Rio 
de Janeiro state: (a) Parque Estadual da Serra dos Órgãos – CPRJ3622, (b) Cabo 
Frio - CPRJ2799 (locality 35 in Fig. 1), (c) Niterói – CPRJ3723 (locality 36), (d) 
Macaé – CPRJ3636, (e) Parque Estadual dos Três Picos – CPRJ2443 (locality 37), 
(f) Itaocara – CPRJ3216 (locality 23), (a-f) housed in captivity in Centro de Pri-
matologia do Rio de Janeiro/CPRJ, (g) Angra dos Reis – CPRJ140 (locality 38), 
and three from São Paulo state (h) Parque Estadual das Fontes do Ipiranga/PEFI—
RTM1518, RTM1526, RTM1542 (locality 33), housed in Zoo Parque de São Paulo.

Molecular and Statistical Analyses

We amplified the MT-CYB (ca.1140  bp) of 122 samples using polymerase chain 
reactions with primers L14725 (Irwin et al., 1991) and Cytb rev 5 ‘-GAA TAT CAG 
CTT TGG GTG TTG RTG -3’. Nomenclature of the mitochondrial cytochrome b pro-
tein-coding gene followed the HGNC Database, HUGO Gene Nomenclature Com-
mittee for the use of the MT-CYB abbreviation.

We used the same primers plus the internal primers CB-in1 5’-GAA TAT CAG CTT 
TGG GTG TTG RTG -3’ and CB-in2 5`-TGA GGA CAA ATA TCA TTY TGAG-3` for 
sequencing. The amplification reaction mixture contained 1.0 µl of DNA template, 2.5 µl 
of 10 × buffer, 2.0 µl of MgCl2 (25 mM), 1.0 µl of forward primer 1 (10 mM), 1.0 µl of 
reverse primer 2 (10 mM), 0.4 µl of dNTPs (10 mM), 0.3 µl of Platinum® Taq DNA 
Polymerase (Invitrogen), and Ultrapure water for a total volume of 25 µl. PCR ampli-
fication conditions consisted of an initial denaturation at 94 °C for 2 min, followed by 
35 cycles of denaturation at 94 °C for 30 s, annealing at 54 °C for 30 s, extension at 
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72 °C for 90 s, and the final extension at 72 °C for 5 min. We obtained amplicons using 
a ProFlex™ 3 thermal cycler × 32-well Sample Block by Life Technologies, and puri-
fied them with PureLink TM Quick Gel Extraction & PCR Purification Combo kit by 
Thermo Fisher Scientific following the manufacturer’s recommendations. We performed 
the sequencing in the Applied Biosystems 3730xl DNA Analyzer platform using the 
reagents of BigDye™ Terminator v3.1 Cycle Sequencing Kit. The sequencing reaction 
mixture in each well contained 2–4 μl of DNA, 1 µl of Ready Reaction kit, 1.5 µl of Big-
Dye sequencing buffer (5x), 1 µl of oligonucleotide, and ultrapure water to a volume of 
10 µl. The sequencing conditions consisted of an initial denaturation at 96 °C for 1 min, 
followed by 20–40 cycles of denaturation at 96 °C for 15 s, annealing at 50 °C for 15 s, 
and extension at 60 °C for 4 min. We assembled MT-CYB in sequence contigs using 
Chromas PRO version 2 (TechnelysiumPtyLtd) and aligned the sequences using Muscle 
in Mega X (Kumar et al., 2018). We checked for possible nuclear mitochondrial DNA 
pseudogenes (NUMTs) by translating the nucleotide sequence into protein and verifying 
the length and the presence of stop-codons in the wrong position. We did not identify 
any sequences as potential NUMTs. The phylogenetic positions in the analyses were as 
expected, suggesting that the inclusion of NUMTs was not an issue.

In addition to the sequences that we obtained, we added sequences available in Gen-
Bank with at least 800 base pairs (bp) identified as A. guariba clamitans (AF289986-
987, AY065898-899, HQ385483-494, HQ385496-501, DQ679770-775, DQ679777-
784, KY202428, KR528422), A. belzebul (DQ387044), A. caraya (DQ350637), A. 
seniculus (EU232713), A. macconnelli (AJ489759), A. sara (AY065887), correspond-
ing to the South American Alouatta clade, and A. pigra (AY065885) and A. palliata 
(AY065880) from the Mesoamerican clade (Cortés-Ortiz et al., 2003). As outgroups, 
we used available sequences of Ateles geoffroyi (KR902382) and Ateles belzebuth 
(KR202369). To check the phylogenetic relationship and identify geographic struc-
ture within the samples obtained for the A. guariba group, we performed a maximum 
likelihood (ML) gene tree estimation using Iqtree (Nguyen et al., 2015) based on MT-
CYB. The best-fit model of nucleotide substitution was TN + F + G4, selected with 
ModelFinder (Kalyaanamoorthy et al., 2017). We estimated branch support using SH-
LRT (Shimodaira-Hasegawa-like procedure; Guindon et al., 2010) and UFBoot (ultra-
fast bootstrap approximation; Hoang et al., 2018).

To confirm the grouping of the samples obtained in the ML tree and under-
stand the mutational steps separating each lineage, we produced a haplotype net-
work. First, we identified the haplotypes with DNASP program version 6 (Rozas 
et al., 2017) and drew the median-joining (MJ) network analyses using Network 
program version 10 (fluxus-engineering.com; Bandelt et al., 1999). To identify 
haplotypes, we excluded sites with gaps and missing data to avoid biasing the hap-
lotype distribution pattern, because missing data may represent poorly sequenced 
nucleotides (Joly et al., 2007). We used 690 sites to generate the haplotype net-
work. MJ analysis is commonly used to infer an unrooted branching diagram from 
intraspecific data and to visualize the relationships among DNA sequences within 
populations or species, where alternative branching may represent potential ances-
tral sequences. We also used DNASP to calculate indices of nucleotide (π) and 
haplotype diversity to estimate the level of genetic diversity.
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We carried out neutrality tests of Tajima’s D and Fu’s FS based on the null 
hypothesis of constant population size and neutral mutations with 1,000 replications 
(Table I) using Arlequin version 3.5 (Excoffier & Lischer, 2010).

Karyotype Preparation

We cultured each of ten peripheral samples from captive individuals attributed to the 
northern Atlantic forest (CPRJ3622, CPRJ2799, CPRJ3723, CPRJ3636, CPRJ2443, 
CPRJ3216, RTM1518, RTM1526, RTM1542, RJ140) in 8 ml of RPMI 1640, 2 ml 
of fetal calf serum, 20 µl of lectin, 0.5 ml of L-Glutamine, and 60 µl of heparin for 
70 h. Then, we added 0.5 ml of colchicine  10−5 M for 2 additional hours. We added 
a solution containing KCl (0.075  M) for hypotonic shock, and a Carnoy solution 
(3 methanol: 1 acetic acid) for fixation. After culturing the lymphocytes, we per-
formed conventional staining with Giemsa 2%, producing visible karyotypes with 
condensed chromosomes. We photographed metaphases with a QImaging Retiga™ 
3000 camera coupled to a Zeiss Axio Imager. We also performed C-banding (Sum-
ner, 1972), a technique used to show heterochromatic bands, which are areas of 
chromosomes that typically remain condensed during interphase and are typically 
found as blocks surrounding centromeres (Sumner, 1972). However, only one sam-
ple (CPRJ3636) showed a suitable result. We assembled the karyotypes in descend-
ing order, based on chromosome size and number of arms (de Oliveira et al., 1998).

Predicted Potential Distribution

We used occurrences available at Global Biodiversity Information Facility 
(GBIF, 2021) and in a dataset of occurrences of primates in the Atlantic Forests 
(Culot et al., 2019) for the Alouatta guariba group, which included localities in 

Table I  Neutrality statistical tests (Tajima’s D and Fu’s FS) showing genetic variability of Alouatta guar-
iba group of lineages A, B, and C from Northern and Southern clades, based on samples obtained in the 
years of 2013, 2014, 2017, 2018, and 2019 in the Brazilian states of Rio de Janeiro, Minas Gerais, São 
Paulo, Espírito Santo, Paraná, Santa Catarina, Goiás, Mato Grosso do Sul and Rio Grande do Sul

*(Significant p-value); S (number of segregating sites)

MT-CYB of the A. guariba group Northern clade Southern clade

Lineage A Lineage B Lineage C

Number of transitions 10 11 6
Number of transversions 3 7 1
Sample size 74 57 30
S 12 17 7
Tajima’s D  − 0.818  − 2.083  − 0.725
Tajima’s D p-value 0.226 0.008* 0.251
Fu’s FS  − 2.646  − 3.822 0.136
Fu’s FS p-value 0.125 0.025* 0.549
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nine Brazilian states (Rio de Janeiro, Minas Gerais, Espírito Santo, São Paulo, 
Bahia, Santa Catarina, Paraná, Rio Grande do Sul and Mato Grosso do Sul), 
and ten sites from the province of Misiones, Argentina. We did not include 
individual records from São Paulo that we could not allocate to the Northern 
or Southern populations with certainty. We also included records available in 
studies that identified specimens from Northern and Southern population using 
morphology, karyotype, or molecular analysis (Cardoso Coimbra, 2015; de 
Oliveira et al., 2000; Gifalli-Iughetti, 2008; Gregorin, 2006; Machado, 2011; 
Steinberg et al., 2017).

We gathered the geo-referenced occurrences for Northern (n = 207; Table S2) and 
Southern (n = 259; Table S3) populations, defined South America as the background 
extent for species distribution models (SDM), and removed duplicate records of each 
grid cell for analysis. We used Maxent (version 3.4.4) to generate SDM. Maxent uses 
presence data based on georeferenced points of occurrence and environmental variables 
to estimate the occurrence of a species realized niche and model their potential dis-
tribution (Phillips et al., 2006). We conducted all SDM analyses in R (version 4.0.4), 
using the “raster” (Hijmans et al., 2015), “dismo” (Hijmans et al., 2017), and “rJava” 
(Urbanek, 2021) packages. We used the following parameters for all models: logistic 
output format (habitat suitability measured on a scale of 0–1), 80% of records used as 
training data and 20% for testing, maximum 500 iterations, 5 replicates, 10,000 back-
ground points (Phillips et al., 2006). We defined the threshold for the distribution of 
suitable habitat as the tenth percentile training presence (TPTP) threshold superim-
posed on the model training area (Pearson et al., 2007).

We modeled potential species distribution using 19 bioclimatic variables avail-
able at WorldClim 2.1 (Fick & Hijmans, 2017; Hijmans et al., 2005), which rep-
resent recent (years 1970 to 2000) and future conditions (years 2081 to 2100). 
We also included current altitude data that was used to produce WorldClim 2.1 
as a variable in the present and future models. We used anthropogenic emissions 
quantification data for two main future scenarios (SSP2-4.5 and SSP5-8.5) of 
greenhouse gas concentration. We used the mean projections from eight global 
climate models (GCMs): BCC-CSM2-MR, CNRM-CM6-1, CNRM-ESM2-1, 
CanESM5, IPSL-CM6A-LR, MIROC-ES2L, MIROC6, and MRI-ESM2-0, avail-
able at WorldClim 2.1 (Fick & Hijmans, 2017; Hijmans et al., 2005). We pro-
jected all scenarios using a spatial resolution of 2.5 arc-minutes (~ 4.5 km; Fick 
& Hijmans, 2017; Hijmans et al., 2005). We assessed the proportional contribu-
tions (%) of each environmental variable to each model by using jackknife tests 
(Phillips et al., 2006).

To estimate the predictive accuracy of the potential habitat models, we used area 
under the curve (AUC) metrics, based on the area under the receiver operating char-
acteristic (ROC) curve (Elith et al., 2006; Swets, 1988). AUC assesses how well the 
model’s predictions discriminate between places where observations are present and 
absent and is one of the most widely used threshold independent evaluators of the 
model’s discriminatory power. AUC values above 0.9 indicate high model perfor-
mance, whereas AUC values close to 0.5 indicate models equal to or worse than ran-
dom (Peterson et al., 2011). For comparative purposes, we reclassified the images 
resulting from each model (with continuous values from 0 to 1) into four classes 
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of environmental suitability: unsuitable (UNS; 0, value TPTP), moderately suitable 
(MOS; value TPTP, 0.5), highly suitable (HIS; 0.5–0.75), and very highly suitable 
(VHS; 0.75–1). We plotted a final map with the occurrences and the final distribu-
tion model in ArcGIS. For more details of the methods, localities of occurrences, 
results of the AUC, and Jackknife test, see Appendix S1.

Results

Phylogenetics, Genetics, and Median‑Joining Analyses

The maximum likelihood analysis divided the clade containing the A. guariba group into 
two major clades and three lineages: lineages A and B (Northern Clade) (94.1 SH-aLRT, 
90 UFBoot); and lineage C (Southern Clade) (88.8 SH-aLRT, 91 UFBoot) (Fig. 2).

The MJ network analysis (Fig.  2) with 37 variable sites and 161 sequences 
showed 26 haplotypes (h), and haplotype diversity (Hd) of 0.8359. The MJ net-
work analysis showed star-like haplogroups corresponding to lineages A, B, and C. 
Haplogroups A and B were separated by at least six mutations and haplogroups B 
and C by at least seven mutations. The nucleotide diversity (π), estimated for the 
dataset according to the haplotypes and haplogroups recovered in ML and MJ, was 
0.00367 for lineage A (Northern Clade), 0.00309 for lineage B (Northern Clade), 
and 0.00306 for lineage C (Southern Clade).

Karyotypes

Karyotypes of lineage A (Northern Clade) from Rio de Janeiro (CPRJ3636 and RJ140) 
and São Paulo (RTM1526 and RTM1542) are all males with 2n = 49 (Fig. 3). The auto-
some complement of these four males is composed of seven two-armed pairs, two large, 
one medium, and four small, and 16 medium to small one-armed pairs. The male sexual 
chromosome is translocated to an autosome, and the X is a medium biarmed chromo-
some. Pair numbers 18 and 20 showed a secondary constriction in these four samples, and 
the karyotype of sample CPRJ3636 also presented a heteromorphic 14th pair (Fig. 3).

Karyotypes of males from lineage B (Northern Clade) from Rio de Janeiro (male 
CPRJ2443) and São Paulo (male RTM1518) also showed 2n = 49 and a chromo-
some morphology similar to males of lineage A (Northern Clade). The CPRJ2443 
karyotype presented a heteromorphic  20th pair, and the CPRJ3723 karyotype pre-
sented a heteromorphic  15th pair (Fig. 3).

The karyotypes of females from lineage B (Northern Clade) from Rio de Janeiro 
(females CPRJ2799, CPRJ3622, CPRJ3723, CPRJ3216) showed 2n = 50 (Fig.  3). 
The autosome complement is composed of eight two-armed pairs, two large, one 
medium, and five small, and 16 medium to small pairs with one arm. The X sexual 
chromosome is a medium biarmed chromosome. Females also showed two pairs of 
chromosomes with secondary constrictions.
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Predicted Potential Distribution

After removing duplicates from each grid cell, we used 249 presence records 
to model the potential distribution of the Southern Clade and 197 to model that 
of Northern Clade. The mean training AUC for the replicated runs was 0.982 
(SD = 0.001) for the Southern population habitat suitability model and 0.985 
(SD = 0.001) for the Northern population habitat suitability model, meaning that 
the model performance was high (Figure S1). The jackknife test of variable impor-
tance for the Southern and Northern population habitat suitability models showed 
that the environmental variable that best explained the population distributions when 
used alone is BIO4 (Temperature Seasonality), which is a measure of the change 

Fig. 2  Left, maximum likelihood topology of the Alouatta guariba group, with haplotypes, locality num-
bers (corresponding to map in Fig.  1 and Supplementary Table  1) in parentheses for each haplotype. 
Values close to the nodes are SH-aLRT and UFBoot supports. Brazilian states are Bahia (BA), Espírito 
Santo (ES), Goiás (GO), Minas Gerais (MG), Paraná (PR), Rio de Janeiro (RJ), Rio Grande do Sul (RS), 
São Paulo (SP), and Santa Catarina (SC). Top right, map with sampling localities according to the color 
of the clades and haplogroups found in the maximum likelihood and median-joining network (MJ) analy-
ses, gray circles represent lineage A (Northern Clade), black circles the lineage B (Northern Clade), and 
white circles the lineage C (Southern Clade). Bottom right, the MJ network where circles are haplotypes 
with dimensions proportional to the number of shared sequences, numbers in the lines connecting the 
circles are nucleotide substitutions and diamond the median vector. The samples used here from ES, RJ, 
MG, SP, and RS states were obtained in 2013, 2014, 2017, 2018, and 2019.
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Fig. 3  Karyotypes of the Northern Clade: lineage A (Northern Clade) with C-banding pattern 
(RTM1526 from São Paulo state), and Giemsa coloration (CPRJ3636 and RJ140 from Rio de Janeiro 
state, and RTM1542 from São Paulo state); lineage B (Northern Clade) with Giemsa coloration (females 
CPRJ2799, CPRJ3622, CPRJ3723, and CPRJ3216 from Rio de Janeiro and males CPRJ2443 from Rio 
de Janeiro state and RTM1518 from São Paulo state). X and Y are sexual chromosomes. Arrows indicate 
chromosome pairs with secondary constrictions. The samples from Rio de Janeiro state were obtained in 
2018 and the samples from São Paulo in 2019, Brazil.
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in temperature throughout the year (Figure  S2). For the Southern population, the 
second environmental variable that best explained population distribution is BIO11 
(Mean Temperature of Coldest Quarter). This index measures mean temperatures 
during the three coldest months of the year. The second variable that best explained 
the distribution of the Northern population is BIO3 (Isothermality), which quantifies 
how much day-to-night temperatures oscillated relative to annual oscillations.

Based on the TPTP cutoff criteria, SDM identified regions in Brazil suitable for the 
occurrence of Southern and Northern populations (Fig. 4), mainly in Atlantic Forest areas. 
In the assessment of the recent potential distribution (years 1970 to 2000) for the two spe-
cies, the geographic range of the Southern population had an area of 464,912.37 km and 
the Northern population had an area of 492,811.88 km. When assessing the potential dis-
tribution for two greenhouse gas emission scenarios (a lower-emission scenario (SSP245) 
and a worse scenario (SSP585)) in 60 to 79 years (2081–2100), the ideal climatic condi-
tions for the two populations were greatly reduced in geographic coverage. The Southern 
population had a reduction in geographic coverage of 52% (227,420.43 km) in the most 
optimistic scenario, and 81% (94,104.18 km) in the worst scenario. The Northern popula-
tion had a reduction in geographic coverage of 72% (141,025.01 km) in the most optimis-
tic scenario, and 92% (46,944.69 km) in the worst scenario (Fig. 4).

Discussion

Genetic Diversity of the A. guariba Group Lineages

Our MT-CYB gene tree divided the A. guariba group into two major clades, one 
with individuals from the South and another with individuals from the North, 

Fig. 4  Southern (S) and Northern (N) population habitat suitability model of the A. guariba group as 
predicted by MaxEnt: (N1 and S1) presence records, (N2 and S2) current distribution suitability, years 
1970 to 2000, and two future distribution suitability in 2081–2100, (N3 and S3) in the better scenario 
SSP2-4.5, and (N4 and S4) in the worse scenario SSP5-8.5.
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similar to previous studies (de Mello Martins et al., 2011; Harris et al., 2005; 
Machado, 2011; Steinberg et al., 2014). Our findings reinforce the association of 
the Southern Clade with A. g. clamitans and the Northern Clade with A. g. guariba. 
The Northern Clade was further divided into two clades, named lineage A and line-
age B, and we named the Southern Clade, named lineage C. Lineage A (Northern 
Clade) occurs mostly in the state of Rio de Janeiro, and Lineage B (Northern Clade) 
in Minas Gerais state, but we found areas of overlap between lineages A and B, and 
A, B, and C. Although mitochondrial DNA evolves faster than single-copy nuclear 
DNA and can be used to clarify taxonomic ambiguities and evolutionarily signifi-
cant units, it still shows some of the limitations associated with using data from a 
single locus to infer phylogenetic history. Mitochondrial DNA only represents the 
maternal side and records scant evidence of recent events. As a result, it does not 
accurately represent the species tree (Wan et al., 2004). Although biparental mark-
ers should be taken into consideration for future research with the Alouatta guariba 
group, mitochondrial DNA is still a powerful tool in conservation genetics, because 
its shows a strong phylogenetic signal at specific and population level.

In the MJ network and MT-CYB analyses, Southern and Northern populations 
showed a low number of haplotypes compared to the number of sequences used, 
and a low nucleotide diversity estimate, even when we analyzed lineages A and B 
(Northern Clade) separately, a pattern similar to previous studies based on MT-CYB 
(Bonvicino et al., 2015; Machado, 2011). The greater sample size and the number 
of sites that we analyzed for samples in the Northern Clade allowed us to better 
understand the geographic limits of these populations and find instances of sym-
patry between lineages A and B in the states of Minas Gerais and Rio de Janeiro. 
These areas of overlap represent an expansion of lineage B (Northern Clade) as 
shown by neutrality tests, for which the negative value deviated significantly from 
neutrality, suggesting an excess of rare nucleotide site variants. It is likely that line-
ages A and B separated recently and accumulated nucleotide differences, allowing 
us to observe these two isolated lineages. Evidence of expansion was found in the 
Southern population ca. 5,000 years ago (Machado, 2011), right after a postglacial 
period (Nascimento et al., 2005), in which the populations emerged from a state of 
isolation to start expanding. Based on the observed star-like pattern in each lineage, 
we suggest that the three lineages were likely recently isolated and are expanding. 
The areas of overlap between lineages A and B and between the three lineages in 
São Paulo may be associated with the expansion of these three lineages.

A recent study based on mitochondrial marker MT-COI (Petit-Marty et al., 2021) 
estimated that the nucleotide diversity (π) of threatened mammalian species can be 
much lower, ranging π = 0.0044–0.0102, than that of nonthreatened mammalian 
species, ranging π = 0.0128–0.0165. Compared with other Alouatta species, such 
as Amazon and Atlantic Forest populations of A. belzebul, analyzed by using the 
same mitochondrial marker (Nascimento et al., 2005, 2007; Povill et al., 2022), the 
A. guariba group had fewer haplotypes and low nucleotide diversity (Table  S4). 
Alouatta caraya showed low MT-CYB nucleotide diversity as showed for A. guar-
iba group, but more haplotypes (Ascunce et al., 2007; Nascimento et al., 2007). This 
finding may be related to the large distribution of A. caraya, the strong geographic 
structuring of the populations, and its limited dispersal, which occurs only along 
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forest corridors (Nascimento et al., 2007). Threatened species, such as A. pigra and 
A. palliata mexicana, that inhabit areas of continuous forest reduction (Dunn et al., 
2014; James et al., 1997; Melo-Carrillo et  al., 2020) showed very low mitochon-
drial nucleotide diversity (Dunn et al., 2014). A. palliata mexicana showed lower 
genetic diversity than any other Alouatta species. Some species of Alouatta from 
South America or the Cis-Andean species, such as A. palliata, have low nucleotide 
diversity (Table S4). Alouatta caraya, A. belzebul (Amazon population), A. palliata 
mexicana, and the A. guariba group occur in very different environments. Both A. 
guariba group and A. palliata are species complexes that inhabit small patches, in 
which the genetic diversity was lower than the other species. The low genetic nucle-
otide diversity observed in the A. guariba group may result from genetic drift in 
small and isolated populations, or habitat fragmentation and climatic variation.

Karyotype Analyses Support the Hypothesis that Northern and Southern 
Populations are Distinct Taxa

We attributed the Northern Clade to A. guariba guariba and the Southern Clade 
to A. guariba clamitans, based on previous studies and our data for karyotype 
and phylogenetic relationships, and the geographic distribution of A. guariba 
guariba (Gregorin, 2006; Kinzey, 1982). However, the type locality of A. guar-
iba guariba in its original description was defined as Brazil by Humboldt in 
1812 and later was restricted to Rio Paraguaçu, Bahia state (Cabrera, 1958), a 
contested action not considered in later publications (Gregorin, 2006) due to the 
lack of plausible explanations for this restriction. The type locality of A. guariba 
clamitans was referred to as São Sebastião in São Paulo state, based on the lec-
totype (Gregorin, 2006).

We attribute the karyotype 2n = 49–50 to A. guariba guariba (Northern Clade) 
based on previous publications (de Oliveira et al., 2000; Steinberg et al., 2014) and 
our karyotype results. We attribute the karyotype 2n = 45–46 to A. guariba clami-
tans (Southern Clade) based on previous karyological (de Oliveira et al., 2000; 
Steinberg et al., 2014, 2017) and molecular (de Mello Martins et al., 2011; Harris 
et al., 2005) studies. Analysis of a possible hybrid with karyotype 2n = 48 using 
fluorescence in situ hybridization showed the presence of chromosomes from line-
ages from Southern Clade (2n = 45–46) and Northern Clade (2n = 49–50) (Car-
doso Coimbra, 2015). The single specimen with 2n = 48, among roughly 65 speci-
mens analyzed with 2n = 45–46 or 2n = 49–50, and the absence of offspring from 
this hybrid suggests a postzygotic barrier between the lineages from the north and 
south (Cardoso Coimbra, 2015; Gifalli-Iughetti, 2008) that causes hybrid sterility 
due to cumulative negative interactions between loci. Evidence of hybridization 
also has been observed between two Mesoamerican species of Alouatta: A. pigra 
and A. palliata (Cortés-Ortiz et al., 2015b; Kelaita & Cortés-Ortiz, 2013). The 
differences in diploid number among Northern and Southern clades of A. guariba 
group and the differences we found in the number of chromosomal arms present 
in the autosomal complement of a somatic cell in the Northern Clade support the 
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hypothesis that the A. guariba group is in a process of chromosomal differentia-
tion or speciation (Gifalli-Iughetti, 2008).

Predicted Potential Distributions

In the current potential distribution areas, the two populations are sympatric in a 
small area in the southeastern part of São Paulo state, and this overlap is lost in 
the SDM worst scenario for the future. Temperature seasonality (BIO4) was the 
most important environmental variable to explain the distribution of the northern 
and southern populations. For the southern population, the second variable (BIO11), 
related to the coldest quarter in the year, appears to affect the distribution of this 
lineage, whereas for the northern population, the variable Isothermality (BIO3), 
related to temperature fluctuations during the year, could influence its distribution 
(O’Donnell & Ignizio, 2012).

According to the models, the northern and southern populations will lose 
a large percentage of their suitable distribution areas in the future (2081–2100) 
due to changes in climate, in both the most optimistic or pessimistic scenarios. 
The SDM results showed fluctuations in temperature throughout the year and the 
colder months as the most influential variables in the Northern and Southern A. 
guariba population distributions. Another factor reinforcing the SDM scenario is a 
likely reduction in the Atlantic Forest territory, as a result of forest being replaced 
by savanna (Salazar et al., 2007), caused mainly by the direct effect of the change 
in land use (Ribeiro et al., 2009). Other studies of the potential distribution of 
Alouatta suggest that populations are affected by both deforestation and climate 
changes (Freire Filho & Palmeirim, 2020; Holzmann et al., 2015), supporting the 
scenario that we suggest, that fluctuations in temperature and the decrease in the 
Atlantic Forest territory are major threats to the Alouatta populations.

Variations in effective population size may be caused by climate change, as 
shown in the potential distribution model of the recent past and the future scenarios 
for the Northern and Southern clades. Another factor affecting population size is 
pandemic diseases (Harding et al., 2002), which are strong enough to remove the 
effect of species abundance on mtDNA diversity in mammals (Nabholz et al., 2008). 
Alouatta guariba lineages are endemic and mostly adapted to the Atlantic Forest, 
a very fragmented morphoclimatic domain where outbreaks of yellow fever are 
increasingly frequent. These outbreaks are considered the most important threat to 
this species in Misiones province, Argentina (Agostini et al., 2017), and are respon-
sible for population declines in other platyrrhine primates from the Atlantic For-
est, such as titi monkeys (Berthet et al., 2021). The recent devastating yellow fever 
epizootics are one of the reasons that the A. guariba group was considered one of 
the most threatened primates of the world (Estrada et al., 2018; Mittermeier et al., 
2022). Outbreaks of yellow fever are more frequent as a result of climate change 
and forest alterations that also influenced the resilience of Northern and Southern 
populations of A. guariba. Yellow fever and environmental modifications together 
influence their future predicted distributions, indicating very pessimistic outcomes.
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Conclusions

Our results add to our understanding of the current and future species distri-
bution of the Alouatta guariba group and reveal low genetic diversity in both 
Northern and Southern populations. The distribution limits for A. guariba 
guariba and A. guariba clamitans, based on differences between the Northern 
(A. guariba guariba) and Southern (A. guariba clamitans) populations in kar-
yotype, morphology, and phylogenetics, differ from those established by IUCN. 
The status of A. guariba guariba and A. guariba clamitans are well supported 
by molecular, karyotype, and morphologic analyses. Despite being widely dis-
tributed, the Northern and Southern clades, designated here as A. g. guariba and 
A. g. clamitans, respectively, are restricted to small patches in the southeast. To 
better understand the genetic diversity of the A. guariba group, studies should 
assess their nuclear DNA diversity, such as levels of heterozygosity. The low 
MT-CYB nucleotide diversity is an additional concern for these populations, 
and the high fragmentation of Atlantic Forest and recurrent outbreaks of yellow 
fever represent potential threats to these taxa. These data reinforce the IUCN 
Red List categories of A. guariba clamitans as Vulnerable (Buss et al., 2021) 
and A. guariba guariba as Critically Endangered (Neves et al., 2021).
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