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Abstract
Strepsirrhine vocalisations are extraordinarily diverse and cross-species compari-
sons are needed to explore how this variability evolved. We contributed to the inves-
tigation of primate acoustic diversity by comparing the vocal repertoire of two sym-
patric lemur species, Propithecus diadema and Indri indri. These diurnal species 
belong to the same taxonomic family and have similar activity patterns but different 
social structures. These features make them excellent candidates for an investigation 
of the phylogenetic, environmental, and social influence on primate vocal behav-
ior. We recorded 3 P. diadema groups in 2014 and 2016. From 1,872 recordings 
we selected and assigned 3814 calls to 9 a priori call types, on the basis of their 
acoustic structure. We implemented a reproducible technique performing an acous-
tic feature extraction relying on frequency bins, t-SNE data reduction, and a hard-
clustering analysis. We first quantified the vocal repertoire of P. diadema, finding 
consistent results for the 9 putatively identified call types. When comparing this rep-
ertoire with a previously published repertoire of I. indri, we found highly species-
specific repertoires, with only 2% of the calls misclassified by species identity. The 
loud calls of the two species were very distinct, while the low-frequency calls were 
more similar. Our results pinpoint the role of phylogenetic history, social and envi-
ronmental features on the evolution of communicative systems and contribute to a 
deeper understanding of the evolutionary roots of primate vocal differentiation. We 
conclude by arguing that standardized and reproducible techniques, like the one we 
employed, allow robust comparisons and should be prioritized in the future.
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Introduction

Acoustic signals play various roles in mate choice, resource defence, and species 
recognition in a broad range of taxa (Wilkins et al., 2013), including lemurs (Rako-
tonirina et al., 2016). Divergence in acoustic traits mediates discrimination within 
and between species and has been proposed to play a role in speciation and evolu-
tion (Wilkins et  al., 2013; Zimmermann, 2016). This is particularly true for sym-
patric cryptic species, in which species-specific vocal signals and recognition sys-
tems are involved in driving reproductive isolation. For instance, recent research 
showed this mechanism in species of the genera Microcebus (Braune et al., 2008) 
and Phaner (Forbanka, 2020). The complexity of mammalian vocal communication 
has been studied to understand possible factors determining convergent evolution-
ary patterns (Charlton & Reby, 2016) and species-specific differences (Gamba et al., 
2015). Three main evolutionary frameworks have been proposed for the diversifica-
tion of communication systems and vocal flexibility (Schuster et al., 2012).

First, the Phylogenetic Hypothesis suggests that phylogeny determines the 
vocal repertoire of a species (Ord & Garcia-Porta, 2012), implying that closely 
related members of a taxonomic group will have very similar signals (Zimmer-
mann, 2017). This hypothesis is supported by studies indicating concordance 
between vocal and genetic diversity across Nomascus species (Thinh et al., 2011). 
However, no evidence indicates a relationship between vocal behavior and phy-
logeny across lemurs (Hending et  al., 2020; Zimmermann, 2017), including the 
Indriidae family (Ramanankirahina et al., 2016).

Second, the Social Complexity Hypothesis posits that the evolution of vocal 
communication and that of social life are related (Bouchet et al., 2013; Pollard & 
Blumstein, 2012), such that a more complex social system requires more subtle 
communicative abilities to mediate interactions among group members (Freeberg 
et  al., 2012). Under this hypothesis, the diversity in the communicative signals 
of a species is related either to a stable and egalitarian social structure (Mitani, 
1996) or to group size (Kappeler, 2019; McComb & Semple, 2005; Peckre et al., 
2019). For instance, social structure and social organisation reflect the vocal rep-
ertoire complexity in Cercopithecus neglectus, Cercopithecus campbelli, and 
Cercocebus torquatus (Bouchet et al., 2013).

Third, and finally, the Sensory Drive Hypothesis (Endler, 1992) suggests that 
signals, sensory systems, and microhabitat choice coevolve, with signal evolution 
being driven by environmental conditions, including predation (Zimmermann, 
2017). This hypothesis is supported by the acoustic windows occupied by Micro-
cebus spp., Mirza spp., and Cheirogaleus spp. (Zimmermann, 2018), which use 
high frequency and ultrasonic components. The latter are rare among primates 
and appear to have evolved to cope with the social and ecological needs of a dis-
persed social network (Zimmermann, 2018). The acoustic frequency window 

734



1 3

Comparative Analysis of the Vocal Repertoires of the Indri…

is likely a balance between being conspicuous to conspecifics while remaining 
cryptic for predators (Zimmermann, 2018).

Although many lemurs live in smaller groups than other primates (Kappeler 
& Heymann, 1996) some lemur species live in large groups. Such groups may 
require sophisticated intelligence (social intelligence; Dunbar, 1996) and signals 
to modulate the relationships among group members (Matsuzawa, 2008; Oda, 
2008). For instance, the gregarious Lemur catta has a repertoire of 22 call types 
(Macedonia, 1993), whereas other species, such as Eulemur rufifrons and Pro-
pithecus verreauxi, show referential-like calling (Fichtel & Kappeler, 2002). Call 
types and use also differ with sex in Eulemur coronatus (Gamba and Giacoma, 
200), Mirza zaza (Seiler et al., 2019), and Lepilemur edwardsi (Rasoloharijaona 
et al., 2006). Hence, lemur vocal diversity may provide useful information on the 
selective pressures that may have played a role in the evolution of vocal commu-
nication (Oda, 2008).

Among lemurs, Indri is the only species that sings (Baker-Médard et al., 2013; De 
Gregorio et al., 2019; Giacoma et al., 2010; Torti et al., 2013, 2017). Recent studies 
showed that indri’s song possesses a rhythmic structure (De Gregorio et al., 2019; 
De Gregorio, Valente, et al., 2021a; Gamba et al., 2016), conforms to the linguistic 
laws of brevity (Valente et al., 2021), shows an ontogenetic development (De Grego-
rio, Carugati, et al., 2021b), and a sex-dimorphic phrase organization (Zanoli et al., 
2020). This species shows a rich vocal repertoire, including distinct alarm calls for 
terrestrial and aerial predators (Maretti et al., 2010) and several call types mediating 
intra-group dynamics (Valente et  al., 2019). In contrast, information on the vocal 
communication of Propithecus diadema is limited to qualitative accounts examining 
the role of vocal behavior in contact seeking (Petter & Charles-Dominique, 1979), 
and antipredatory behavior (Fichtel, 2014; Fichtel & Kappeler, 2002, 2011; Mac-
edonia & Stanger, 1994; Oda & Masataka, 1996; Patel & Owren, 2012; Petter & 
Charles-Dominique, 1979; Wright, 1998). All Propithecus species have call types 
with comparable structures and functions (Petter & Charles-Dominique, 1979; Mac-
edonia & Stanger, 1994; Oda & Masataka, 1996; Wright, 1998; Fichtel & Kappeler, 
2002, 2011; Patel & Owren, 2012; Fichtel, 2014; Online Resource 2). An exception 
is the zzuss, a call type only occurring in the repertoire of P. diadema, P. candidus, 
P. perrieri, and P. edwardsi (Anania et al., 2018; Macedonia & Stanger, 1994; Patel 
& Owren, 2012; Wright, 1998). The four western Propithecus species (P. verreauxi, 
P. coquereli, P. coronatus, P. deckenii) and P. tattersalli do have a call type serving 
similar functions to the zzuss (terrestrial predator alarming and group coordination, 
Patel & Owren, 2012) but with a different acoustic structure (Fichtel, 2014; Macedo-
nia & Stanger, 1994; Oda & Masataka, 1996; Petter & Charles-Dominique, 1979). 
Within the genus, the most investigated call types are the alarm calls of P. verreauxi 
and P. coquereli (Fichtel and Kappeler, 2011), and the zzuss of P. candidus (Patel & 
Owren, 2012). The latter represents the only quantitative description of a call type of 
eastern Propithecus species.

To understand the extent to which the vocal systems of two strepsirrhine species 
differ, we compared the calls of two sympatric and similar-sized lemur species, Indri 
and Propithecus diadema, belonging to the same taxonomic family (Indriidae), both 
inhabiting the same rainforest environment and having diurnal habits (Geissmann 
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& Mutschler, 2006). These species are the largest extant lemurs, and their estimated 
pairwise divergence time ranges between 18 (Federman et al., 2016; Kistler et al., 
2015; Masters et  al., 2013) and 29-36 MYA (Antonelli et  al., 2017; Fabre et  al., 
2009; Fritz et al., 2009; Roos et al., 2004). Propithecus diadema lives in multimale/
multifemale groups of two to eight individuals (Irwin, 2008; Powzyk, 1997; Weir, 
2014), whereas I. indri groups range from 2 to 5 individuals (Bonadonna et  al., 
2020; Glessner & Britt, 2005; Torti et al., 2017; Torti et al., 2018), usually compris-
ing a monogamous reproductive pair and their offspring (Bonadonna et al., 2019). 
Thanks to these features, they are suitable subjects to investigate the effect of the 
phylogenetic, environmental, and social influence on their vocal behavior. Moreo-
ver, Indri and P. diadema emit calls in similar contexts. Both species vocalize in the 
presence of terrestrial disturbance (disturbance call in P. diadema, wheezing grunt 
and kiss-wheeze in I. indri; Macedonia & Stanger, 1994) or aerial predators (roaring 
vocalisations: Macedonia & Stanger, 1994; Powzyk, 1997). Calls also are used to 
coordinate group movements during foraging or displacing activities (Macedonia & 
Stanger, 1994; Petter & Charles-Dominique, 1979).

We compared the number of distinct call types and their spectro-temporal struc-
ture, in the light of the Phylogenetic Hypothesis, Sensory Drive Hypothesis, and 
Social Complexity Hypothesis. Indri and P. diadema belong to the same taxo-
nomic family, so the Phylogenetic Hypothesis predicts that their repertoires should 
be more similar to one another than to those of more distantly related species. We 
also predict the vocal repertoires of the two species will be similar to one another, 
based on the Sensory Drive Hypothesis. Lastly, we tested two versions of the Social 
Complexity Hypothesis. Frist, if vocal repertoire size is positively related to group 
size (McComb & Semple, 2005), we predict that P. diadema, which lives in larger 
groups, will have a larger repertoire than I. indri, which lives in smaller groups. 
Conversely, if vocal diversification is driven by a stable and egalitarian social struc-
ture (Mitani, 1996), we predict a larger repertoire in pair-living, monogamous I. 
indri, than in the more despotic P. diadema, with its multimale/multifemale groups.

Methods

Data Collection

We conducted the study in four forest sites: Analamazaotra Special Reserve (Mada-
gascar National Parks, 18° 56’ S - 48° 25’ E), Andasibe-Mantadia National Park 
(Madagascar National Parks, 18° 28’ S - 48° 28’ E), Mitsinjo Forest Station (Asso-
ciation Mitsinjo, 18° 56’ S - 48° 24’ E), and Maromizaha Protected Area (Groupe 
d’Étude et de Recherche sur les Primates de Madagascar, 18° 56’ 49" S – 48° 27’ 
33" E).We collected vocalisations of I. indri by sampling 18 habituated groups 
between 2005 and 2018. Group size ranged from two to six individuals (mean ± SD 
= 4.2 ± 1.2). We collected vocalisations of P. diadema by sampling three habituated 
groups in 2014 and 2016. Group size ranged from eight to ten individuals (mean ± 
SD = 8.8 ± 0.8). Further information on data collection (groups size and composi-
tion, sampling days, and overall observation time) can be found in Online Resource 
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1. For both species, we followed a focal group for one to five consecutive days, 
observing animals at a distance ranging from 0.5 to 20 m. We identified individuals 
using morphological criteria such as fur patterns and other natural marks. Both spe-
cies are diurnal and their activity pattern is concentrated during the first half of the 
day (Petter & Charles-Dominique, 1979; Pollock, 1975). Indri vocal emissions are 
concentrated in the early morning (Geissmann & Mutschler, 2006). Propithecus dia-
dema calls can be emitted anytime throughout the day but are more common early 
in the morning and at the beginning of the afternoon (Petter & Charles-Dominique, 
1979). We, therefore, monitored the groups daily, from 06:00 h until their activities 
started to decrease (usually around 14:00 h), using focal animal sampling to collect 
data (Altmann, 1974). Occasionally, we also collected audio and video recordings 
of individuals’ utterances using ad libitum sampling (Altmann, 1974). We recorded 
spontaneous vocalisations using a Sennheiser ME66 or a Sennheiser ME67 shotgun 
directional microphone (frequency response range of both microphones: 40-20,000 
Hz ± 2.5 dB) connected to a solid-state digital audio recorder, a Sound Devices 702 
(frequency response range: 10-40,000 Hz +0.1/−0.5 dB), or a Tascam DR- 100 
MKII (frequency response range: 20-20,000 Hz +1/-3 dB). We set the recorders at a 
sampling rate of 44.1 kHz and an amplitude resolution of 16 or 24 bit. We recorded 
signals emitted from individuals at 15 to 20 m depending on signal intensity, weather 
conditions, and canopy thickness. We made recordings with the microphone facing 
the caller or in the direction of the whole group. We did not deliberately manipulate 
or modify the animals’ behavior and recorded only spontaneous vocal emissions.

Acoustical and Statistical Analyses

We visually inspected all recordings using Praat 6.0.28 (Boersma and Weenink, 
2017). For P. diadema, we acquired 8,946 calls from 1,872 initial recordings, of 
which we chose 3,814 calls for acoustic analyses. We selected high-quality vocal 
emissions (higher intensity and lower background noise) and discarded noisy and 
overlapping calls (multiple individuals and different species) and vocalizations 
uttered by infants. We discarded calls where the signal-to-noise ratio was lower 
than 12 dB, that were acoustically distorted, or that overlapped with other sounds 
(Gamba et al., 2015).

Vocal emissions can include sequences of repeated temporally close calls. We 
considered two emissions as distinct calls when they were separated by at least 
0.025 s. This threshold is recognized in humans and non-human animals, includ-
ing primates, as a natural psychophysical boundary representing the minimum 
time interval needed by the auditory system to differentiate between two distinct 
acoustic signals (Kuhl & Padden, 1983; Lieberman, 1991). In the field, we noticed 
that different call types can be emitted sequentially (e.g., the mmm often is uttered 
after a roar chorus; A. Anania, personal observation). Within the recordings, we 
found that the most conspicuous association concerned zzuss and tsk. We, there-
fore, measured the mean duration of the silent interval between these two call types 
across 145 recorded sequences. We normalized each sound file using a scale to 
peak function in Praat (Comazzi et al., 2016) and assigned it to nine a priori classes 
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based on audio-visual evaluation (Lemasson et  al., 2014). Some call types are 
described in studies of rainforest Propithecus (Macedonia & Stanger, 1994; Patel 
& Owren, 2012; Petter & Charles-Dominique, 1979; Powzyk, 1997; Wright, 1998). 
We chose the names zzuss (n = 400), roar (n = 176), and grunt (n = 145) to ensure 
consistency with the literature (Macedonia & Stanger, 1994; Patel & Owren, 2012; 
Wright, 1998). We labelled new call types according to the sound quality (chatter-
squeal, n = 317; soft grunt, n = 221), the hypothesized function (lost call, n = 193), 
or with onomatopoeic terms (hum, n = 1,927; mmm, n = 246; tsk, n = 189). For 
each call type, we measured duration, mean, minimum, and maximum fundamental 
frequency. We also considered the range of emission and phonatory mechanisms. 
We employed the methodology shown in Valente et al. (2019) and used a custom-
made script in Praat to extract spectral coefficients for each call: we measured the 
total duration of a sound and divided it into ten equal portions. Then, consider-
ing a frequency range from 50 to 22,000 Hz, representing the frequency spectrum 
covered by the calls in our sample, we split each portion into frequency bands (or 
bins) of 500 Hz each (e.g., 50–500 Hz, 501–1,000 Hz), then extracted the energy 
value of each bin (through the function ‘Get band energy’ in Praat). The resultant 
dataset included the duration and 220 frequency parameters for each call. We used 
the Rtsne package (Krijthe, 2015) in R (R Core Team, 2021) to embed the dataset 
into a bi-dimensional plan through a t-distributed stochastic neighbour embedding 
(van der Maaten & Hinton, 2008) with a Barnes-Hut implementation, initializing 
the algorithm with perplexity = 40 and theta = 0.5. We then submitted the reduced 
dataset, containing two features, to a clustering procedure, using a k-means algo-
rithm (MacQueen, 1967).

Lastly, we investigated whether the two species shared some call types and 
assessed the difference among the two vocal repertoires. For the comparison, 
we used a dataset of 3360 calls used to quantify I. indri’s repertoire (Valente 
et al., 2019), containing 10 call types: clacson, hum, grunt, kiss, long tonal call, 
roar, short tonal call, songbit, wheeze, and wheezing grunt. Valente and col-
leagues used the same acoustic approach (extraction of duration and spectral 
coefficients of the calls, Valente et  al., 2019), which allowed us to combine 
the features of all calls of both species into a single dataset. We first reduced 
the combined data through a t-SNE based compression and then submitted the 
compressed dataset to a k-means clustering algorithm (MacQueen, 1967). We 
used t-SNE to visualize data.

Ethical Note

We conducted observational research without manipulating animals, with permission 
of the Malagasy Ministry of Environment and Forests, Research permits: 2005 [N°197/
MINENV.EF/SG/DGEF/DPB/SCBLF/RECH], 2006 [N°172/06/MINE NV.EF/SG/
DGEF/DPB/SCBLF], 2007 [N°0220/07/MINENV.EF/SG/ DGEF/DPSAP/SSE], 2008 
[N°258/08/MEFT/SG/DGEF/DSAP/SSE], 2009[N°243/09/MEF/SG/DGF/DCB.SAP/
SLRSE], 2010 [N°118/10/MEF/SG/DGF/DCB.SAP/SCBSE, N°293/10/MEF/SG/DGF/
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DCB.SAP/SCB], 2011 [N° 274/11/MEF/SG/ DGF/DCB.SAP/SCB], 2012 [N°245/12/
MEF/SG/DGF/DCB.SAP/SCB], 2014 [N°066/14/MEF/SG/DGF/DCB.SAP/SCB], 2015 
[N°180/15/MEEMF/SG/DGF/DAPT/SCBT], 2016 [N°98/16/MEEMF/SG/DGF/DAPT/
SCB.Re, N°217/16/MEEMF/SG/DGF/DSAP/SCB.Re], 2017 [N°73/17/MEEF/SG/
DGF/DSAP/SCB.RE], 2018 [N°91/18/MEEF/SG/DGF/DSAP/SCB.Re]. We declare the 
data collection procedure conforming to the national legislation and international regula-
tion concerning animal welfare. The authors declare that they have no conflict of interest.

Data Availability The dataset is available from the corresponding authors on reason-
able request.

Results

t‑SNE Mapping: Propithecus diadema calls

The algorithm identified eight clouds of points, where each point represents a 
call and each cloud might represent a cluster (van der Maaten & Hinton, 2008), 
so we imposed k = 8 for k-means clustering (Fig. 1c). The eight different clus-
ters were mostly consistent with the putative identification of calls and with 
their acoustic structure (Table  I). Clusters 3, 5, 6, 7, and 8 included one vocal 
type each: zzuss, chatter-squeal, soft grunt, lost call, and roar, respectively 
(Fig. 1a, c). Conversely, both Clusters 2 and 4 mainly included hum (94% and 
84%) and mmm (6% and 16%, Fig. 1b). Grunt and tsk were grouped in Cluster 
1 (Fig. 1b, c). Analysis of a subsample of 145 zzuss-tsk sequences showed that 
when these two calls are uttered sequentially, the mean duration of the pause 
between them is 0.62 ± SD 0.11 s.

Acoustic parameters (duration, mean, maximum, and minimum fundamental fre-
quency are expressed as mean ± standard deviation). We evaluated the range of emis-
sion (short vs. long) based on the call amplitude and the possible occurrence of coun-
ter-calling within or between groups.

t‑SNE Mapping: Calls of Propithecus diadema and Indri indri

The algorithm identified 16 clouds of points, so we chose k = 16 for k-means clustering. 
The 16 clusters were partially consistent with the putative identification of calls. Clusters 
1, 2, 8, 12, and 16 each included a single call type: soft grunt, chatter-squeal, roar, grunt, 
zzuss, respectively (all belonging to P. diadema’s vocal repertoire; Fig. 2a, c). Clusters 6, 
9, and 11 included I. indri’s clacson, wheezing grunt, and songbit, respectively. Clusters 
3, 4, 5, and 7 included mostly hum (95%, 74%, 92%, 96%) and a smaller percentage of 
mmm, both emitted by P. diadema (5%, 26%, 8%, 4% respectively; Fig. 2b). Cluster 
10 grouped I. indri’s grunt and hum (73% and 27%; Fig. 2b) while Cluster 14 grouped 
indri’s kiss and wheeze (66% and 34%; Fig. 2b). Cluster 13 grouped P. diadema’s lost 
call (64%) with I. indri’s roar, long tonal call, and grunt (21, 10%, and 5%, respectively). 
Cluster 15 included mainly P. diadema’s tsk (81%; Fig. 2b).
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Discussion

Our cluster analysis of the vocal repertoire of P. diadema highlighted the presence 
of eight clusters, mostly consistent with the a priori identification of the calls, with 
only a few call types grouping together. Based on acoustic and spectrographic analy-
sis, we identified nine distinct call types. Five clusters showed homogenous group-
ing of as many call types: lost call, chatter-squeal, soft grunt, zzuss, and roar. Two 
of the remaining clusters showed a mixture of hum and mmm (94% and 6% in one 
case, 84% and 16% in the other), possibly indicating some gradation between the 
two (Wadewitz et al., 2015). The last cluster also grouped two call types: tsk and 
grunt. Given the results, we estimated the vocal repertoire of P. diadema to consist 
of nine call types, with some showing a graded structure (tsk and grunt, and mmm 
and hum, in particular). We used this estimate in our comparisons.

Fig. 1  Representation of P. diadema calls (recorded in Maromizaha Protected Area in 2014 and 2016) on 
a bidimensional plan obtained by initializing a t-SNE algorithm with perplexity = 40 and theta = 0.5. a 
Visualization of t-SNE mapping combined with a priori identification of call types (cs = chatter-squeal, 
gr = grunt, hum = hum, lc = lost call, mmm = mmm, ro = roar, sg = soft grunt, tsk = tsk, zz = zzuss). 
We generated spectrograms (Hanning window, 512 samples, overlap = 64, zero-padding = 16) using 
the R package Seewave (Sueur et al., 2008). b The distribution of vocal types within the clusters. Colors 
follow those in panel (a). c Results of k-means clustering on the bi-dimensional vector produced using 
t-SNE. Numbers indicate clusters (i.e., 1 = Cluster 1).
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Comparison between the vocal repertoire of P. diadema and that of I. indri 
showed that loud calls of both species possess distinctive features, while some low-
frequency calls resulted grouped together, meaning that these call types are char-
acterized by similar spectro-temporal features. We identified eight homogeneous 
groups. Five (chatter squeal, both grunt and soft grunt, roar, and zzuss) were P. dia-
dema’s most distinctive calls. Three (clacson, wheezing grunt, and songbit) were I. 
indri calls. This analysis suggested four clusters mainly consisting of P. diadema’s 
low-pitched calls, like hum and mmm (the latter in smaller percentages). It also 
confirmed the gradedness between these two call types found in the singles-species 
analyses. Two other clusters (10 and 14) grouped mostly I. indri’s low- (grunt and 
hum; 61%) and medium-pitched calls (wheeze and kiss; 66%). This result is in line 
with previous analyses of lemur low-pitched calls, in which the grunt, click, grunted 
hoot, hoot, snort, and long grunt of Eulemur ssp. (Gamba et  al., 2012; Gamba & 
Giacoma, 2005, 2007; Nadhurou et al., 2015; Pflüger & Fichtel, 2012) showed little 
differentiation compared to alarm calls or high-pitched calls. Interestingly, two other 

Fig. 2  Representation of P. diadema and I. indri calls on a bidimensional plan obtained by initializing a 
t-SNE algorithm with perplexity = 40 and theta = 0.5. a Visualization of the t-SNE mapping combined 
with the a priori identification of call types (II = I. indri; cl = clacson, gr = grunt, hum = hum, lt = long 
tonal call, ki =kiss, ro = roar, sb = songbit, st = short tonal call, wg = wheezing grunt, wh = wheeze, 
PD = P. diadema; cs = chatter-squeal, gr = grunt, hum = hum, lc = lost call, mmm = mmm, ro = roar, 
sg = soft grunt, tsk = tsk, zz = zzuss). We recorded calls of I. indri in four forest sites (Analamazaotra 
Special Reserve, Andasibe-Mantadia National Park, Mitsinjo Forest Station, and Maromizaha Protected 
Area) from 2005 to 2018, and calls of P. diadema in Maromizaha Protected Area in 2014 and 2016. We 
generated spectrograms (Hanning window, 512 samples, overlap = 64, zero-padding = 16) using the R 
package Seewave (Sueur et al., 2008). b The distribution of the call types within the clusters. Colours 
follow those in the panel (a). c Results of the k-means clustering performed on the bidimensional vector 
produced using the t-SNE. Numbers indicate the relative clusters (i.e., 1 = Cluster 1).
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clusters included P. diadema’s tsk (81%) and I. indri’s short tonal call (19%) as well 
as P. diadema’s lost call (64%) and I. indri’s roar and long tonal call (21%; 10%). 
These clusters grouped voiceless calls (e.g., tsk) and calls with a more broadband 
structure (e.g., roar, both long and short tonal call). This finding shows how feature 
extraction can be useful to characterize resonance frequencies of lemur calls, agree-
ing with earlier evidence (Gamba et al., 2015).

P. diadema’s roar and I. indri’s clacson were among the most distinctive call 
types. P. diadema’s roar is emitted in presence of raptors across congeneric spe-
cies (Fichtel & Kappeler, 2002; Macedonia & Stanger, 1994; Petter & Charles-
Dominique, 1979; Wright, 1998), and I. indri’s clacson also mediates antipredatory 
behavior and is given in presence of terrestrial predators (Macedonia & Stanger, 
1994; Maretti et al., 2010). We also found both species’ loud calls to be unambigu-
ous (for instance, I. indri’s songbit and P. diadema’s chatter-squeal and zzuss). Two 
studies have addressed the role of species-specific signalling in lemurs (Braune 
et  al., 2008; Rakotonirina et  al., 2016), with conflicting results. Support for spe-
cies recognition driven by advertisement calls has been found in Microcebus spp. 
(Braune et al., 2008) while acoustic signalling seems not to be involved in species 
recognition across Eulemur species (Rakotonirina et al., 2016). A mechanism sim-
ilar to that demonstrated in Microcebus spp. (Braune et  al., 2008) could allow I. 
indri and P. diadema to distinguish among hetero- and conspecifics at distance, in an 
environment where the acoustic channel is more effective than the visual one (Waser 
& Brown, 1986). The stereotypy we found in the loud calls of our subject species 
is partly in line with the Sensory Drive (Endler, 1992) and the Acoustic Adapta-
tion Hypotheses, both of which state that vocal signals are adapted to the environ-
ment in which they are emitted (Endler, 1992; Morton, 1975). The acoustic structure 
of vocal signals, and in particular that of those used for long-distance communica-
tion, is expected to be optimized to ensure sound propagation. This is especially true 
in closed habitats, where higher vegetation density represents a greater surface for 
reverberation and absorption than in open habitats (Waser & Brown, 1986). How-
ever, our results do not fully support the Sensory Drive Hypothesis, since only a 
small portion of P. diadema’s vocal repertoire (tsk and lost call) clustered with I. 
indri calls. A study of Microcebus murinus, M. ravelobensis, M. berthae, and M. 
lehilahytsara also did not support the Sensory Drive Hypothesis, suggesting that 
predatory pressures may be more relevant in shaping vocal communication than dif-
ferences in habitat structure (Zimmermann, 2016).

Our findings only partially supported our predictions based on the Social Com-
plexity Hypothesis (Bouchet et al., 2013; McComb & Semple, 2005). The hypoth-
esis predicts that the species living in a larger group—namely P. diadema—would 
have a bigger repertoire size; McComb & Semple, 2005). We found no support this 
prediction and P. diadema’s repertoire consisted of a smaller number of different call 
types than that of I. indri (10, Valente et al., 2019). Moreover, a repertoire including 
nine call types, with an average group size of five individuals (Irwin, 2008), con-
flicts with the group size–vocal repertoire size paradigm. At least two other primate 
species with comparable group size (Saguinus fuscicollis: 5.9 individuals, Leonto-
pithecus rosalia: 5.8 individuals) have a vocal repertoire of 16 call types (McComb 
& Semple, 2005). However, the Social Complexity Hypothesis also predicts that 
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the species living in an egalitarian social structure, such as I. indri, require a more 
sophisticated communicative system, in terms of the number of different call types 
in their repertoire, i.e., the repertoire size; Mitani, 1996). Our results, indicating a 
smaller repertoire in P. diadema, are in line with this second prediction and with 
studies on other lemur species. For example, the same deviation from the paradigm 
group size–vocal repertoire size has been shown in E. rubriventer (with an average 
group size of three individuals and a repertoire of 14 call types; Gamba et al., 2015) 
and I. indri (with a group size ranging from 4 to 6 individuals and a repertoire of 10 
call types; Pollock, 1975; Valente et al., 2019).

In terms of vocal repertoire size, P. diadema is more similar to I. indri than to 
other more phylogenetically distant species, such as L. catta (22 call types; Macedo-
nia, 1993) and the sympatric Varecia variegata (16 call types; Pereira et al., 1988; 
Gamba et al., 2003). Furthermore, the repertoire size in P. diadema is in line with 
the variation displayed within the Indriidae family (3 to 10; Zimmermann, 2017) 
and in particular with that of two other Propithecus species, with a repertoire of six 
(P. verreauxi; Zimmermann, 2017) and 10 call types (P. candidus; Patel & Owren, 
2012). Nonetheless, in contrast with the Phylogenetic Hypothesis, besides their size, 
the vocal repertoires of I. indri and P. diadema differed from each other. This is 
not surprising, given that the last common ancestor of the two species lived at least 
18 MYA (Federman et al., 2016; Kistler et al., 2015; Masters et al., 2013) and that 
closely related Indriidae species show acoustic differences (P. deckenii and P. coro-
natus: Fichtel, 2014). Moreover, across lemurs, there is no pattern of vocal simi-
larity based on phylogenetic proximity (Bergey & Patel, 2008; Gamba et al., 2015; 
Hending et al., 2020; Zimmermann, 2017). This lack of correlation also applies to 
the Indriidae family (Ramanankirahina et al., 2016). Despite the phylogenetic relat-
edness, closely related species exhibiting the same social pattern but different activ-
ity mode (diurnal vs. nocturnal, respectively) also differ in the complexity of vocal 
signalling (I. indri and Avahi occidentalis, Ramanankirahina et al., 2016).

Interestingly, P. diadema had the same vocal repertoire size as Daubentonia mad-
agascariensis (studied in captivity; Stanger & Macedonia, 1994), which is a soli-
tary nocturnal species (Sterling & McCreless, 2006). According to some authors, D. 
madagascariensis descended from the most basal divergence from all other lemur 
taxa (Delpero et al., 2006), whereas recent evidence suggests that it descended from 
independent colonization of Madagascar (Gunnell et  al., 2018). Thus, considering 
the phylogenetic history, common ancestry of the vocal behavior of these species is 
unlikely.

Some of the comparisons we make rely on studies employing analogous methods 
(i.e., Eulemur spp., Gamba et al., 2015). However, other vocal repertoire estimates 
rely on different approaches (McComb & Semple, 2005; Stanger & Macedonia, 
1994). Thus, our comparisons should be taken with caution; different methodolo-
gies used to measure repertoires lead to very different results and the lack of com-
mon acoustic and statistical approaches undermines cross-taxa comparisons (Peckre 
et al., 2019).

The use of computationally accessible and powerful methods opens new perspec-
tives in the study of acoustic signals (Sainburg et al., 2020). The t-SNE embedding 
allowed efficient analysis of the vocal repertoire of P. diadema, in line with findings 
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on other animal species (mammals: Mus musculus, Megaptera novaeangliae, Pter-
onura brasiliensis, Macaca mulatta; birds: Taeniopygia guttata; Sainburg et  al., 
2020). The t-SNE also allowed us to compare the calls of P. diadema with those 
of another diurnal species in the Indriidae family, I. indri (Valente et al., 2019). In 
line with studies using unsupervised clustering in the quantitative analysis of animal 
vocalisations (Gamba et al., 2015; Riondato et al., 2017), we found that the extrac-
tion of linear frequency bins revealed a remarkable potential for grouping calls based 
on their spectrographic similarity, comparable to clusters obtained using dynamic 
time warping–generated dissimilarity indices.

The standardized technique we employed in this study allowed us to reduce the 
need for a priori human input and to overcome potential limitations due to human 
perceptual bias (Sainburg et al., 2020). We do not neglect the importance of previous 
work, but argue that standardized and reproducible techniques (for alternatives see 
Gamba et al., 2015, where the authors employed a combination of Dynamic Time 
Warping and clustering algorithms, or Sainburg et al., 2020, where the authors com-
pared the efficiency of data reduction algorithms across multiple datasets) should be 
prioritized in the future.

Conclusions

Our study supports previous findings on lemurs: it is likely that Indriidae vocal 
diversity has been shaped by a combination of social and environmental character-
istics, and phylogenetic history (Ramanankirahina et  al., 2016). Further research 
could investigate synapomorphies and autapomorphies in the vocal repertoires of 
the Indriidae family. For instance, some call types, such as the roar and the lost call 
(the first emitted in the anti-aerial predator context, the other used to regulate the 
group cohesion are comparable in structure and functions across Propithecus species 
(Online Resource 2). Conversely, the main terrestrial disturbance call differs struc-
turally between two groups of Propithecus species, one consisting of the species 
producing the zzuss (P. diadema, P. candidus, P. perrieri, and P. edwardsi; Patel & 
Owren, 2012; Anania et al., 2018; Wright, 1998; Macedonia & Stanger, 1994) and 
the other including the species emitting the tchi-fak (P. verreauxi, P. coquereli, P. 
coronatus, P. deckenii, and P. tattersalli—representing the so-called western species, 
evolutionarily split from eastern species; Pastorini et al., 2001; Mayor et al., 2004; 
Rumpler et  al., 2004 but see Herrera & Dávalos, 2016). The acoustic divergence 
between zzuss and tchi-fak does not completely follow the current spatial proxim-
ity of these species’ distributions, or the type of environment (dry forest, rainforest, 
transitional forest). Furthermore, acoustic differences in the loud calls of closely-
related species living in the same environment have been demonstrated (P. deckenii 
and P. coronatus; Fichtel, 2014). A comparison among Propithecus species could 
highlight which factors (genetic, anatomical, social, ecological, or biogeographi-
cal) have been important in the evolution of vocal signals and provide us with clues 
about why some acoustic structures have been conserved and others have changed in 
the divergence of species.
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