
Comparative Analysis of the Vocal Repertoire
of Eulemur: A Dynamic Time Warping Approach

Marco Gamba1 & Olivier Friard1
&

Isidoro Riondato1 & Roberta Righini1 &

Camilla Colombo1 & Longondraza Miaretsoa2 &

Valeria Torti1 & Bakri Nadhurou1
&

Cristina Giacoma1

Received: 12 February 2015 /Accepted: 15 July 2015 /Published online: 18 September 2015
# Springer Science+Business Media New York 2015

Abstract The diversity of qualitative approaches and analytical methods has often
undermined comparative research on primate vocal repertoires. The purpose of the
present work is to introduce a quantitative method based on dynamic time warping to
the study of repertoire size in Eulemur spp. We obtained a large sample of calls of
E. coronatus, E. flavifrons, E. fulvus, E. macaco, E. mongoz, E. rubriventer, and
E. rufus, recorded between 1999 and 2013 from captive and wild lemurs. We inspected
recordings visually using spectrograms, then cut and saved high-quality vocal emis-
sions to single files for further analysis. We extracted the acoustic features of all
vocalizations of a species using the Hidden Markov Model Toolkit, an application of
dynamic time warping, and then compared cepstral coefficients (a feature widely used
in automatic speaker recognition) pairwise. We analyzed the results using affinity
propagation clustering. We found that Eulemur species share most of their vocal
repertoire but species-specific calls determine repertoire size differences. Repertoire
size varied from 9 to 14 vocalization types among species, with a mean of 11.
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Introduction

Vocal repertoires provide essential information to the study of how communication
systems evolve (Maynard Smith and Harper 2003). For example, studies of
nonhuman primate vocal communication have provided valuable contributions to
the debate about the basis for the evolution of language in humans (Dunbar 2009).
Nonhuman primate vocal repertoire size correlates with time spent grooming and
with group size (McComb and Semple 2005), providing support for the theory that
the complexity of human language has gradually evolved with the increase of
social complexity (Dunbar 2009). However, comparative studies of repertoire size
are often undermined by two factors. First, vocal repertoire data are derived from
studies using different methods (McComb and Semple 2005). Second, identifica-
tion of the signal categories has traditionally relied on human observers’ assess-
ment of differences among vocalizations, and is thus subject to individual criteria.
Although multivariate techniques have demonstrated that such categories may be
appropriate (Fuller 2014; Gamba and Giacoma 2007; Maretti et al. 2010; Range
and Fischer 2004), human assessment of vocalization types may reflect differences
perceived by humans but not necessarily by the species (Fuller 2014; Green 1975;
Hauser 1996).

New methodologies in the study of acoustic communication allow standardiza-
tion across large datasets with limited assumptions (Clemins et al. 2006). These
methods provide researchers with computer tools for exploring large databases
without the disadvantages of subjective a priori classification, and are often
referred to as Bunsupervised^ (Kogan and Margoliash 1997; Stathopoulos et al.
2014; Stowell and Plumbley 2014). Among the many methods (Garcia and Reyes
Garcia 2003; Koolagudi et al. 2012), some used for automatic speech recognition,
such as dynamic time warping, are increasingly used to investigate animal com-
munication. Dynamic time warping has been useful for the classification of animal
sounds in amphibians (Chen et al. 2012), birds (Anderson et al. 1996; Clemins
and Johnson 2006; Ranjard and Ross 2008; Tao et al. 2008; Trawicki et al. 2005),
marine mammals (Brown and Miller 2007), and primates (Riondato et al. 2013).
These methods can be used to investigate the vocal repertoire across populations
and species (Mercado and Handel 2012; Ranjard et al. 2010) and improve our
ability to make inferences about the evolution of human language (Fedurek and
Slocombe 2011). Although unsupervised classification cannot guarantee to clas-
sify calls in a way that is meaningful to animals, it does ensure quantitative
objective classification (Pozzi et al. 2010).

Owing to their unique evolutionary history, lemurs are important subjects for
comparative studies of vocal communication and may provide insights into the selec-
tive pressures that may have linked social and vocal complexity (Oda 2009). True
lemurs (Eulemur spp.) are conspicuously vocal and their vocal repertoire comprises
low-pitched and high-pitched sounds (Gamba and Giacoma 2005; Macedonia and
Stanger 1994; Petter and Charles-Dominique 1979). The presence of various call
variants and combinations has also been demonstrated qualitatively (Macedonia and
Stanger 1994). Previous studies showed that vocal repertoire may differ between
species in Eulemur fulvus (Paillette and Petter 1978), E. mongoz (Curtis 1997),
E. macaco (Gosset et al. 2001), and E. coronatus (Gamba and Giacoma 2007).
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The aim of this study was to investigate objectively the vocal repertoire across
Eulemur species to understand whether different species show different repertoire size
and vocalization types. We used an algorithm based on dynamic time warping to assess
sound similarity (Ranjard et al. 2010). We then applied cluster analysis to identify
groups of similar calls. To understand whether vocal repertoire size differs across
Eulemur species we applied the same analytical process to datasets for different species,
including the brown lemur (E. fulvus), the mongoose lemur (E. mongoz), the black
lemur (E. macaco), and the crowned lemur (E. coronatus), whose repertoires were
investigated in previous studies. We also analyzed three species that were not included
in previous quantitative vocal repertoire studies: the red-bellied lemur (E. rubriventer),
the rufous brown lemur (E. rufus), and the blue-eyed black lemur (E. flavifrons).
Qualitative studies of Eulemur species have shown a degree of similarity in the acoustic
structure of the calls but shed little light on the quantitative evaluation of similarities
and differences, and suffered from subjective identification of the call types (Gamba
and Giacoma 2005; Macedonia and Stanger 1994). No previous study has combined, to
our knowledge, the study of lemurs’ vocal repertoire across different species using a
quantitative unsupervised methodology.

We tested whether or not our unsupervised analyses identified the same vocalization
types as previously described. Human sound recognition mechanisms are robust
against noise changes and integrate many factors, resulting in accurate low-level
acoustic classification. Humans can differentiate calls as discrete types when an
unsupervised program, and possibly other species, would recognize a single type
(Hauser 1996; Lippmann 1997). We, therefore, predicted that unsupervised clustering
would find fewer vocalization types than previous studies. We also predicted that more
variable vocalization types mask variation at a lower level, as in a clustering analysis of
Guinea baboon calls (Papio papio: Maciej et al. 2013). Alternatively, cluster analysis
may highlight variants of vocal types showing a particular contextual occurrence and
other types that overlap with the a priori classification.

Methods

Subjects, Study Sites, Equipment, Data Collection, and Analysis

The recordings analyzed for the purpose of this study were part of a large collection of
lemur sounds at the Department of Life Sciences and Systems Biology, University of
Torino. The recordings originate from various recording campaigns focused on lemur
vocal behavior that took place between 1999 and 2013. They were recorded in the wild
and in captivity. The number of recording campaigns (hereafter corpora) and the number
of calls within a corpus vary with species. We considered only calls emitted by adults.
Detailed information about the corpora, sampling, data collection, and associated refer-
ences is given in the Electronic Supplementary Material (ESM) Appendix S1.

Clustering Analyses

To identify independent groupings and to visualize emerging vocal types (Nowicki and
Nelson 1990), we clustered vocalizations of each species on the basis of their degree of
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dissimilarity, as measured by the pairwise comparison using dynamic time warping
(Ranjard et al. 2010). Detailed information about the calculation of dissimilarity indices
is given in ESM Appendix S1. We used the affinity propagation tool (Frey and Dueck
2007) of the apcluster package in R (Bodenhofer et al. 2011; Hornik 2013). We labeled
clusters with the Brepresentative^ vocalization (the Bexemplar^), which was automat-
ically chosen during the affinity propagation clustering process (see ESM
Appendix S2). The cluster analysis used a squared negative Euclidean distance to
measure dissimilarity and identify clusters. This clustering algorithm is based on
similarities between pairs of data points. Affinity propagation clustering simultaneously
considers all the data points as potential cluster centers (exemplars) and then chooses

Table I Distribution of the vocalizations indicated a priori and as they emerged from the cluster analysis

The numbers indicate the number of exemplars chosen during the clustering analysis for that particular
vocalization. Gray-shaded cells show where a particular vocalization has not been assessed during the a priori
classification. The number of clusters indicates the total number of clusters emerged during the Affinity
Propagation process and the Adjusted Rand Index quantify the agreement between the a priori classification
and the clustering analysis
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the final centers through an iterative process, after which the corresponding clusters
also emerge. Although we did not define the number of clusters or the number of
exemplars (Bodenhofer et al. 2011), the preference (p) with which a data point is
chosen as a cluster center influences the number of clusters in the final solution.
Because affinity propagation clustering does not automatically converge to an
optimal clustering solution, we used two external validation procedures. The first
validation was based on the q-scanning process (where q corresponds to the
sample quantile of p, modified from Wang et al. 2007; see also Bodenhofer
et al. 2011). We evaluated the clusters obtained using different preferences using
the Adjusted Rand Index (Hubert and Arabie 1985) to assess the stability of
successive cluster solutions (Hennig 2007). The second cluster validation proce-
dure was based on the Silhouette Index, which reflects the compactness and
separation of clusters in the final solution (Maciej et al. 2013). When ranked
and averaged between species both procedures indicated the median of all the
similarities between data points to be the optimal value for the preference. We
kept all the analysis settings the same across all datasets. We used the calls used as
exemplars in the final clustering solution to label the respective clusters.

A Posteriori Evaluation

We evaluated the agreement between the clustering analyses and the a priori classifi-
cation using the Adjusted Rand Index (Hubert and Arabie 1985; Table I).

The terminology we use in the description of the polar dendrograms refers to Drout
and Smith (2013). Each branch of the polar dendrogram is termed a Bbranch^ or a
Bclade^ while the terminal portion of each clade is called a Bleaf.^ Two-leaved clades
are called Bbifolious,^ but the number of leaves in a clade is not limited. Although the
horizontal orientation of dendrograms is irrelevant, its vertical arrangement is mean-
ingful. The vertical position of the branch points indicates how similar or different they
are from each other. Branches departing from the same branch point are most similar
and belong to the same Blevel.^ In the polar dendrograms, levels are numbered from the
center (root) to the outer ring.

We also ran a stepwise discriminant function analysis (sDFA, IBM SPSS Statistics
21; Lehner 1996) using the acoustic parameters measured (ESM Appendix S3; see
Gamba and Giacoma 2007 for details) using Praat (University of Amsterdam; Boersma
and Weenink 2014). We used the sDFA to identify the weight of the different
parameters contributing to the clustering process, although the acoustic analysis does
not necessarily simulate feature extraction during the dynamic time warping. We ran the
sDFAwith the cluster information as the grouping variable to estimate how the acoustic
parameters contributed to the classification of calls using leave-one-out cross-validation.

Results

Vocal Repertoire

The cluster analysis showed variation in both the number of clusters and the distribu-
tion of calls across clusters with species (Table I; see ESM Appendix S5). Vocalizations
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of Eulemur fulvus were grouped into 11 clusters (Fig. 1; Table I). sDFA showed an
overall correct classification of 84.2 % (cross-validated) when we used the clusters as
the grouping variable. Signal duration (on the first discriminant function) and the first
formant (F1, on the second discriminant function) had the highest loads in the model
(Table II).

Vocalizations of Eulemur rufus grouped into 10 clusters (Fig. 2; Table I). sDFA
showed an overall correct classification of 94.7 % (cross-validated) when we used the
clusters as the grouping variable. Signal duration (on the first discriminant function)
and minimum fundamental frequency (MinF0, on the second discriminant function)
had the highest loads in the model (Table II).

Vocalizations of Eulemur rubriventer grouped into 14 clusters (Fig. 3; Table I).
sDFA showed a correct classification of 73.5 % (cross-validated) when we used the
clusters as the grouping variable. Signal duration (on the first discriminant function)
and the second formant (F2, on the second discriminant function) had the highest loads
in the model (Table II).

Vocalizations of Eulemur mongoz grouped into nine clusters (Fig. 4; Table I).
sDFA showed a correct classification of 69.2 % (cross-validated) when we used

Territorial Advertisement 
Calls (100%)*

Grunt-Tonal Calls 
(57%)

Grunt (41%)

Grunt (46%)

Scream (100%)
Scream (80%)

Long Grunt-Tonal Call 
(100%)*

Territorial Advertisement 
Call (100%)***

Group Cohesion Call (75%)** 

Chatter (50%)

Territorial Advertisement 
Calls (75%)*

Fig. 1 Polar dendrogram (center) showing how vocalizations of Eulemur fulvus cluster together (see ESM
Appendix S4 for a detailed description of cluster topology). For each cluster, we show a spectrogram (the
horizontal axis represents time; the vertical axis represents frequency) of the exemplar chosen during the
affinity propagation process. All spectrograms are generated in Praat with the following parameters: window
length: 0.025 s, time range as shown (0.25–2.50 s); frequency range: 0–10,500 Hz; dynamic range: 35–45 dB.
The bar indicates 1 s duration. Exceptions are indicated as follows: * for 1.25 s, ** for 1.50 s, *** for 2.50 s.
Values in parentheses indicate the percentage of the exemplar’s vocalization type in a cluster. Additional
information is given in ESM Appendixes S4 to S6.
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Alarm Call (73%)

Group Cohesion  
Call (71%)*

Territorial Advertisement 
Call (100%)***

Territorial Advertisement 
Call (85%)***

Territorial Advertisement Call (57%)**Scream (71%)

Grunt (39%)

Grunted Hoot 
(46%)

Scream (71%)

Scream (78%)

Fig. 2 Polar dendrogram (center) showing how vocalizations of Eulemur rufus cluster together (see ESM
Appendix S4). For each cluster, we show a spectrogram of the exemplar chosen during the affinity
propagation process. All spectrograms are generated in Praat with the following parameters: window length:
0.025 s, time range as shown (0.25–2.00 s); frequency range: 0–10,500 Hz; dynamic range: 35–45 dB. The bar
indicates 1 s duration. Exceptions are indicated as follows: * for 1.25 s, ** for 1.75 s, *** for 2.00 s. Values in
parentheses indicate the percentage of the exemplar’s vocalization type in a cluster. Additional information is
given in ESM Appendixes S4 to S6.

Table II Stepwise discriminant analysis results for the seven Eulemur species

Species Wilks’ L. P CCR (%) 1st D. f. (%) 2nd D. f. (%)

E. fulvus 0.003 <0.001 84.2 88.9 (Duration) 11.1 (F1)

E. rufus 0.006 <0.001 94.7 98.2 (Duration) 1.0 (MinF0)

E. rubriventer 0.006 <0.001 73.5 91.7 (Duration) 7.2 (F2)

E. mongoz 0.037 <0.001 69.2 81.4 (Duration) 13.9 (F3)

E. coronatus 0.007 <0.001 83.4 96.6 (Duration) 2.8 (F1)

E. flavifrons 0.011 <0.001 71.4 84.6 (Duration) 14.1 (F1)

E. macaco 0.006 <0.001 82.0 78.2 (Duration) 16.1 (F1)

The table shows the statistical results of the seven stepwise Discriminant Function Analyses (sDFA) using
temporal parameters (Duration, Ptmin, Ptmax), fundamental frequency parameters (MeanF0, MinF0, MaxF0,
RangeF0, StartF0, EndF0), and formants (F1, F2, F3). The grouping variable for each sDFA was the cluster
membership resulted from the Affinity Propagation clustering analysis. We reported the Wilks’ Lambda
(Wilks’ L.) values, the P-values (P), the cross-validated correct classification rate (CCR), and the variance
explained by the first (1st D. f.) and the second (2nd D. f.) discriminant functions. In parentheses, we also
reported the parameters showing the highest load on the discriminant functions.

900 M. Gamba et al.



the clusters as the grouping variable. Signal duration and the third formant (F3)
showed the highest loading values on the first and the second discriminant
functions respectively (Table II).

Vocalizations of Eulemur coronatus grouped into 13 clusters (Fig. 5; Table I). sDFA
showed a correct classification of 83.4 % (cross-validated) when we used the clusters as
the grouping variable. Signal duration (on the first discriminant function) and the first
formant (F1, on the second discriminant function) had the highest loads in the model
(Table II).

Vocalizations of Eulemur flavifrons grouped into 10 clusters (Fig. 6; Table I). sDFA
showed a correct classification of 71.4 % (cross-validated) when we used the clusters as
the grouping variable. Signal duration and the first formant had the highest loads on the
first two discriminant functions (Table II).

Vocalizations of Eulemur macaco grouped into 10 clusters (Fig. 7; Table I).
sDFA showed a correct classification of 82.0 % when we used the clusters as the
grouping variable. Duration and F1 showed strongest correlation with the first two
discriminant functions, respectively (Table II).

Scream (100%)

Scream (75%)

Gurgle (30%)

Grunt (44%)

Hoot (24%)

Hoot-Tonal 
Call (63%)

Hoot-Tonal 
Call (60%)

Tonal Call (80%)

Long Grunt (100%)

Snort-Grunt-Tonal Call 
(57%)

Snort-Grunt-
Tonal Call (57%)

Snort-Grunt-Tonal Call 
(29%)

Tonal Call (47%)

Tonal Call 
(54%)

Fig. 3 Polar dendrogram (center) showing how vocalizations of Eulemur rubriventer cluster together (see
ESM Appendix S4). For each cluster, we show a spectrogram of the exemplar chosen during the affinity
propagation process. All spectrograms are generated in Praat with the following parameters: window length:
0.025 s, time range as shown (0.25–0.75 s); frequency range: 0–10,500 Hz; dynamic range: 35–45 dB. The bar
indicates 1 s duration. Values in parentheses indicate the percentage of the exemplar’s vocalization type in a
cluster. Additional information is given in ESM Appendixes S4 to S6.
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External Cluster Evaluation

The agreement between the a priori classification and the grouping identified by the
clustering analysis was relatively low across the species, ranging from 0.18 to 0.32
(Table I).

Discussion

Our approach succeeded in categorizing vocalizations emitted by seven species using
dissimilarity indices. Dissimilarity indices have the advantage of being synthetic and
convenient but lack the detail of acoustic analysis (Maciej et al. 2013; Riondato et al.
2013). The discriminant model based on measures of temporal and frequency param-
eters demonstrated that true lemur calls can be assigned to independently derived
clusters identified on the basis of dissimilarity indices with a high rate of correct

5
Group Cohesion  
Call (92%)*

Grunt-Tonal Call
(60%)

Scream (45%)

Territorial Advertisement 
Call (43%)

Click (23%)

Grunt (81%)

Grunted Hoot
(21%)

Long Grunt (83%)*

Alarm Long
Grunt (86%)

Fig. 4 Polar dendrogram (center) showing how vocalizations of Eulemur mongoz cluster together (see ESM
Appendix S4). For each cluster, we show a spectrogram of the exemplar chosen during the affinity
propagation process. All spectrograms are generated in Praat with the following parameters: window length:
0.025 s, time range as shown (0.25–1.25 s); frequency range: 0–10,500 Hz; dynamic range: 35–45 dB. The bar
indicates 1 s duration. Exceptions are indicated as * for 1.25 s. Values in parentheses indicate the percentage of
the exemplar’s vocalization type in a cluster. Additional information is given in ESM Appendixes S4 to S6.
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classification. Furthermore, the accuracy achieved is in the range of that found when
the combination of pitch and filter features is classified a priori (Gamba 2006; Gamba
and Giacoma 2005).

Diversity of the Vocal Repertoire

True lemurs differ remarkably in their social organization and ecology (Mittermeier
et al. 2008; Tattersall and Sussman 1998). Thus we predicted differences in their vocal
communication signals, in line with previous studies (Macedonia and Stanger 1994;
McComb and Semple 2005). Our results support this prediction: we found that different
species show different repertoire size and vocalization types. The audio-visual identi-
fication of vocal categories varied from a minimum of 7 vocalization types in
Eulemur coronatus to 14 types in E. fulvus, E. rubriventer, and E. mongoz. The
overall range obtained by the unsupervised analysis was similar, ranging from 9 to 14
clusters. Thus, audio-visual identification and unsupervised classification of vocaliza-
tion types gave comparable estimates.

Grunt 
(52%) Grunt 

(39%)

Grunt (63%)

Scream (100%)

Alarm Call (67%)

Alarm Call (100%)

Alarm Call (80%)

Alarm Call (90%)

Scream (100%)

Scream (100%)

Scream (100%)

Grunt-Tonal 
call (75%)

Tonal Call (79%)

Fig. 5 Polar dendrogram (center) showing how vocalizations of Eulemur coronatus cluster together (see ESM
Appendix S4). For each cluster, we show a spectrogram of the exemplar chosen during the affinity
propagation process. All spectrograms are generated in Praat with the following parameters: window length:
0.025 s, time range as shown (0.25–1.00 s); frequency range: 0–10,500 Hz; dynamic range: 35–45 dB. The bar
indicates 1 s duration. Values in parentheses indicate the percentage of the exemplar’s vocalization type in a
cluster. Additional information is given in ESM Appendixes S4 to S6.
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Our results support the prediction that average group size influences vocal repertoire
size in part. Both audio-visual identification and unsupervised classification of vocal-
ization types provide a repertoire size estimate of 14 calls for Eulemur rubriventer, an
estimate that is surprisingly larger than those observed for other species except
E. coronatus, which have group sizes of 8.4 (Kappeler and Heymann 1996), whereas
E. rubriventer has a mean group size of just 3 (Overdorff 1996) or 3.2 (Kappeler and
Heymann 1996). E. mongoz have a similar average group size of 3.0–3.5 (Kappeler and
Heymann 1996; Nadhurou et al. 2015) and show a repertoire size of 9 calls. Several
authors have suggested a relationship between a species’ social organization and its
communication, proposing that an egalitarian social structure or stable social groups
may favor diversity in communication signals (Mitani 1996). E. rubriventer is the only
species we studied to have a stable, pair-bonded group structure (Tecot 2008). The
other species live in one-male, multifemale groups or multimale, multifemale groups
(Fuentes 2002). The social organization in E. mongoz varies between populations, and
includes both pair bonding and one-male, multifemale groups (Fuentes 2002). The
larger distribution of E. rubriventer may also influence the diversity of vocal commu-
nication, as may the fact that we included only captive E. rubriventer in the analysis.

0

4

Alarm Call (100%)***

Alarm Call (100%)**

Alarm Call (100%)**

Alarm Call (100%)***

Alarm Call (86%)*

Grunted Hoot (35%)

Grunted Hoot (46%)Grunt-Tonal 
Call (73%)

Long Grunt-
Tonal Call 
(61%)

Long Grunt-Tonal Call 
(57%)

Fig. 6 Polar dendrogram (center) showing how vocalizations of Eulemur flavifrons cluster together (see ESM
Appendix S4). For each cluster, we show a spectrogram of the exemplar chosen during the affinity
propagation process. All spectrograms are generated in Praat with the following parameters: window length:
0.025 s, time range as shown (0.25–2.50 s); frequency range: 0–10,500 Hz; dynamic range: 35–45 dB. The bar
indicates 1 s duration. Exceptions are indicated as follows: * for 1.25 s, ** for 1.75 s, *** for 2.00 s. Values in
parentheses indicate the percentage of the exemplar’s vocalization type in a cluster. Additional information is
given in ESM S4 to S6.
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However, vocal repertoire appears to be consistent across captive, wild-caught individ-
uals (Colombo, unpubl. data), suggesting that other factors may have a stronger effect
than the distribution range size. The strong relationships between repertoire size and
stable social organization have been proposed for facial expressions (Preuschoft and
van Hooff 1995) and the rate of vocal emissions (Mitani 1996), and further studies are
needed to clarify whether pair-bonding also Bplaces a selective premium^ (Mitani
1996, p. 246) on vocal repertoire size. In support of this proposal, pair-bonding is
considered a key factor favoring the convergent evolution of complex singing displays
(Geissmann 2000; Torti et al. 2013) in the Bsinging primates^ (Indri indri, Tarsius spp.,
Presbytis spp., and Hylobates spp.: Haimoff 1986; Indri indri: Bonadonna et al. 2014).

We predicted that the unsupervised procedure would recognize a lower number of
vocalization types. This was true for Eulemur fulvus (11 in the unsupervised analysis
vs. 14 in the audio-visual a priori assessment), E. mongoz (9 vs. 14), E. rufus (10 vs.
12) and E. macaco (10 vs. 11). The repertoire estimate derived from a previous study of
E. macaco (N=13; Gosset et al. 2001) exceeds both that observed during the reassess-
ment process (N=10) and the result of the cluster analysis (N=10). Although the calls

5

8

Alarm Call (100%)

Scream (50%)

Scream 
(50%)

Long Grunt (50%)

Long Grunt-Tonal Call  
(75%)

Scream (88%)

Grunt (44%)

Tonal call (44%) Scream 
(40%)

Scream (55%)

Fig. 7 Polar dendrogram (center) showing how vocalizations of Eulemur macaco cluster together (see ESM
Appendix S4). For each cluster, we show a spectrogram of the exemplar chosen during the affinity
propagation process. All spectrograms are generated in Praat with the following parameters: window length:
0.025 s, time range as shown (0.25–1.00 s); frequency range: 0–10,500 Hz; dynamic range: 35–45 dB. The bar
indicates 1 s duration. Values in parentheses indicate the percentage of the exemplar’s vocalization type in a
cluster. Additional information is given in ESM Appendixes S4 to S6.
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in our sample may be incomplete, we suspect that this discrepancy arose due to the
different criteria used to assess vocalization types in these studies.

Our prediction that the unsupervised procedure would recognize a lower number of
vocalization types was not supported in two cases: Eulemur coronatus (13 unsuper-
vised vs. 7 audio-visual vocal types) and E. mongoz (14 vs. 9). In both cases, the
unsupervised procedure recognized more than one type of alarm call. Previous studies
of these species estimated a vocal repertoire size of 15 vocalizations for E. mongoz (9
validated using sDFA; Nadhurou et al. 2015) and 10 vocalizations for E. coronatus (all
validated using DFA; Gamba and Giacoma 2007). It is clear that different methods led
to different estimates, but interesting that, in principle, dynamic time warping allows
the identification of vocalization types using a smaller number of calls than sDFA.
Whether these differences in vocal repertoire size reflect different arousal states or
contexts is an interesting direction for future research.

Cluster vs. A Priori Classification

Agreement between the clustering process and the a priori criteria was low, with values
of the Adjusted Rand Index ranging between 0.18 (in Eulemur rubriventer) and 0.32
(in E. coronatus and E. macaco and E. rufus). This supports the prediction that
unsupervised clustering of the vocalizations would not find the vocalization types
identified in previous studies. However, despite the differences with the a priori
classification, the clusters obtained using dynamic time warping–generated dissimilar-
ity indices revealed a remarkable potential for grouping calls on the basis of acoustic
measurements of different parameters. Among the parameters, duration showed the
heaviest loadings on the first discriminant function. Thus, the mismatching between the
a priori classification and cluster analysis is in line with the suggestion that humans
tend to recognize as discrete vocal types sounds that may be grouped into a single type
when perceived by other species or classified by quantitative analyses (Hauser 1996).

Both duration and formants contributed to the identification of clusters in almost all
the species considered. Formants are known to be crucial for the identification of
vocalization types (Gamba 2014; Gamba and Giacoma 2007; Giacoma et al. 2011)
and have the potential to provide listeners with individual and species-specific cues
(Gamba et al. 2012a).

Snorts, clicks, and hoots were not selected as cluster representatives and were often
grouped with different vocalization types to form fairly dishomogeneous clusters. This
result is consistent across the species and is in line with previous data that suggest that
low-pitched calls may be part of a graded system more than discrete emissions (Gamba
and Giacoma 2007). Identifiable vocalization types are common, but calls with inter-
mediate acoustic structure may also occur and may be either Boversplit^ by human
listeners or not recognized as discrete by the unsupervised methodology we adopted.
Low-pitched calls of Eulemur (grunts, clicks, grunted hoots, hoots, snorts, and possibly
long grunts) are usually classified as contact calls (Gamba and Giacoma 2005, 2007;
Gamba et al. 2012a, b; Pflüger and Fichtel 2012; Rendall et al. 2000). These low-
pitched signals, especially grunts, are the most frequently emitted call type in Eulemur
(Gamba and Giacoma 2005; Gamba et al. 2012a; Pflüger and Fichtel 2012). However,
whether acoustic variation in low-pitched signals plays a role in encoding information
other than emitter position is still unclear (Pflüger and Fichtel 2012).
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The context of call emission is a powerful indicator of their social function and may
provide crucial information to the investigation of acoustic structure (Gros-Louis et al.
2008; Rendall et al. 1999). Future studies are necessary to explore the contextual
variation of the vocalization types, how the occurrence of vocal signals relates to their
acoustic structure, and how this information can be integrated into unsupervised
analyses.

Although there was low agreement between cluster analysis and a priori classifica-
tion, distinct types of grunts and/or grunted hoots emerge in all species. In addition,
grunts emitted by Eulemur coronatus are identified as three different types. Long
grunts, which are reported to denote contexts of disturbance and potential territorial
predation, or are emitted during locomotion (Gamba and Giacoma 2005, 2007; Pflüger
and Fichtel 2012), occur in E. mongoz and E. fulvus. Associations between low-pitched
calls and tonal calls emerged as distinct clusters (grunt-tonal calls, long grunt-tonal
calls) in all species except E. rufus, and have been reported for many species (Mace-
donia and Stanger 1994).

Our findings support the prediction that variation in particular vocal types may mask
variation at a lower level, in agreement with a study of Guinea baboon calls (Maciej
et al. 2013). In baboon calls, variation in screams was stronger than for other vocal-
ization types. In five of six Eulemur species, we found that screams represented more
than one (usually homogeneous) cluster (E. flavifrons did not emit screams in the same
situation in which other species emitted them). In E. fulvus and E. rufus, we identified
three clusters of territorial calls, while alarm calls formed three clusters in E. coronatus
and five clusters in E. flavifrons. The fact that cluster analysis identified more than one
cluster of alarm calls, screams, and territorial calls indicates variability that has not been
reported in previous studies (Gamba and Giacoma 2007; Macedonia and Stanger
1994). These results represent an operationally useful indication for future studies,
which may link vocal variation with factors such as level of arousal, social interactions,
or audience composition (Clay and Zuberbühler 2012; Fichtel and Hammerschmidt
2002; Slocombe and Zuberbühler 2007; Stoeger et al. 2011).

In conclusion, dynamic time warping appears to be a promising method for
deepening our knowledge of how lemurs encode information in their vocal signals,
and allows the objective identification of vocalization types. We envisage the use of
unsupervised classification in different circumstances, including field studies. For
example, various researchers report that the classification of calls to be used in
playback experiments is particularly challenging. Acoustic analysis may reveal that
recorded calls may in fact be different signals (Rendall et al. 1999). Researchers can
face the problem of classifying calls in different groups when in the field. In these
situations, the unsupervised classification of a small number of calls can be very
helpful to provide the investigator with an interpretable quantitative analysis, which
may result in improved experimental design and aid in the evaluation of the results
(Seiler et al. 2013).
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