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Abstract
In recent years, mathematical thinking and reasoning have been widely discussed to
promote students’ abilities to apply mathematical knowledge and ideas in their daily
living. However, few studies have investigated the role of self-regulation in relation to
reasoning. This study examined the effects of self-regulation processes on student
mathematical reasoning and academic achievement. Using a quantitative research
design and the PLS-SEM technique, data were collected from 248 private school
students in Malaysia. The PLS-SEM results showed that behavioral regulations, in-
cluding processes of self-observation, self-judgment, and self-reaction, are decisive
factors in influencing student academic achievement and student mathematical reason-
ing ability. The dimensions of motivational regulation, including processes of self-
efficacy, task value, and mastery goal orientation, are dominant factors influencing
student reasoning ability, followed by cognition regulation, which includes use of
elaboration strategy and critical thinking skills. The study also found that cognition
regulation is a significant mediator of the relationship between motivational regulation
and reasoning ability. Behavioral and cognition regulation processes, as well as stu-
dents’ reasoning ability, are the mediators of motivational regulation on academic
achievement. The results of this study suggest that teachers should foster the adoption
of self-regulation processes in mathematics learning.
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Introduction

Mathematics skill is a powerful tool which can also be applied in daily life.
Learning mathematics is important as it will help students to have better reason-
ing, analytical thinking, decision making abilities, and communication skills. In
addition, mathematics skill helps students to make better sense of the world
around them and possibly solve daily life problems. Nevertheless, mathematics
teaching and learning present challenges. First, students’ interest in learning
mathematics has declined over the years (Davadas & Lay, 2018; Ng, Liu, &
Wang, 2016). Second, instead of focusing on procedural or algorithmic applica-
tions, mathematics communities have called for reform to increase students’
mathematical literacy, defined as “the ability to apply mathematics to analyse,
reason and communicate effectively as they pose, solve and interpret mathematical
problems in a variety of situations” (National Council of Teachers of Mathematics
[NCTM], 2009, p. 3).

To cope with this change in focus in mathematics teaching, there is emerging
literature proposing the inclusion of self-regulation in student learning. Self-
regulation theorists regard self-regulation as an integral part of the learning process
consisting of any actions, behaviors, and/or strategies learners take to facilitate their
learning. Students are more likely to initiate efforts to acquire knowledge if they are
self-regulated learners (Pintrich, 2004; Zimmerman, 2002). A significant number of
studies have revealed that self-regulation has a positive association with academic
achievement (e.g. Fadlelmula, Cakiroglu, & Sungur, 2015; Mousoulides &
Philippou, 2005; Velayutham & Aldridge, 2013; Zimmerman, 2002). In fact, individual
learning abilities may vary depending on the level of self-regulation skills (Velayutham
& Aldridge, 2013). In particular, highly self-regulated students are more likely to be
motivated and capable of using a repertoire of strategies as compared to low self-
regulated students (Mousoulides & Philippou, 2005; Parvin, Vahid, & Gholamreza,
1998).

Despite the development of the self-regulation field and the creation of self-
regulation models, Dent and Koenka’s (2016) meta-analysis uncovered different defi-
nitions of the construct as well as research methodologies resulting in different key self-
regulation components and their relative importance in their respective research do-
main. Many previous studies have mainly focused on a subset of self-regulation
strategies from the perspectives of cognitive and/or metacognitive strategies with
motivational beliefs or other learning aspects on students’ academic achievement
(e.g. Azar, Lavasani, Malahmadi, & Amani, 2010; Fadlelmula et al., 2015; Keskin,
2014; Li, Zheng, Liang, Zhang, & Tsai, 2018; Mason, Boscolo, Tornatora, & Ronconi,
2013; Mousoulides & Philippou, 2005; Rashid & Hashim, 2008; Velayutham &
Aldridge, 2013; Vogt, Hocevar, & Hagedorn, 2007; Wu, 2005; Yang, 2012). Relatively
few studies have focused on the interaction of behavioral regulation with motivational
and cognition regulations. However, Zimmerman (2002) found that these processes are
the main performance-related processes significantly related to academic achievement.
Other scholars (e.g. Iskender, 2009; Lan, 1996; Mayer, 1998; Ramdass & Zimmerman,
2008) contend that motivational factors are interrelated with behavioral regulation and,
ultimately, improved academic achievement.
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Students’ mathematics achievement has always been reported based on a
scoring system. Debate continues about which aspects of student thinking are
unidentifiable from these scores (Schoenfeld, 2016). High academic achievement
does not necessarily equate with good critical thinking skills (Verawati, Arifin,
Idris, & Hamid, 2010). High test scores do not necessarily indicate that students
learn meaningfully and with understanding (Danisman & Erginer, 2017). For these
reasons, Schoenfeld (2016) has called for studies on student performance in four
areas of proficiency: concepts and procedures, problem-solving, reasoning, model-
ing, and data analysis. However, previous self-regulation studies in mathematics
have mainly focused on academic achievement rather than mathematical reason-
ing. There is a lack of empirical examples comparing and contrasting the role of
self-regulation on mathematics achievement from two aspects: mathematical rea-
soning performance and academic achievement.

Indeed, according to Brodie (2010), mathematical reasoning not only requires
students to examine task constraints but also requires self-regulation and self-monitor-
ing. Schoenfeld (2016, p. 508) stated the “difficulties with monitoring and self-
regulation (aspects of metacognition) could cause problem-solving failure, despite
individuals having the knowledge to solve problems.” Thus, self-regulation in mathe-
matics learning is important in promoting student understanding of mathematical
knowledge. When students regulate and monitor their own thinking process, they are
more likely to integrate existing knowledge with new mathematical relationships
(Brodie, 2010).

This paper contributes to the literature by examining a self-regulation model of
mathematical reasoning performance and academic achievement based on
Zimmerman’s (1989) triadic analysis of self-regulation grounded in social cogni-
tive theory. In this model, the level of self-regulation depends on three general
aspects of learning, namely behavioral regulation, motivational regulation, and
cognition regulation. Behavioral regulation refers to one’s proactive control and
use of various strategies or resources to attain learning goals. Motivational regu-
lation refers to covert processes such as self-efficacy, task value, and goal orien-
tation initiated by individuals to influence other processes. Cognition regulation
refers to one’s proactive selection and use of various cognitive strategies such as
critical thinking skills and elaboration strategy to store and retrieve information.
These general aspects of self-regulation are assumed to be interrelated in a self-
regulatory system (Zimmerman, 1989, 2002).

Previous self-regulation research depends heavily on quasi-experimental design or
qualitative design. Relatively few studies have explored the causal-effects of various
self-regulation components on mathematics achievement by using partial least squares
structural equation modeling (PLS-SEM). Because of the several statistical advantages
of PLS-SEM approach over covariance-based SEM (CB-SEM), PLS-SEM has become
a popular multivariate analysis technique in recent years (Duarte & Amaro, 2018; Hair,
Hult, Ringle, & Sarstedt, 2014, 2017). PLS-SEM is a prediction-oriented approach,
primarily focused on explaining the variance in the dependent variables when exam-
ining the model, whereas CB-SEM is primarily used to confirm theories, aimed at
reproducing the theoretical covariance matrix.

Despite the PLS-SEM approach having been widely used by many researchers in
various disciplines including accounting, information systems, marketing, human
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resource management, business management, and tour management in recent years
(Latan, 2018), its use in mathematics education is still in the exploratory stage.
Evidence is limited to only a few studies on self-regulation in mathematics using
CB-SEM (e.g. Azar et al., 2010; Fadlelmula et al., 2015; Mousoulides & Philippou,
2005).

To resolve this issue, this paper contributes to the research literature on self-
regulation in mathematics by using a higher order model or hierarchical component
model (HCM) approach in PLS-SEM. The HCM approach helps to create multidimen-
sional constructs. It involves summarizing lower-order components (LOC) into a single
multidimensional higher-order construct (HOC). For example, several motivational
factors can be summarized into a single HOC named motivational, several cognitive
strategies can be summarized into a single HOC named cognition, and so on. These
models reduce complexity and enable future research to increase the content comprised
by specific HOCs (Duarte & Amaro, 2018). So far, based on our knowledge, there is no
study using the HCM approach to define a multidimensional self-regulation model of
mathematical achievement.

In this article, we show how we apply PLS-SEM techniques to the study self-
regulation in mathematics, provide evidence of the validity of this approach in under-
standing student mathematics achievement, and determine specific forms of self-
regulation that best predict both mathematical reasoning performance and academic
achievement.

Research Model and Hypotheses

This study conceptualizes the research model based on a triadic analysis of self-
regulation (Zimmerman, 1989). This theory posits that student learning outcomes are
influenced by three main regulation processes: motivational (MOT), behavioral (BEH),
and cognition (COG). The model shows how these regulation processes positively
impact students’ mathematical reasoning ability (MR) and their academic achievement
(AP).

Our literature review revealed that students need to be motivated in order to manage
a sufficient amount of effort to accomplish assigned tasks (Weinstein, Husman, &
Dierking, 2000). Therefore, perceived self-efficacy beliefs, task value, and mastery goal
orientation play significant roles in initiating and maintaining an individual’s level of
motivation self-regulation (Velayutham & Aldridge, 2013). Self-efficacy (SE) refers to
“judgments of competence to perform a task”; task value (TV) refers to “beliefs about
the importance, utility, and relevance of the task”; and mastery goal orientation (MGO)
refers to “purposes for doing task” (Pintrich, 2004, p. 395). Many empirical studies
have shown that self-efficacious students are more motivated to learn, and those who
see a task as exciting and valuable are more likely to increase their mastery perfor-
mance, ultimately leading to academic success (Zimmerman, 2002).

According to Zimmerman (2002), students tend to employ various learning strate-
gies to attain learning goals. These learning strategies generally help students to
organize and reconstruct their knowledge (Weinstein et al., 2000). In general, cognitive
psychologists refer these learning strategies as cognitive strategies that self-regulated
students use to facilitate their learning (Borich & Tombari, 1996). Cognitive strategies
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are important because they help students “select and control personal behaviors in
attending to the learning situation, managing the memory and recall systems and
organizing the learning problem or solution” (Wilson & Weinstein, 1989, p. 137).
They are also involved in improved memory, reading comprehension, and mathematics
problem-solving (Borich & Tombari, 1996). Thus, highly self-regulated students tend
to use various cognitive strategies with purposes, cognized goals, and strategic
planning.

Of these cognitive strategies, elaboration strategy and critical thinking skills are
widely discussed in the literature. Critical thinking skills (CTS) refer to deep cognitive
strategies used to devise alternative solutions, questions, reflection, and mathematical
thinking. Elaboration strategy (ELA) is used to extract and summarize main ideas,
connecting, relating, and applying mathematical knowledge by pulling together the
acquired information from different resources to facilitate mathematical reasoning.
Previous studies have shown that elaboration strategy and critical thinking skills affect
academic achievement (Bayat & Tarmizi, 2010).

Triadic analysis of self-regulation theory posits that self-regulated students should
not only know how to use a cognitive strategy, but they must be able to regulate it. This
means students should know how to plan, monitor, and approach activities in a strategic
way (Weinstein et al., 2000). Therefore, students need self-observation capability. Self-
observation (SO) is a key process in the control phase to track an individual’s cognitive
functions. This process refers to any behaviors, beliefs, or actions that can be used to
monitor one’s learning progress. In particular, self-monitoring is a “covert form of self-
observation” (Zimmerman, 2002, p. 68). According to Weinstein et al. (2000), when
students are aware of when to use appropriate strategies in their learning, they are said
to possess metacognition—knowledge about their own cognition. Hence, they will
have clearer ideas on what they are currently doing to complete the task (Panadero &
Alonso-tapia, 2014).

Further, Zimmerman (2002) stated that self-regulated students will regulate self-
reflection after each assigned learning task. These learning processes involve self-
judgment and self-reaction. Self-judgment (SJ) refers to self-regulated students will
self-evaluate their performance against their personal standards or criteria. Self-reaction
(SR) refers to students attribute their failures to maladaptive strategies used, which lead
them to greater self-satisfaction and more willingness to put efforts in improving
performance (Zimmerman, 2002). When students experience greater self-satisfaction,
their motivation will increase, resulting in adaptive reactions and assured learning
effectiveness (Zimmerman, 2002). These feedbacks contribute significantly to their
future strategy use in similar tasks.

Figure 1 operationalizes these components as lower-order constructs (LOCs) and
higher-order constructs (HOCs), demonstrating a multidimensional model of self-
regulation used in this study.

In the model, latent constructs (i.e. variables that are not directly measured) are
represented as circles and indicators (i.e. manifested variables) are represented as
rectangles. The relationship between an indicator and a latent construct can be
expressed as reflective or formative. In the reflective measurement model, all of the
relevant indicators are considered to be functions of the latent construct (i.e. arrow of
the latent construct is pointing to its respective indicators), whereas formative
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measurement indicators are assumed to be directed at a latent construct (i.e. arrows of
the indicators are pointing to its latent construct).

Figure 1 operationalizes lower order constructs (LOC_SE, LOC_TV, LOC_MGO,
LOC_ELA, LOC_CTS, LOC_SO, LOC_SJ, and LOC_SR) as reflective measurement
models (i.e. dropping one of the indicators would not alter the conceptual domain of the
LOC as indicators have similar content). Speficically, LOC_SE was measured by 8
indicators (SE1 to SE8), LOC_TV was measured by 6 indicators (TV1 to TV6),
LOC_MGO was measured by 4 indicators (GO1 to GO4), LOC_ELA was measured
by 6 indicators (ELA1 to ELA6), LOC_CTS was measured by 5 indicators (CTS1 to
CTS5), LOC_SO was measured by 6 indicators (SO1 to SO6), LOC_SJ was measured
by 4 indicators (SJ1 to SJ4), and LOC_SR was measured by 8 indicators (SR1 to SR8).

As for higher order constructs (HOC_MOT, HOC_COG, and HOC_BEH), they
have formative measurements because their LOCs are defining characteristics of the
HOC, which means dropping one of the LOCs would alter the conceptual domain of
the HOC. Specifically, HOC_MOT consisted of LOC_SE, LOC_TV, and LOC_MGO;
HOC_COG consisted of LOC_ELA and LOC_CTS; and HOT_BEH consisted of
LOC_SO, LOC_SJ, and LOC_SR. Likewise, latent construct MR and AP were
operationalized as formative measurement. MR consisted of 3 indicators (RP_ALG,
RP_NUM, and RP_DA) and AP consisted of 2 indicators (SEM1_MARKS and
SEM2_MARKS).

Therefore, there were ten direct effects identified from the proposed model. Accord-
ingly, the present study formulated the following hypotheses:

H1: Motivational regulation (HOC_MOT) has positive effect on behavioral regula-
tion (HOC_BEH).

H2: Motivational regulation (HOC_MOT) has positive effect on cognition regulation
(HOC_COG).

Fig. 1 The multidimensional model of self-regulation
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H3: Behavioral regulation (HOC_BEH) has positive effect on cognition regulation
(HOC_COG).

H4: Motivational regulation (HOC_MOT) has positive effect on mathematical rea-
soning performance (MR).

H5: Behavioral regulation (HOC_BEH) has positive effect on mathematical reason-
ing performance (MR).

H6: Cognition regulation (HOC_COG) has positive effect on mathematical reasoning
performance (MR).

H7: Motivational regulation (HOC_MOT) has positive effect on academic achieve-
ment (AP).

H8: Behavioral regulation (HOC_BEH) has positive effect on academic achievement
(AP).

H9: Cognition regulation (HOC_COG) has positive effect on academic achievement
(AP).

H10: Mathematical reasoning performance (MR) has positive effect on academic
achievement (AP).

In addition, the proposed research model also hypothesized the following indirect
effects:

H11: Behavioral regulation (HOC_BEH) mediates the relationship between motiva-
tional regulation (HOC_MOT) and cognition regulation (HOC_COG).

H12: Behavioral regulation (HOC_BEH) and/or cognition regulation (HOC_COG)
mediate the relationship between motivational regulation (HOC_MOT) and
mathematical reasoning performance (MR).

H13: Behavioral regulation (HOC_BEH), cognition regulation (HOC_COG) and/or
mathematical reasoning performance (MR) mediate the relationship between
motivational regulation (HOC_MOT) and academic achievement (AP).

Research Methodology

Sample and Procedure

Relatively few studies have focused on upper level secondary students; most have
involved primary, junior secondary, or university students. Most of the self-regulation
theorists contend that students’ self-regulatory behavior may vary according to their
background and contextual factors (Pintrich & de Groot, 1990; Zimmerman, 2002).
Therefore, we selected 248 eleventh-grade students (aged between 17 and 18 years old)
from a private secondary school located in Klang, Malaysia. This school has mixed-
ability class settings and was selected due to its accessibility. The sample included 109
males and 139 females.

This study utilized a quantitative research design and the PLS-SEM technique to test
the path relationships of the proposed constructs discussed in the previous section. The
study met the sample size requirement suggested by Hair et al. (2014, 2017), which is
10 times the largest number of formative indicators used to measure a single construct
or 10 times the largest number of structural paths directed at a construct in the structural
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model. As shown in Fig. 1, the largest number is four structural paths directed at
construct AP in the structural model, indicating a minimum of 40 cases. In this study,
the participants were asked to complete a mathematical reasoning test and fill out a
questionnaire survey after the test.

Measures

Instrument 1: a Questionnaire

The questionnaire consists of questions pertaining to perceived self-efficacy, mastery
goal orientation, task value, elaboration strategy, and critical thinking skills which
adapted from the Motivated Strategies for Learning Questionnaire (MSLQ) (Artino,
2005), whereas self-observation, self-judgment, and self-reaction toward mathematics
were adapted from Wu (2005). The measures for these variables were anchored on a 7-
point Likert scale (1 = not at all true of me to 7 = very true of me).

Instrument 2: Mathematical Reasoning Test

The reasoning test consisted of nine short structured questions adapted from the
National Assessment of Educational Progress (NAEP) released items (National
Center for Education Statistics, n.d.). Each question is allocated 5 marks. Therefore,
students’mathematical reasoning performance (MR) was measured by three indicators:
(a) RP_ALG: sum scores of 3 questions which assessed student understanding of
Algebra; (b) RP_NUM: sum scores of 3 questions which assessed students in number
properties and operations; and (c) RP_DA: sum scores of 3 questions which assessed
students in statistics content.

Instrument 3: School Semester Examinations

The students sit for two compulsory semester examinations for mathematics subject in
an academic year (over 100 marks). Therefore, the students’ academic achievement
(AP) was measured by two indicators: (a) SEM1_MARKS: first semester examination
(b) SEM2_MARKS: second semester examination.

Data Analysis and Results

We used SmartPLS 3 software (Ringle, Wende, & Becker, 2015) to test the research
hypotheses. PLS-SEM runs the PLS algorithm (path weighting scheme, stop criterion
value of 1 × 10−7, maximum of 300 iterations) to estimate the parameters of the model
(e.g. factor loadings, weights, path coefficients) and a non-parametric bootstrapping
procedure (5000 subsamples, no sign changes, bias-corrected and accelerated [BCa
bootstrap], two-tailed test, 5% significance level) to determine the significance levels
for the estimated parameters. Before the relationships of the proposed latent constructs
were assessed, validity and reliability of the measurement models were tested.
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Common Method Bias

In studies in which both independent and dependent variables are measured from the
same participants, researchers suggest that the data be assessed according to whether it
is affected by common method variance (CMV) (Podsakoff, MacKenzie, Lee, &
Podsakoff, 2003). In this study, Harman’s single-factor test was used to evaluate
CMV. Results indicated that the restricted extraction of a single factor explained
33.92% of the variance. This is less than the 50% threshold that constitutes a CMV
effect.

Assessment of Reflective Measurement Models

The outer variance inflation factors (VIFs) of the manifested indicators were
examined prior to assessment of the reflective measurement models. The purpose
was to avoid problems with multicollinearity. To do this, the indicators for SE2,
SE5, and GO2, with VIF values more than the cutoff point of 5, were omitted. In
a PLS-SEM context, researchers should assess indicator reliability, internal con-
sistency reliability, convergent validity, and discriminant validity. Indicator reli-
ability indicates variance of the indicator that can be explained by the underlying
latent construct; it should be at least higher than the recommended value of .70
(Hair et al., 2014). Therefore, indicators for SR7 and SR8 with factor loadings
less than .70 were omitted. Table 1 shows all the retained indicators that had
factor loadings higher than .70 (p < .005).

For evaluation of the internal consistency reliability of a latent construct, Latan
(2018) argued that using composite reliability is too liberal. Hence, he recommends
researchers to report Cronbach’s alpha or Dijkstra-Henseler’s rho (ρA). However,
Hair et al. (2014) argued that Cronbach’s alpha assumes that all indicators are equally
reliable and sensitive to the number of items in the scale. Thus, they suggest that
researchers report composite reliability (CR). Taking both arguments into consider-
ation, the present study used Cronbach’s alpha, ρA, and CR to assess internal consis-
tency reliability of the reflective constructs. The values appearing in Table 1 show that
all reflectively measured constructs in the study had Cronbach’s alpha, ρA, and CR
values higher than the recommended value of .70 (p < .005).

As for convergent validity, average variance extracted (AVE) is used to measure the
extent to which the average variance of the indicators is explained by an underlying
latent construct. Table 1 shows the AVE values for all reflectively measured constructs
that were higher than the recommended value of .50 (p < .005).

For discriminant validity, researchers are encouraged to use the heterotrait-
monotrait ratio of correlations (HTMT) instead of the Fornell-Larcker criterion
or cross-loadings as both are substantially over-estimated and biased in measuring
discriminant validity (Hair et al., 2017; Latan, 2018). Table 2 shows that all
HTMT ratios were below the recommended value of .85 and significant at .005
levels, thus indicating that all reflectively measured constructs met the require-
ment for discriminant validity.
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Assessment of Formative Measurement Models

Constructs for MR and AP are two formatively measured first-order constructs in the
research model (see Fig. 1). In the PLS-SEM context, researchers should assess values

Table 1 Indicator reliability, internal consistency reliability, and convergent validity of reflective measurement
models

Constructs Indicators Factor loadings Cronbach’s alpha rhoA CR AVE

LOC_SE SE1 .887 .933 .935 .948 .751

SE3 .887

SE4 .823

SE6 .820

SE7 .874

SE8 .905

LOC_MGO GO1 .890 .847 .852 .907 .765

GO3 .883

GO4 .851

LOC_TV TV1 .737 .920 .926 .938 .716

TV2 .831

TV3 .888

TV4 .891

TV5 .861

TV6 .857

LOC_SO SO1 .823 .920 .922 .937 .714

SO2 .893

SO3 .843

SO4 .871

SO5 .850

SO6 .787

LOC_SJ SJ1 .916 .927 .929 .948 .821

SJ2 .907

SJ3 .918

SJ4 .883

LOC_SR SR1 .768 .916 .919 .935 .708

SR2 .880

SR3 .906

SR4 .907

SR5 .823

SR6 .750

LOC_ELA ELA1 .850 .911 .914 .931 .693

ELA2 .862

ELA3 .868

ELA4 .805

ELA5 .781

ELA6 .827

LOC_CTS CTS1 .796 .842 .850 .888 .614

CTS2 .841

CTS3 .758

CTS4 .810

CTS5 .707
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of indicator weight, indicator significance, and VIF value to assess collinearity issues.
Table 3 shows that all formative indicators had indicator weights higher than .10 and
were significant at .005 levels, except for indicator SEM1_MARKS. Although the
outer weight for indicator SEM1_MARKS was insignificant, its factor loading was
high (i.e. .895); hence, the indicator was retained for the measurement model, as
recommended by Hair et al. (2014). All formative indicators had VIF values less than
5; these confirmed that the indicators were free from multicollinearity issues.

Assessment of Higher Order Constructs

Three formatively measured HOCs were formulated in the research model,
HOC_MOT, HOC_BEH, and HOC_COG (see Fig. 1). In the PLS-SEM context, a
few approaches have been proposed to assess the HOCs (i.e. repeated indicator
approach, two-stage approach, and hybrid approach) (Duarte & Amaro, 2018). In the
research model, HOC_BEH and HOC_COG were endogenous constructs. Duarte and
Amaro (2018) suggest these types of models can be assessed using the two-stage
approach as it does not require an equal number of indicators for the LOCs when HOCs
are in endogenous constructs.

During the first stage of this study, the quality of the reflectively measured LOCs
was assessed according to their quality criteria as discussed in the above section (see
section Assessment of Reflective Models). To estimate the path coefficients of the
HOCs, at the second stage, each HOC was formatively represented by the latent
variable scores (LVS) of its respective LOCs obtained from the first stage. LVS is
estimated as “exact linear combinations of their associated manifest variables,” also

Table 2 Discriminant validity of reflective constructs

Constructs LOC_CTS LOC_ELA LOC_MGO LOC_SE LOC_SJ LOC_SO LOC_SR

LOC_ELA .739

LOC_MGO .703 .615

LOC_SE .623 .531 .812

LOC_SJ .392 .396 .333 .265

LOC_SO .361 .309 .253 .294 .600

LOC_SR .370 .435 .459 .491 .439 .507

LOC_TV .641 .585 .838 .746 .362 .299 .376

Table 3 Assessment of formative measurement models for first-order constructs

Constructs Indicators Weights Sig. Loadings VIF values

MR RP_ALG .516 .000 .792 1.205

RP_DA .409 .000 .720 1.201

RP_NUM .412 .000 .721 1.200

AP SEM1_MARKS .273 .217 .895 2.950

SEM2_MARKS .766 .000 .987 2.950
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referred to factor or composite scores (Monecke & Leisch, 2012, p. 2). Because
constructs MR and AP were conceptualized as a first-order construct at the first stage,
these constructs resulted in a single LVS items at the second stage (see Fig. 2). The
assessment of relations between LVSs and its construct was applied per Duarte and
Amaro (2018).

To estimate the quality of HOCs, the indicator weight, indicator significance, and
VIF value for the respective HOC were determined. Table 4 shows that all the
formative indicators’ weights of their respective HOC were higher than the recom-
mended value of .10 and significant at .005 levels, except for indicator LVS_SO and
LVS_SJ, which were significant beyond .10 levels.

However, both LVS_SO and LVS_SJ revealed a high factor loading (i.e. LVS_SO =
.735 and LVS_SJ = .711). They were retained in the model because the loading factor
is interpreted as being fundamentally important. In addition, the VIF values of all
indicators were less than the threshold value of 5, an indication of the absence of
multicollinearity among the constructs.

Fig. 2 The second stage of formative higher order constructs

Table 4 Assessment of formative higher order constructs

Constructs Indicators Weights Sig. Loadings VIF values

HOC_MOT LVS_SE .398 .002 .901 2.373

LVS_MGO .337 .004 .905 2.802

LVS_TV .373 .002 .902 2.573

HOC_BEH LVS_SO .253 .090 .735 1.623

LVS_SJ .298 .065 .711 1.510

LVS_SR .664 .000 .906 1.343

HOC_COG LVS_ELA .395 .002 .853 1.771

LVS_CTS .694 .000 .955 1.771
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Assessment of Structural Model

The inner VIF values between measured constructs were assessed to detect any
collinearity issues before path coefficients of the relationships were estimated. Table 5
shows that inner VIF values between the constructs were less than the recommended
value of 5, indicating no multicollinearity issues in the structural model.

To estimate the standardized path coefficients of the model, this study applied the
bootstrapping procedure with 5000 resamples. Table 6 shows the significance of path
relationships in the research model. The study also evaluated the effect size f2 of each
significant path relationship in the structural model. Effect size f2 values of .02, .15, and
.35 indicate that an exogenous construct has a small, medium, or large effect on an
endogenous construct. Predictive relevance of the model is assessed by R2 values and
Stone-Geisser’s Q2 values. The R2 values of .02, .13, and .26 indicate weak, moderate,

Table 5 Collinearity assessment of the structural model

Constructs HOC_BEH HOC_COG MR AP

HOC_MOT 1.000 1.277 1.919 2.028

HOC_BEH 1.277 1.338 1.339

HOC_COG 1.886 1.929

MR 1.229

Table 6 Assessment of structural model

Path relationships Direct
effects

Total
indirect
effects

Total
effects

VAF
(%)

f2 R2 Q2

H1 HOC_MOT ➔ HOC_BEH .466** .466** .277 .217 .110

H2 HOC_MOT ➔ HOC_COG .583** .083* .667** .502 .470 .361

H3 HOC_BEH ➔ HOC_COG .179* .179* .047

H11a HOC_MOT ➔ HOC_BEH ➔ HOC_COG .083* 12.44

H4 HOC_MOT ➔ MR .298** .111* .410** .057 .187 .157

H5 HOC_BEH ➔ MR −.030 .034 .003 .001

H6 HOC_COG ➔ MR .188* .188* .023

H12a HOC_MOT ➔ HOC_COG ➔ MR .110* 26.83

H7 HOC_MOT ➔ AP −.126 .317** .191** .011 .259 .225

H8 HOC_BEH ➔ AP .398** −.002 .396** .159

H9 HOC_COG ➔ AP −.015 .065* .050 16.41 .000

H10 MR ➔ AP .347** .347** .132

H13a HOC_MOT ➔ HOC_BEH ➔ AP .185** 96.86

H13a HOC_MOT ➔ HOC_COG ➔ MR ➔ AP .038* 19.90

H13a HOC_MOT ➔ MR ➔ AP .103** 53.93

*p < .05; **p < .005
a Specific indirect effect
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and substantial predictive accuracy, respectively. The model is considered to have
predictive relevance if Q2 is greater than zero (Hair et al., 2014, 2017).

The results revealed a significant relationship between motivational and behavioral
regulation processes with medium to large effect (β = .466, p < .005, f2 = .277).
Motivational regulation moderately explained the prediction of behavioral regulation
(i.e. R2 = .217, Q2 = .110). Both motivational and behavioral regulations were found to
predict cognition regulation at a significant level (HOC_MOT➔HOC_COG: β = .583,
p < .005, f2 = .502; HOC_BEH ➔ HOC_COG: β = .179, p < .05, f2 = .047). However,
the effect sizes differed; while motivational regulation on cognition regulation is large,
the effect size of behavioral regulation on cognition regulation is considerably smaller.
Nevertheless, behavioral regulation was found to mediate the relationship between
motivational and cognition regulations (HOC_MOT ➔ HOC_BEH ➔ HOC_COG:
β = .083, p < .05). The strength of an indirect effect can be explained by the variance
accounted for by the mediator (VAF: ratio of indirect effect to total effect). In this study,
behavioral regulation explained 12.44% of the relationship between motivational and
cognition regulations. Both motivational and behavioral regulations accounted for 47%
of the variances in explaining cognition regulation; this is considered to be substantial.

In terms of predicting students’ performance in mathematical reasoning, both
motivational and cognition regulations were revealed as having significant effects. This
was not the case for behavioral regulation (HOC_MOT ➔ MR: β = .298, p < .005,
f2 = .057; HOC_COG ➔ MR: β = .188, p < .05, f2 = .023). Cognition regulation
partially mediated the relationship between motivational regulation and mathematical
reasoning performance with a VAF value of 26.83%, indicating that 26.83% of the
effect of motivational regulation on students’ mathematical reasoning was explained
through their cognition regulation. These constructs moderately explained 18.7% of the
variances in the construct MR.

On the contrary, behavioral regulation and students’ mathematical reasoning ability
significantly predicted academic achievement. This was not the case for motivational
and cognition regulations (HOC_BEH ➔ AP: β = .398, p < .005, f2 = .159; MR➔ AP:
β = .347, p < .005, f2 = .132). Though both direct effects of motivational and cognition
regulations on academic achievement were statistically insignificant, their indirect
effects were found to be significant beyond .05 levels, especially for indirect effects
of motivational regulation on academic achievement. More specifically, behavioral
regulation fully mediated the relationship between motivational regulation and
students’ academic achievement with a high VAF value of 96.86%. The analysis also
showed that 53.93% of the effects of motivational regulation on students’ academic
achievement were explained through their mathematical reasoning ability. In addition,
cognition regulation and students’ mathematical reasoning ability were found to be
significant sequential mediators that mediated the relationship between motivational
regulation and academic achievement with a small effect (i.e. VAF = 19.90%). These
constructs accounted for 25.9% of the variances in explaining students’ academic
achievement; this is considered to be substantial.
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Discussion and Conclusion

Summary of Findings

Past studies have generally focused on a combination or subset of various self-
regulation processes on students’ mathematics achievement. This is the first study of
which we are aware that involves an evaluation of the significance of the multidimen-
sionality of self-regulation on students’ mathematical reasoning and academic achieve-
ment. Our results, obtained via the administration of three instruments to nearly 250
high school students, led to development of a multidimensional self-regulation model,
based on Zimmerman’s (1989) triadic analysis, to identify specific dimensions of self-
regulation that appear to affect students’ mathematical reasoning and academic
achievement.

Consistent with the theory, we found that motivational, cognition, and behavioral
regulation processes are significantly interrelated with student learning. Motivational
regulation directly contributes to behavioral regulation with a medium to high effect
and cognition regulation with a high effect. This indicates that students with higher
levels of motivational regulation are more likely to use deep learning strategies to
facilitate their learning and attain their academic goals. Therefore, our study confirms
that students’ self-regulation level is affected by motivational, behavioral, and cognition
aspects.

In this study, we have shown that behavioral regulation is the most dominant
dimension for students’ academic achievement but not for mathematical reason-
ing. Of the behavioral regulation processes, self-reaction stands out among the
other two processes; this shows that students with greater self-satisfaction are
more likely to engage in adaptive learning. This contradicts the findings of
Fadlelmula et al. (2015), who found that planning, monitoring, and regulating as
the metacognitive self-regulation strategies relate negatively and not significantly
related to mathematics achievement. The findings of the current study are based
on social cognitive theory whereby self-observation, self-judgment, and self-
reaction processes are the three main performance-related behavioral processes.
However, these processes are more relevant to academic achievement than they
are to mathematical reasoning. Apart from that, mathematical reasoning perfor-
mance was the second decisive factor in influencing students’ academic achieve-
ment. This suggests that students who are proficient in reasoning skills are likely
to perform well in their mathematics learning.

The results of motivational regulation have been found to be inconsistent throughout
the literature. For instance, Mousoulides and Philippou (2005) reported self-efficacy as
being related to mathematics achievement, but Fadlelmula et al. (2015) found self-
efficacy unrelated to mathematics achievement. Vogt et al. (2007) reported that self-
efficacy was related to students’ GPA. This may possibly be due to the majority of
previous studies focusing on the sole motivation factor (i.e. self-efficacy) in their
models. Although Azar et al. (2010) included self-efficacy, task value, and mastery
goal orientation in their estimation, they linked self-efficacy directly to students’
mathematics achievement, but they did not link achievement to task value and mastery
goal orientation. These different conceptualizations of the model (e.g. Azar et al., 2010;
Fadlelmula et al., 2015; Li et al., 2018; Mousoulides & Philippou, 2005) have produced

A Self-Regulation Model of Mathematics Achievement for... 633



different results, consequently limiting the comprehensive view of the self-regulation
model.

In this study, we found that the three sub-dimensional factors of motivational
regulation, self-efficacy, task value, and mastery goal orientation do not have a direct
effect on student academic achievement. At the same time, we found both direct and
indirect effects of motivational regulation on students’mathematical reasoning. We also
found that behavioral regulation, cognition regulation, and mathematical reasoning
ability are possible mediators in the relationship between motivational regulation and
students’ academic achievement. Evidently, students’ motivational regulation is insuf-
ficient to initiate proactive learning but positive behaviors and use of appropriate
cognitive strategies are required to facilitate the learning process.

In addition, cognition regulation was found to be directly related to students’
mathematical reasoning but an indirect predictor of students’ academic achievement.
Cognition regulation enhances the relationship between motivational regulation and
students’ mathematical reasoning. Of deep learning strategies, critical thinking skills
contribute to higher weights for cognition regulation as compared to use of elaboration
strategy. This indicates that students with higher critical thinking skills are more likely
to perform better in reasoning and academic achievement.

In conclusion, the results of this study show that behavioral, motivational, and
cognition regulations contribute both to achievement and mathematical reasoning. This
suggests that processes need to be integrated into the learning process to facilitate
students’ academic achievement and their mathematical reasoning.

Theoretical Implications

This study validated a multidimensional self-regulation model on students’ academic
achievement and mathematical reasoning performance. The model shows a distinct
difference between the dimension of behavioral and motivational regulation. Behav-
ioral regulation is the decisive factor in students’ academic achievement, followed by
their mathematical reasoning ability, whereas motivational regulation is the dominant
factor in influencing students’ mathematical reasoning ability, followed by cognition
regulation.

The study also provides evidence to support the partial mediation between
cognition regulation and motivational regulation and students’ mathematical rea-
soning ability. In addition, the research model confirmed that behavioral regula-
tion, cognition regulation, and mathematical reasoning ability fully mediate the
relationship between motivational regulation and students’ academic achievement.
Specifically, behavioral regulation exhibits the largest mediating effect of motiva-
tional regulation on academic achievement, followed by students’ mathematical
reasoning ability. Cognition regulation and students’ mathematical reasoning were
found to sequential mediators in enhancing students’ academic achievement with a
small mediating effect. The model concurred with Zimmerman’s triadic analysis,
whereby the dimensions of cognition, motivational, and behavioral regulations are
interdependent in a self-regulation model.
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Practical Implications

Student learning is affected by personality, behavior and environmental factors. Im-
proving students’ positive behaviors in learning is a key concern, as these behaviors
mediate the relationship between students’ motivational beliefs and their academic
achievement. Based on the results of this study, we suggest that teachers identify
opportunities for students to self-observe their work progress, self-evaluate their learn-
ing outcomes, and self-react to adaptive learning. When students monitor their task
process, they are more likely to self-evaluate learning outcomes. These positive
behaviors help enhance students’ awareness in the use of appropriate deep learning
strategies (i.e. critical thinking skills) as well as support their motivation in solving
mathematical reasoning problems. When students experience success, they will attain
greater academic achievement.

Research conducted by Tee, Leong, and Abdul Rahim (2018) found that use of the
critical thinking skills was the dominant predictor of students’ mathematical reasoning
ability. In that context, we suggest that teachers implement strategies that help their
students maximize the search for optimal problem solutions. To build students’ confi-
dence and ability to solve reasoning problems, teachers can promote sense-making in
alignment with recent recommendations (NCTM Research Committee, 2011). Use of
elaboration strategies may increase the likelihood of sense-making activity (Brodie,
2010).

Limitations and Future Research Directions

The present study was limited to exploring the causal-effect of a multidimensional self-
regulation model on students’ mathematical reasoning and academic achievement.
Each dimension consists of various self-regulation processes and how these processes
predict students’ mathematical reasoning and academic achievement. To have a com-
prehensive view of the interrelationships among the processes, one should conceptual-
ize these processes separately. Though the research model of this study cannot be
generalized to each subfactor, it would be helpful if future researchers can add in more
components under a corresponding dimension to compare if there are any discrepancies
between influencing students’ mathematical reasoning and academic achievement.
Given that students’ levels of self-regulation may vary due to different background,
culture, or classroom settings, it is suggested that this model can be used for future in-
depth self-regulation studies and to broaden the scope of research on students’ reason-
ing skills.
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