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Abstract

In this paper, we introduce and discuss a construct called graphical forms, an extension
of Sherin’s symbolic forms. In its original conceptualization, symbolic forms charac-
terize the ideas students associate with patterns in a mathematical expression. To
expand symbolic forms beyond only characterizing mathematical equations, we use
the general term registration to describe structural features attended to by individuals
(parts of an equation or regions in a graph). When mathematical ideas are assigned to
registrations in a graph, we characterize this as reasoning using graphical forms. As an
analytic framework, graphical forms provide the language to discuss intuitive mathe-
matical ideas associated with features in a graph, but we are also interested in
engagement in modeling. Our approach to investigating graphical reasoning involves
conceptualizing modeling as discussing mathematical narratives. This affords the
language to describe reasoning about the process (or “story”) that could give rise to a
graph; in practice, this occurs when mathematical reasoning (i.e. reasoning using
graphical forms) is integrated with context-specific ideas. In this work we describe
graphical forms as an extension of symbolic forms and emphasize its utility for
analyzing graphical reasoning. In order to illustrate how the framework could be
applied, we provide examples of interpretations of graphs across disciplines, using
graphs selected from introductory biology, calculus, chemistry, and physics textbooks.
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Overview

The primary goal of this paper is to discuss a construct called graphical forms.
Reasoning characterized by the use of graphical forms reflects the assignment of
meaning to specific structural features in a graph. The idea of graphical forms is a
logical extension of Sherin’s (2001) symbolic forms, which describes mathematical
reasoning involving associating ideas with specific patterns in equations. In recent
work, the authors have used symbolic forms and illustrated how symbolic forms could
be expanded to focus on graphical reasoning in a chemistry context (Rodriguez, Bain,
Elmgren, Towns, & Ho, 2019; Rodriguez, Bain, & Towns, 2019; Rodriguez, Santos-
Diaz, Bain, & Towns, 2018). Here, graphical forms and its relation to symbolic forms
are discussed in detail, and a case is made for the utility of using graphical forms as an
analytic framework to characterize graphical reasoning across different contexts. In
order to illustrate how the framework could be applied, graphs in textbooks were
selected and analyzed by the authors, focusing on the reasoning illustrated in the
presentation of graphs and the associated text. To provide context, the discussion
begins with background literature related to graphical reasoning.

Mathematical Reasoning Involving Graphs

Modeling, or the “coordination of quantities with other types of knowledge” (Izak,
2004), plays a critical role across science, technology, engineering, and mathematics
(STEM), warranting further analysis to provide insight regarding how instruction can
help students successfully integrate equations and graphs with contextual information
(Bain, Rodriguez, Moon & Towns, 2018; Becker & Towns, 2012; Lunsford, Melear,
Roth, Perkins, & Hickok, 2007). A review of the literature indicates reasoning
involving interpreting graphs is multifaceted and complex, with many factors poten-
tially increasing the difficulty of graphical comprehension. For example, some factors
contributing to the challenge associated with interpreting graphs include the complex-
ity of the graph (e.g. number of variables/functions represented, relationship/
interaction between variables, type of function, etc.), students’ algebraic/
mathematical proficiency, and the domain knowledge required for interpretation
(Carpenter & Shah, 1998; Glazer, 2011; Ivanjeck, Susac, Planinic, Andrasevic &
Milin-Sipus, 2016; Kozma & Russell, 1997; Phage, Lemmer, & Hitage, 2017,
Planinic, Ivanjeck, Susac & Millin-Sipus, 2013; Potgicter, Harding, & Engelbrecht,
2007). The extent to which these factors interact and influence graphical reasoning and
problem solving in the physical sciences has been investigated by comparing student
reasoning associated with discipline-situated graphical problems and parallel
mathematics-only graphical problems (where the discipline-specific context has been
removed), in which some research indicates a lack of mathematical proficiency
hinders success in interpreting graphs (e.g. Potgieter et al., 2007); other research
asserts that the issue lacks necessary content knowledge (e.g. Phage et al., 2017;
Planinicetal.,2013). Taken together, these results indicate that the role and interaction
of content knowledge and mathematical ability varies depending on the population
and topic being investigated, and even if students have all the necessary pieces of
knowledge, they must be able to access and blend the appropriate discipline-specific
ideas with mathematical reasoning (Bain et al., 2018).
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From a purely mathematical perspective, there is a large body of literature that
characterizes different perspectives associated with interpreting the information
presented in a graph (Even, 1990; Moschkovich, Schoenfeld, & Arcavi, 1993;
Schwartz & Yerushalmy, 1992; Sfard, 1992). Building on this body of work,
Moore and Thompson (2015) describe shape thinking, where students were
characterized as engaging in emergent reasoning or static reasoning. The distinc-
tion made by Moore and Thompson (2015) is that emergent reasoning involves
viewing the function as a mapping of all input and output values with a more
explicit emphasis on covariation, whereas static reasoning involves viewing the
function as an entity that can be translated and manipulated as a whole. Emer-
gent reasoning emphasizes the covariational relationship and the process com-
municated by the graph, and when students are unable to engage in emergent
reasoning, they tend to have an incomplete understanding of the graphical
representation. As a construct, viewing a graph using static reasoning is not
necessarily unproductive, because different perspectives of a function may be
useful or sufficient to answer questions in a given context (Even, 1990; Schwartz
& Yerushalmy, 1992; Sfard, 1992; Rodriguez, Bain, Elmgren, Towns, & Ho,
2019). Furthermore, the added complexity of conceptualizing a graphical repre-
sentation from different perspectives is worth discussing because it can influence
how students interpret graphs in discipline-specific contexts (Potgieter et al.,
2007).

Although the importance and challenges associated with graphical reasoning in
STEM fields has been the focus of this discussion, the ability to engage in the critical
analysis of graphs and related representations of data is important for people pursuing
careers outside of STEM. Being able to interpret graphs and understand what they
communicate—as well as having a firm understanding of how the data was collected
and the associated limitations of claims that can be made with the data—is critical to
interact with modern society and make informed decisions about current global prob-
lems (Driver, Asoko, Leach, Mortimer & Scott, 1994; Driver, Leach, Millar & Scott,
1996; Grassian et al., 2007; Mahafty et al., 2017; Matlin, Mehta, Hopf & Krief, 2016;
National Research Council, 2012). Thus, a working understanding of graphical rea-
soning and related analytical skills are relevant for society across STEM and non-
STEM careers, suggesting the importance of focusing on how experts describe pro-
cesses across STEM fields to elucidate patterns in reasoning that will help guide and
scaffold students with their reasoning (Glazer, 2011; Ivanjeck et al., 2016, Kozma &
Russell, 1997).

An Overview of Symbolic Forms

Most studies that utilize the symbolic forms framework theoretically base their
work using resource-based model of cognition (Sherin, 2001). Within the resources
framework, knowledge is described as a complex and dynamic network of cognitive
units of varying sizes and degrees of connectivity (Hammer & Elby, 2002, 2003;
Hammer, Elby, Scherr, and Redish, 2005). The resource perspective builds on
diSessa’s (1993) discussion of phenomenological primitives (p-prims)—simple
and intuitive ideas individuals develop based on observations and experiences—
and the conceptualization of cognition as knowledge-in-pieces, where fine-grained
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pieces of knowledge (resources, some of which may be symbolic forms, for
example) are activated in specific contexts. Based on the utility of the resource
perspective in previous studies, the approach that we have outlined for the analysis
of graphical reasoning will follow the example set by the literature and the resource
perspective will serve as the theoretical foundation for our approach to investigating
mathematical reasoning.

Symbolic forms involve a combination of a symbol template and a conceptual
schema, where the symbol template is a recognizable pattern in an equation, and
the conceptual schema involves the ideas or knowledge elements associated with
the pattern of symbols. Sherin (2001) developed the symbolic forms framework
based on his analysis of students working through physics problems, during which
he compiled an initial list of symbolic forms and commented on the need for more
work to identify additional symbolic forms. In a supplemental file, we have
provided a comprehensive list of symbolic forms identified by other researchers
and discussed in the literature (Dreyfus, Elby, Gupta, & Sohr, 2017; Dorko &
Speer, 2015; Hu & Rubello, 2013; Izak, 2004; Jones, 2013, 2015a, 2015b;
Rodriguez et al., 2018; Sherin, 2001; Schermerhorn & Thompson, 2016; Von
Korff & Rubello, 2014); some symbolic forms have been selected and are pro-
vided in Table 1. Although work utilizing the symbolic forms framework has
focused primarily on the intuitive ideas that students associate with equations, it is
asserted that experts have access to a variety of mathematical resources and
engage in reasoning using symbolic forms (Dreyfus et al., 2017).

As shown in Table 1, different conceptual schemas can be attributed to the same
symbol template (e.g. the balancing and same amount symbolic forms have the same
pattern of terms, but reflect different ideas) and symbolic forms can involve assigning
ideas to expressions with varying levels of sophistication; see supplemental file for
more examples, such as the simple and more nuanced forms of the measurement
symbolic form (Dorko & Speer, 2015). In practice, some symbolic forms are more of

Table 1 Abridged list of symbolic forms, from Sherin (2001)

Symbolic form Symbol template Brief description of conceptual schema

Balancing Oo=0 Two influences, each associated with a side of the equation, in balance so
the system is in equilibrium

Same amount 0O=0 Two amounts, each associated with a side, are the same.

Dependence [..x...] A whole depends on a quantity associated with an individual symbol.

Prop+ [ ] Directly proportional to a quantity, x, which appears as an individual

symbol in the numerator

Prop— [ - } Indirectly proportional to a quantity, x, appears as an individual symbol in
the denominator.

Template Key
[...] Expression in brackets corresponds to an entity in the schema
x, ¥, n Individual symbols in an expression

0 A term or group of terms
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a restatement of a simple mathematical relationship, such as the prop— symbolic form
describing how changing a value in the denominator influences the term as a whole
(Sherin, 2001). Other symbolic forms, such as those identified by Jones (2013), are
associated with defining advanced mathematical operations (e.g. the information an
integral communicates), and some symbolic forms have been identified in which non-
normative ideas are assigned to symbol templates (Jones, 2013). Furthermore, as noted
by Dreyfus et al. (2017), the eigenvector-eigenvalue symbolic form is a "compound
symbolic form", which is built using multiple "primitive symbolic forms". For students,
symbolic forms can be particularly productive, because upon seeing an equation, even
if they are not familiar with the relevant context, they can access useful resources to
build an understanding. In a similar way, it is asserted that intuitive mathematical ideas
associated with features in a graph are fundamental for interpreting graphs across
various contexts.

Investigating Graphical Reasoning
Rethinking Symbolic Forms Using Registrations

Borrowing from Roschelle (1991), the term registration is used to refer to ideas that
individuals attend to in representations. Roschelle (1991), as well as Sengupta and
Wilensky (2009), used registrations to describe aspects of computer simulations
that students focused on, in which students selected specific parts of the represen-
tation and subsequently registered (attributed) specific ideas to these pieces. Ac-
cording to Lee and Sherin (2006), redefining symbolic forms in terms of registra-
tions can broaden the applicability of the framework. By conceptualizing registra-
tions as structural features that students focus on in representations, in cases where
they assign ideas to registrations, students are reasoning using symbolic forms (Lee
& Sherin, 2006). This definition of symbolic forms allows for its general use to
multiple types of representations, in which students are focusing on structural
features that could be part of an expression (i.e. symbolic forms), but they could
also be regions of a graph (i.e. graphical forms). Although the potential for the
adaptation of symbolic forms to graphical representations has been suggested (e.g.
Izak, 2000; Lee & Sherin, 2006; Sherin, 2001); in practice, this has not yet been
taken up in the literature.

Within their conceptualization of registrations, Lee and Sherin (2006) noted that
registrations can be of varying granularity, encompassing regions of a graph or an entire
graph. This brings to mind Moore and Thompson’s (2015) shape thinking, where
students view a graph using static reasoning or emergent reasoning, where static
reasoning involves viewing the whole graph as an entity to which ideas are associated,
and emergent reasoning involves using covariational reasoning to coordinate changes
in the variables. One way to interpret these types of reasoning is that students who
engage in static reasoning are focusing on a particularly large registration—the graph as
a whole—as opposed to students that engage in emergent reasoning that are able to
think about the graph as being made up of smaller pieces—smaller registrations that
form a process with many discrete steps. In this sense, the static/emergent distinction is
a way to further characterize graphical forms based on the extent in which covariational
reasoning is evoked.
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Mathematical Narratives

The integration of mathematical reasoning and discipline-specific content are critical
instructional targets (Cooper, 2013; Ivanjeck et al., 2016; National Research Council,
2012; Reed & Holme, 2014; Underwood, Posey, Herrington, Carmel & Cooper, 2018).
Literature on problem solving in the physical sciences emphasizes the importance of
conceptual reasoning, asserting that when working through problems, experts can
successfully integrate mathematical reasoning with the appropriate discipline-specific
content and focus on details that are relevant for reaching a solution; however, students
need support making these types of connections (Bain et al., 2018; Chi, Feltovich, &
Glaser, 1981; Chi, Glaser, & Rees, 1982; Kuo, Hull, Gupta & Elby, 2013). In a study
that involved using graphical representations to depict the changes associated with
velocity, distance, and time, Nemirovsky (1996) focused on students’ understanding of
the process or “story” that could give rise to a particular graph. Central to how graphical
reasoning is framed in this paper is the idea of mathematical narratives. According to
Nemirovsky (1996) “A mathematical narrative fuses events and situations with prop-
erties of symbols and notations”, or more tersely stated, discussing a mathematical
narrative is modeling. The storytelling perspective of modeling is favored because of
the way it emphasizes the process represented in a graph, which is particularly
productive when thinking about graphical reasoning, affording the necessary language
to describe how students think about the events, or a series of discrete events repre-
sented in a graph.

In summary, mathematical reasoning can be characterized using graphical forms
which can be described as static or emergent (shape thinking). Engaging in discussing
mathematical narratives involves an additional layer of understanding that build on the
graphical forms by incorporating discipline-specific content or contextual ideas. Thus,
by using Sherin’s (2001) symbolic forms framework, different forms of mathematical
reasoning can be characterized, reasoning that can be productive for a variety of
contexts; Moore and Thompson’s (2015) shape thinking helps further characterize
students’ mathematical reasoning; and Nemirovsky’s (1996) mathematical narratives
provide a way to connect students mathematical reasoning with the overall story
represented by the graph.

Examples From Across Disciplines: Textbook Analysis
Graph Selection

In the sections that follow, examples are provided of analysis guided by the
graphical forms framework, focusing on textbook descriptions of graphs. Although
there are limitations associated with applying this framework to textbook examples,
the textbooks are used as a readily available illustrative tool to exemplify the type of
reasoning that is of interest. Moreover, examples of students’ reasoning are not
provided in this contribution, but we have previously utilized the graphical forms
framework to investigate students’ understanding of graphs in chemical kinetics
(Rodriguez, Bain, Elmgren, Towns, & Ho, 2019; Rodriguez, Bain, & Towns, 2019;
Rodriguez et al., 2018), and direct the readers to these studies for additional
examples of reasoning characterized by graphical forms.
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Graphs were selected from introductory biology, calculus, chemistry, and physics
textbooks, focusing on the explanation provided that accompanied each graph and how
experts conveyed ideas in the textbooks. The textbooks, listed in Table 2, were chosen
based on the assigned textbooks for the introductory biology, calculus, chemistry, and
physics courses that are required each year for the thousands of first-year engineering
students at Purdue University, a large research-intensive university in the Midwestern
USA. In order to narrow the scope of the analysis, a single graph was selected from
each textbook, where each graph had (1) time as the independent variable, (2) a rich
description accompanying the graph, and (3) the incorporation of both mathematical
and domain-specific ideas. Each discipline’s distinct rate-related graph (e.g. logistic
population growth model for biology, chemical kinetics for chemistry, kinematics for
physics, a model of water temperature for calculus) was modified and is presented in
Table 2. The graphs were simplified by removing any annotations or additional
associated text, leaving only the labeled axes and the curve/line.

Biology: Population vs. Time

The introductory biology textbook graph that was chosen was a representation of the
population growth of the bacteria Paramecium, depicting the number of Paramecium/
mL as a function of time. Urry, Cain, Wasserman, Minorsky and Reece (2017)
presented the population growth of the bacteria as an example of the logistic population
growth model, stating that the Paramecium graph has a characteristic sigmoidal curve.
In their description, Urry et al. (2017) focused on distinct regions of the graph,
incorporating mathematical reasoning with a description of what is physically happen-
ing at different points along the graph. When describing the rate of population growth
within the logistic model, they stated, “New individuals are added to the population
most rapidly at intermediate populations sizes, when there is not only a breeding
population of substantial size, but also lots of available space and other resources in
the environment” (Urry et al., 2017, pp. 859-860). In terms of graphical forms, we
characterize this as the intuitive mathematical idea steepness as rate, in which an
individual is attending to a region of the graph (registration) and assigning ideas related
to the relative magnitude of the rate. We can see that the mathematical reasoning
employed by Urry et al. (2017) serves as a basis to describe the phenomena being
modeled. In this case, they attended to the region of the graph with the steeper slope
and subsequently provided a discipline-specific explanation for this observation, name-
ly, why the population can grow at such a fast rate. Completing the story communicated
by the graph, Urry et al. (2017) used the same mathematical reasoning to discuss how
the model reflects that “the number of individuals added to the population decreases
dramatically” due to factors such as limited resources (Urry et al., 2017, p. 860). As
before, the intuitive mathematical ideas about the graph serve as an anchor to assign
physical meaning. A summary of the graphical forms discussed in relation to the
biology graph is presented in Fig. 1.

Calculus: Temperature vs. Time

The graph chosen from the calculus textbook was from the first chapter, “Functions and
Models”, of the Stewart (2016) textbook. In this chapter, Stewart (2016) discussed the
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Table 2 Textbooks and graphs used in this study

Discipline Graph
Biology A
Campbell Biology in Focus (2™ E
Ed.) E
Urry et al., 2017 §
5«;
2
£
z
Time (days)
Calculus A
Calculus: Early Transcendentals
(8" Ed.) _
Stewart, 2016 e
E’_
)
=
Time (min)
Chemistry A
Chemistry: The Molecular Nature g
of Matter and Change (8" Ed.) e
Silberberg & Amateis, 2018 E
=
g
S
) S
Time (s)

Physics A
Matter & Interactions: Modern
Mechanics (A" Ed.)

Chabay & Sherwood, 2015

d

Y-Component of Velocity (m/s)

v Time (s)
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Steepness as rate
[ steep | Urry et al. (2017), p. 859-860

S~~._, “New individuals are added to the population

N T o
AN -
[IN most rapidly at intermediate population sizes,
“ AN when there is not only a breeding population of
\ S substantial size, but also lots of available space
S and other resources in the environment. The
«, number of individuals added to the population
decreases dramatically ... For a population’s
growth rate to decrease, the birth rate must
decrease, the death rate must increase, or both.
Later in the chapter, we’ll discuss some of the
factors affecting these rates, including the
presence of disease, predation, and limited
amounts of food and other resources.”

I
I
I
I
I
I
)
I
I
I
I
I
I

Number of Paramecium/mL

v

Time (days)

Fig. 1 Summary of graphical forms used in Urry et al.’s (2017) discussion of the logistic model of population;
features attended to (registrations) are circled in the graph and the ideas associated with these features
(conceptual schema) are emphasized in the accompanying text

nature of functions and how they can be used to model phenomena that we may
encounter in our daily lives. The graph selected describes how the temperature of water
coming out of a hot-water faucet changes as a function of time. Although there are not
explicit “discipline-specific” ideas, the graph has a clear narrative—a context that is
informed by everyday experiences. Stewart (2016) described the initial region of the
graph using the previously mentioned steepness as rate graphical form, stating that
temperature of the water begins at room temperature, but “when water from the hot-
water tank starts flowing from the faucet, 7" [temperature] increases quickly” (Stewart,
2016, p. 14). Stewart (2016) cued into the relative steepness of the graph, translating
this to mean a large rate of change for the temperature. When describing the next
portion of the graph, Stewart (2016) reasoned using the straight means constant
graphical form (associating constant rate with a straight line), stating that the temper-
ature is constant because the water flowing from the faucet is the same temperature as
the water from the hot-water tank. For the final region of the graph, Stewart (2016)
reasoned that the temperature of the water would eventually decrease to the temperature
of the water supply as the water from the hot-water tank is drained, illustrating the use
of contextual information to support his graphical reasoning. In this example, Stewart
(2016) attended to different registrations and attributed different intuitive mathematical
ideas, to which he assigned a particular aspect of the story modeled. In Fig. 2, we have
provided a summary of the graphical forms discussed in relation to this graph.

Chemistry: Concentration vs. Time

The chemistry graph was taken from a chapter on chemical kinetics, which is con-
cerned with how the concentration of reactants and products in a reaction change over
time. The graph shows how the concentration of ozone (O3) changes over time during a
reaction involving ozone and ethylene (C,H,). When reasoning about the graph, one of
the first comments Silberberg and Amateis (2018) made is about the overall shape of
the graph and its implications for rate. Silberberg and Amateis stated that because the
graph is a curve, the rate would change over time, whereas “a straight line would mean
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I Steepness as rate I

Stewart (2016), p. 14
“The initial temperature of the running water is
N close to room temperature because the water has
\ been sitting in the pipes. When the water from
\ the hot-water tank starts flowing from the
faucet, 7 increases quickly. In the next phase, 7'
is constant at the temperature of the heated
¢ water in the tank. When the tank is drained, T
,' decreases to the temperature of the water

>/ supply.”

Temperature (°C)

,
S

Time (min) N
\/

I Straight means constant I

Fig. 2 Summary of graphical forms used in Stewart’s (2016) discussion of modeling changes in water
temperature; features attended to (registrations) are circled in the graph and the ideas associated with these
features (conceptual schema) are emphasized in the accompanying text

that the rate was constant” (Silberberg & Amateis, 2018, p. 694). In this section,
Silberberg and Amateis (2018) described two graphical forms: curve means change
and straight means constant. Reasoning using the curve means change and straight
means constant graphical forms are closely related and represent two extremes, where
one idea follows from the other (i.e. if a curve suggests a change in rate, then the lack of
a curve—a straight line—indicates no change in rate). Both graphical forms involve
focusing on a region of the graph or the graph as a whole (a registration of varying size)
and assigning ideas regarding a general trend about the associated rate.

Similar inferences about the rate can be drawn when reasoning using the steepness
as rate graphical form. Although this type of reasoning is similar to the previous two
graphical forms, it is distinct. The previously discussed graphical forms, curve means
change and straight means constant, allow us to think about how the rate changes,
whereas steepness as rate involves considering the magnitude of rate, which is
normally discussed relative to another region of the graph. Furthermore, the different
ways that Silberberg and Amateis (2018) reasoned about the graph illustrates how we
could further characterize steepness as rate using Moore and Thompson’s (2015)
considerations of shape reasoning. We view graphical reasoning that focuses holisti-
cally on the overall shape of the entire graph or focuses more on general shapes of a
region of the graph as static reasoning. For our operationalization of emergent reason-
ing, we emphasize the importance of covariational reasoning, which involves thinking
about both variables (such as thinking about slope as the relationship between two
changing variables, bringing in ideas related to the derivative, and considering multiple
points along the process modeled by the graph) (Saldanha & Thompson, 1998;
Thompson & Carlson, 2017). This distinction is significant because of the role
covariational reasoning serves in topics across mathematics, including graphical rea-
soning and modeling dynamic processes (Carlson, Jacobs, Coe, Larsen & Hsu, 2002;
Confrey & Smith, 1995; Ellis, Ozgur, Kulow, Dogan, & Amidon, 2016; Habre 2012;
Thompson, 1994). Using the example of steepness as rate, when Silberberg and
Amateis worked through reasoning about the graph by comparing multiple points or
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intervals using considerations of average or instantancous rate, the steepness as rate
graphical form can be characterized as emergent from the perspective of shape
thinking.

When discussing the relevant chemistry ideas pertaining to the graph, Silberberg and
Amateis used mathematical reasoning as a starting point and modeled by providing a
chemistry-based description that explains the observed trends in the graph. This is best
illustrated when Silberberg and Amateis reasoned why the rate decreased over time,
“... as O3 molecules react, fewer are present to collide with C,H4 molecules, and the
rate, the change in [Os] over time, therefore decreases” (Silberberg & Amateis, 2018, p.
695). Silberberg and Amateis provided a particulate-level description to describe the
observed trends in the graph, which necessarily builds on the mathematical reasoning
that allowed them to make the inference that the rate is changing and decreasing (curve
means change, steepness as rate). For a summary of the graphical forms discussed in
relation to the chemistry graph, see Fig. 3.

Physics: Velocity vs. Time

For the physics textbook, a graph was chosen from a section that discussed kinematics,
a field of study that focuses on modeling the motion of objects. The graph describes
how the y-component of velocity changes over time for a soccer ball that was kicked
into the air. When reasoning about the graph, Chabay and Sherwood (2015) attended to
the fact that the graph “has a constant negative slope” (p. 64). Looking at the shape and
directionality of the graph, Chabay and Sherwood (2015) were able to make inferences
about the system, another example of the straight means constant graphical form.
Figure 4 provides a summary of the graphical form identified for the physics graph.
In terms of the mathematical narrative reflected by the graph, they explained that the
linearity of the graph is result of a constant force acting against the vertical motion, “the
y-component of the force has the constant value —mg, which makes the y-component of
momentum [which is proportional to velocity] decrease at a constant rate,” (Chabay &
Sherwood, 2015, p. 64). From a purely mathematical perspective, since the graph is

I Curve means change I
7 8
-

N
N
PR \\

Silberberg and Amateis (2018), p. 694-695
\\ “The data points ... result in a curved line,
which means that the rate is changing over
time (a straight line would mean that the rate
was constant) ... Over a given period of time,
the average rate is the slope of the line joining
two points along the curve.”

N

0, Concentration (mol/L x 10%)

Time (s) ‘\ J I Straight means constant
N/

I Steepness as rate I

Fig. 3 Summary of graphical forms used in Silberberg and Amateis’ (2018) discussion of chemical kinetics;
features attended to (registrations) are circled in the graph and the ideas associated with these features
(conceptual schema) are emphasized in the accompanying text
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I Straight means constant |
//"\\\
,/ \s\ Chabay and Sherwood (2015), p. 64
So_  “... the graph of v, has a constant negative
~slope ... because the y component of the force
has the constant value —mg, which makes the y
component of momentum decrease at a constant

< rate.”

v N

Fig. 4 Summary of graphical forms used in Chabay and Sherwood’s (2015) discussion of kinematics; features
attended to (registrations) are circled in the graph and the ideas associated with these features (conceptual
schema) are emphasized in the accompanying text

A

Y-Component of Velocity (m/s)

linear, it is relatively straightforward, having largely the same “story” for the duration of
the graph. However, when considering the relevant physics concepts, the graph takes
on some interesting nuances. Unlike the other graphs we have discussed so far, this
graph has negative values for the y-axis, because velocity is a vector, having both
magnitude and direction (in this case, upward or downward motion). In their descrip-
tion of the graph, Chabay and Sherwood (2015) described how the different regions of
the graph correspond to different periods during the projectile’s motion. According to
authors, since the graph focuses only on the vertical motion of the ball, the positive
velocity values correspond to when the ball is rising (after being kicked), the negative
values correspond to when the ball is falling, and when the y-component of velocity is
0 (when the line crosses the x-axis), “... [the height of the ball] is at a maximum. At this
instant the ball is neither rising nor falling” (Chabay & Sherwood, 2015, p. 64). Thus,
by bringing in concepts from physics, Chabay and Sherwood (2015) described the
mathematical narrative, explaining the observed features of the graph, such as why
velocity takes on positive, negative, and zero values. As we observed with the previous
experts, Chabay and Sherwood (2015) anchored their reasoning in mathematics (intu-
itive graphical reasoning) and attributed discipline-specific ideas to describe the system
being studied.

Conclusion and Implications

Graphical forms are useful for interpreting graphs because they are generalizable and
less restricted to a particular context, which provides a foundation to consider the
phenomena represented by any graph. In the case of the presentation of the content in
the textbooks, we observed that although they were situated in different contexts, a
common set of intuitive mathematical ideas was used in the description of the graphs. It
is feasible to assume that even though a disciplinary expert may not have the relevant
content knowledge outside their field of expertise, she could generate and interpret the
process being modeled using the previously discussed intuitive mathematical ideas.
In the examples provided, mathematical reasoning served as an anchor to which
discipline-specific ideas were attached; however, under a different set of
circumstances—if a phenomenon was provided and an individual had to mathematize
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the process—we would observe a different trend. In this case, we would see a
discussion that was anchored in the context (e.g. the rate of a zero-order reaction is
constant), which would subsequently be translated to a graphical representation (e.g.
the graph should have a straight line, the graphical form straight means constant). In
our study on student problem solving in chemical kinetics, we considered this distinc-
tion to be a matter of directionality, that is, when modeling phenomena, differentiating
between whether chemistry ideas were mapped onto mathematical reasoning or math-
ematical reasoning was mapped onto chemistry ideas (Bain, Rodriguez, Moon, &
Towns, 2018). Regardless of the directionality of modeling, we argue that the ability
to create mathematical narratives is highly dependent on an individual’s ability to
reason using graphical forms, such as those summarized in Table 3 and Fig. 5.

This discussion of graphical forms was informed in part by Nemirovsky’s (1996)
work related to mathematical storytelling and the “grammar” of graphs, in which he
drew a distinction between a linear function, which tells the story of “growing steadily,”
and a curve that levels off asymptotically, which is “growing but slowing down.”
Similarly, in Jones’ (2013) identification of symbolic forms related to student under-
standing of the integral he identifies what he calls “stable cognitive resources,” in
which students associated negative area with parts of a function that are oriented in a
specific way. In the context of how graphical reasoning is discussed in this paper, these
can be considered examples of graphical forms, with Nemirovsky’s (1996) notion of a
line “growing steadily” being consistent with the graphical form straight means
constant.

By characterizing these ideas and drawing attention to their role in understanding
graphical representations, the goal is to provide an avenue for future work in this area
and suggest instructors across STEM fields emphasize graphical reasoning skills that
have broad applicability for thinking about graphs in a variety of contexts. Although
each textbook description did not necessarily use all the graphical forms discussed in
this study, no claims are made regarding the ability of each of the textbook authors to
engage in these types of reasoning, and no claims are made regarding identifying all the
possible graphical forms. Cataloging a comprehensive list of graphical forms is beyond
the scope of this work; instead, the intention herein is to introduce and describe an
approach for analyzing graphical reasoning, which has been utilized in recent work by
the authors (Rodriguez, Bain, Elmgren, Towns, & Ho, 2019; Rodriguez et al., 2019;
Rodriguez et al., 2018). As shown in the examples provided, understanding ideas
regarding rate are critical for being able to interpret graphs and given that previous
research has indicated rate-related ideas are challenging for students (Orton, 1983;

Table 3 Summary of graphical forms discussed in this work

Graphical form? Registration and conceptual schema

Steepness as rate Varying levels of steepness in a graph correspond to different rates
Straight means constant A straight line indicates a lack of change/constant rate

Curve means change A curve indicates continuous change/changing rate

aWe anticipate more nuanced versions of these graphical forms exist where individuals focus on the overall
shape of a curve or evoke ideas related to the mathematical definition of the derivative/slope as part of their
reasoning (classifying graphical forms as static or emergent)
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Fig. 5 Summary of graphical forms identified for each of the graphs analyzed

Rasmussen, Marrongelle, & Borba, 2014; White & Mitchelmore, 1996), other facets of
graphical reasoning should be explored, including thinking about examples of rate that
do not have time as the independent variable (Jones, 2017). Moreover, the graphical
forms discussed are specific to rate contexts in the Cartesian coordinate system, and it
can be anticipated that other contexts and other coordinate systems would have unique
graphical forms, some of which may have similar structural features (e.g. straight line)
with different implications for the associated conceptual meaning. Finally, we note that
Sherin’s symbolic forms have been useful to researchers across disciplines in analyzing
student reasoning. We hope that the idea of graphical forms will prove to be similarly
fruitful to researchers.
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