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Abstract

This study is an investigation of elementary preservice teachers’ (PSTs’) exploration of
model breaking points in fractions. Eighty-three PSTs at two universities in the
Midwestern and Southwestern regions of the USA were asked to explore the area
model of fraction addition through a series of tasks and explain their reasoning in
determining its affordances and constraints. The PSTs presented their critical mathe-
matical ideas on modeling fraction addition and area models’ breaking points when
used to add two fractions, as well as suggestions for alternative models to overcome
model breaking points. An inductive content analysis showed that most PSTs repre-
sented fraction addition well with simple fractions but had difficulty representing
fraction addition with improper fractions or fractions with unlike and relatively large
denominators and tended to use algorithm-based thinking. Also, the area models drawn
by several PSTs revealed various misconceptions, suggesting the impact of their
content knowledge on their understanding of area models. Based on the findings from
this study, we provide some implications for teacher educators.

Keywords Area model - Fraction models - Model breaking points - Teacher preparation

Introduction

There has been a general consensus among mathematics educators and their profes-
sional organizations that mathematical modeling and/or representations are invaluable
to students’ learning by making key mathematical concepts more explicit in a discipline
that deals with abstract concepts (Duval, 2006; Greeno & Hall, 1997; McKendree,
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Small, & Stenning, 2002; Woleck, 2001; Zhang, 1997). Therefore, deep understanding
of mathematical connections, representations, and explanations (Ball, Thames, &
Phelps, 2008), which is required for the effective use of models and/or representations,
is considered to be important specialized knowledge for teaching mathematics. For
example, Principles to Actions (National Council of Teachers of Mathematics [NCTM],
2014) includes the teaching practice of using and connecting mathematical representa-
tions as a part of a framework designed to strengthen the teaching and learning of
mathematics (Hill, Ball, & Schilling, 2008; NCTM, 2014).

Given the importance of conceptual understanding in their use, mathematical models
and/or representations do not by themselves guarantee successful learning outcomes.
Instead of relying on “magical hope” (Ball, 1992), thoughtful planning and execution
based on the affordances and constraints of such models or representations are needed
to support student learning (Kamii, Lewis, & Kirkland, 2001).

According to Vig, Murray, and Star (2014), because all models have constraints as
well as affordances in supporting learners’ reasoning, as problems get more complex, a
breaking point is reached at which models are no longer useful. The breaking point of a
model is reached when the procedures needed to use the model become so complex that
the focus on conceptually key ideas gets lost. The following anecdotal notes from
preservice teachers’ (PSTs’) work with elementary and middle school students illustrate
such model breaking points:

Example 1: A PST asked a student to show 1/7 +2/7 using commercial fraction
circle manipulatives. The student explored the fraction circle pieces and
responded, “I cannot do it because there are no 1/7th pieces.” The PST then
changed the question to 1/5 +2/5.

Example 2: A PST asked students to multiply a binomial by a binominal, (8x +
11):(7x—6), using algebra tiles. The students tried to model the algebraic expres-
sions using the tiles, but many students got lost because the coefficient was too
large for them to model the multiplication using algebra tiles (see Fig. 1).

Fig. 1 An example of students’ work on (8 + 11)(7x—6) using algebra tiles
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In their teacher education programs, PSTs are continuously advised of the importance
of having students use models and representations to explore concepts and demonstrate
their understanding. However, Vig et al. (2014) emphasize that PSTs first need to
engage in “the act of identifying model breaking points [that] illustrate the affordances
and constraints of the model” (p. 73), as the examples above demonstrate. In light of
this need, this study examined a group of elementary PSTs’ explorations and their
explanations of their reasoning about affordances and constraints of the area model of
fraction addition through a series of tasks. Specifically, this study examined the
following questions:

1. What mathematical ideas do PSTs consider critical in modeling fraction addition?
What model breaking points do PSTs acknowledge in the use of the area model to
add two fractions?

3. What alternative models do PSTs suggest when faced with breaking points?

Literature Review
Pedagogical Content Knowledge and Specialized Knowledge for Teaching

Because what and how one teaches are closely intertwined, highly sophisticated
knowledge of both is needed to effectively pair content with the delivery of that content
(Hurrell, 2013). To describe this knowledge base, Shulman (1986) proposed three types
of knowledge: content knowledge, curricular knowledge, and pedagogical content
knowledge (PCK). Previous studies exploring these constructs reported that novice
teachers had limited PCK (Lee, Brown, Luft, & Roehrig, 2007), and that teaching
experience was necessary but not sufficient for developing strong PCK (Kleickmann
et al., 2013), which also required expert guidance and directed practice. Also, prior
research found that PCK was more powerful than content knowledge per se in
predicting teachers’ instructional quality (Baumert et al., 2010; Hill et al., 2008; Hill,
Rowan, & Ball, 2005).

Building on this general conceptualization of teacher knowledge, mathematics
education researchers (e.g. Ball et al., 2008; Hill et al., 2008) conceptualized mathe-
matical knowledge for teaching (MKT), which includes four important components:
common content knowledge (CCK), specialized content knowledge (SCK), knowledge
of content and students (KCS), and knowledge of content and teaching (KCT). For
example, in the context of teaching fraction addition with unlike denominators such as
2/3 + 6/5, which is addressed in this study, CCK provides the procedure for adding two
such fractions to get the correct answer. SCK may involve any or all of four actions: (1)
identifying the sub-concepts needed to understand why finding a common denominator
is useful when adding two fractions with unlike denominators, (2) choosing and using
effective representations that reveal these key sub-concepts, (3) evaluating whether
students’ informal methods are working for adding two given fractions, and (4)
justifying why algorithms for adding two fractions with unlike denominators work.
KCS is required to anticipate students’ common misconceptions or difficulties, and
KCT is related to making pedagogical decisions to help students remediate their
misconceptions or difficulties.
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In this study, we focus on PSTs’ SCK, which is not directly dependent on the
knowledge of students and teaching, but rather refers to the specific content knowledge
needed for teaching particular concepts or processes. We decided to focus on PSTs’
SCK as appropriate for their pre-professional status because the majority have had
limited access to schools and students and little if any teaching experience, and
therefore they have not yet had sufficient opportunities to develop classroom-based
knowledge such as KCS and KCT (Morris, Hiebert, & Spitzer, 2009). Thus, this study
aimed to investigate how PSTs unpack their mathematical knowledge for teaching
fraction addition, which includes making abstract ideas visible for students and
selecting effective representations of adding two fractions, and then to identify the
sources of PSTs’ difficulties or misconceptions in their uses of models or
representations.

Representations and Models

Over the years, various meanings have been tagged to the term representation. It has
commonly been used to refer both to a process of the act of constructing mathe-
matical relations as well as to the product of a representational mode used to convey
a mathematics idea (Cai, 2006). Also, representations may refer to learners’ mental
models of reality (internal representation) as well as to concrete objects or records
that show their views of a particular reality (external representation) (Cai, 2006).
While in all of its meanings, representation is an important construct in teaching and
learning mathematics, choosing and using pedagogically sound external represen-
tations is considered as one of the key aspects of SCK. However, prior research has
documented that teachers often have limited knowledge of how to use representa-
tions, which can negatively affect mathematics teaching and learning (Izsak, 2008;
Lee, Brown, & Orrill, 2011; Zazkis & Gadowsky, 2001). For this reason,
mathematics educators have acknowledged that PSTs need training in order to be
adept at using not only solution representations in their own problem solving but
also pedagogical representations in preparation for their future teaching. According
to Cai (2005), solution representations are defined as “the visible record generated
by a solver to communicate thinking of the solution processes” (p. 137) and
pedagogical representations are defined as “representations that teachers and
students use as expressions of mathematical knowledge that help explain concepts,
relationships, connections or problem-solving processes” (p. 139). In order to
choose and use productive pedagogical representations, a teacher should consider
the features of the mathematical content to be taught and the familiarity and
accessibility of the content to students as well as the students’ capacity to reason
with and about the idea (Cai, 2006). That is, what teachers need extends beyond the
ability to present their own solution representations as problem solvers. They also
need the ability to devise and present pedagogical representations that are
meaningful to students. Mastery of this ability often depends on teachers’ beliefs,
conceptions, and content knowledge, as well as their knowledge of research and
theory about student learning (Cai, 2005; Hill et al., 2008). In sum, choosing and
using effective pedagogical representations requires a well-coordinated effort on the
teacher’s part, drawing on various kinds of knowledge and appropriate dispositions
toward students’ learning.
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In the domain of fractions, which is the target topic of this study, PSTs’ solution
representations often serve as windows to identify their understandings or misconcep-
tions (Woleck, 2001). Also, selecting effective representations and asking PSTs to make
connections between two different representations of the same concept can deepen
PSTs’ understanding of fractions and broaden their knowledge of fraction concepts
(van de Walle, Karp, & Bam-Williams, 2013). Prior studies have found that mathe-
matical models serve to make fraction concepts transparent to learners and support their
reasoning about mathematical concepts and symbols (Hackenberg & Lee, 2015; Lee,
2017; Lee & Hackenberg, 2014; van den Heuvel-Panhuizen, 2003; Vig et al., 2014).
Following van den Heuvel-Panhuizen’s (2003) conceptualization, in this study, we
defined mathematical models as “materials, visual sketches, paradigmatic situations,
schemes, diagrams, and even symbols” (p. 13) that support learners’ managing or
interpreting mathematical ideas. Also, we do not distinguish between models and
representations but interchangeably use the two terms as ways to illustrate mathemat-
ical concepts and procedures (Vig et al., 2014). In the next section, we elaborate on the
breaking point of the area model for fraction concepts and fraction addition as
theoretically examined by Vig et al. (2014).

Area Model for Fraction Addition

Area models (e.g. circular pie pieces, rectangular regions, geoboard manipulations,
drawings on grids or dot paper, pattern blocks) are popularly used to subdivide a whole
area into equal parts to support students’ fractional reasoning (Empson, 1999; Kong,
2005; van de Walle et al., 2013). Because they can easily represent the part-whole
concept of fractions and the meaning of the relative size of a part to the whole (van de
Walle et al., 2013), area models can effectively support fraction concepts taught in the
early grades.

Vig et al. (2014) states that to accurately construct and interpret an area model,
students “must know that the denominator of the depicted fraction represents the total
number of equal size parts that make up the whole, while the numerator represents the
[salient] number of shaded parts within that whole” (p. 80). However, to effectively use
the area model for fraction concepts, students also need to know the scope of applica-
bility of the model. For example, the circular area model can be easily used to represent
certain fractions such as 1/2, 1/4, and 1/8, but it is less useful for representing fractions
with odd denominators such as 9 and 11 (as shown in the illustrations of PSTs’ attempts
to use models in the introduction section) or very large denominators such as 20 and 30.
Thus, for example, Vig et al. (2014) point out that “the utility of circles for illustrating
fractions diminishes and even ends at some points; this is the breaking point of the
[circular] model” (p. 74).

Area models can be used not only to illustrate fraction meaning but also to assist
with fraction operations (Cramer & Henry, 2002; Cramer, Wyberg, & Leavitt, 2008;
Kong, 2005; Lee, 2017; Vig et al., 2014). Two key conceptual considerations are
important to support understanding of the process of adding two types of fractions (see
below) using area models: (1) the preservation of the unit whole, which means the
whole of both fractions should be the same size and (2) the preservation of the size of
part, which indicates the parts of each of the two fractions should be the same size. As
the sizes of the parts differ and the parts are not in a multiplicative relationship with
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each other, the fraction addition problem becomes more complex, because when two
fractions have different sized parts, learners must adjust the models so that both
fractions must have the same sized parts. At this point, when dealing with large
denominators or denominators that cause difficulty in showing equal partitioning, area
models may not be useful.

In order to explain the process in relation with the model breaking point, Vig et al.
(2014) distinguished fraction addition problems into two types: those in which both
addends are between 0 and 1 (proper fractions), and those in which one or both addends
are larger than 1 (improper fractions). First, to successfully add two proper fractions,
learners need to (1) create equal-sized wholes, (2) transform both fractions to have the
same-sized pieces, and finally (3) add by moving the shaded pieces of one area model to
the non-shaded pieces of the other area model. However, to add two fractions that include
improper fractions, the use of area models is cumbersome in these ways: (1) because of
the improper fractions, the preservation of the whole and the equal-sized parts must be
represented with three or four area models instead of two; (2) the shaded pieces must be
moved between the two area models depicting proper fractions (less than one) while the
complete area model remains intact; and (3) the shaded area models must be correctly
interpreted. According to Vig et al. (2014), in the process of solving the latter problem,
the area model for fraction addition breaks for two reasons. First, leaners have to do more
and more computational work without the model in order to determine the least common
denominators of two fractions. Second, learners are highly likely to pay less attention to
the important concepts behind the visual depiction such as equal-sized whole and pieces
as the complexity of the problem requires more tedious procedural steps. That is, models
begin to break “when computation within the model requires an increasing amount of
work that is done outside of the model” and “when using the model becomes
cumbersome, requiring students to employ extra rules” (p. 86).

A model will almost inevitably break at a certain point because no model is
sufficiently robust to be applicable to complex problems such as those including very
large numbers. Thus, a teachers’ ability to anticipate breaking points and adjust models
while preserving their functions in order to provide alternative models is critical.
Accordingly, we asked PSTs to identify breaking points of the area model after solving
six types of fraction addition problems using area models and then to suggest alterna-
tive models.

Situating the Study

The preceding literature review suggests that there has been a strong emphasis on
teachers’ pedagogical content knowledge in developing their ability to select, use, and
connect various mathematical models. Also, there are many models available for
fractions. However, the models presented in many educational materials are typically
limited to simple and clear cases. It may be reasonably assumed, therefore, that while
this situation reinforces PSTs’ awareness of the importance of models, it may not
adequately prepare them to consider the models’ utility in different cases and how to
make sound pedagogical decisions at the point where the models begin to lose their
usefulness. To explore this aspect of PSTs’ SCK, the aim of this study was to elicit
PSTs’ perspectives on breaking points of area models and their understanding of the
scope and characteristics of available fractions models with varied cases.
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Methods
Participants

The participants in the study were 83 undergraduate PSTs at two universities in the
Midwestern and Southwestern regions of the USA. All participants were pursuing their
initial elementary teaching certifications and required to take two or three mathematics
content courses and one methods class. At the time of data collection, the PSTs were
completing a cursory review of fraction-related Common Core State Standards
(National Governors Association Center for Best Practices and Council of Chief
State School Officers, 2010) across grades 3—5 and exploring the area, length, and
set fraction models.

Tasks and Data Collection

Participants were asked to complete a two-part written survey outside of class time
(Fig. 2). Part 1 was a check of PSTs’ basic content knowledge needed for modeling
fraction addition and their familiarity with the area model. Part 2 assessed their
pedagogical reasoning about model breaking points and their suggestions for alterna-
tive models by asking participants to evaluate the effectiveness of the area model for
each of a set of six fraction addition problems.

The six fraction addition problems in the above tasks were selected to illustrate
various cases of complexity involved in fraction addition (see Table 1).

Data Analysis

The data were analyzed both quantitatively and qualitatively. The quantitative
analysis provided descriptive information on the overall knowledge and percep-
tions of participants, including the frequencies of the use of the critical ele-
ments of fraction addition models mentioned in part 1, the frequencies of
identification of incorrect fraction models in part 1, and the rankings of model
effectiveness in part 2.

The qualitative analysis followed an inductive content analysis approach by
developing data-driven codes (DeCuir-Gunby, Marshall, & McCulloch, 2011;
Grbich, 2007) to analyze participants’ responses to the open-ended questions in
narrative form (e.g. justifications for their rankings of model effectiveness for the
given fraction addition problems, justifications for their proposed alternative
fraction addition models, and justifications for their perceived model breaking
points). This process included the following: (a) an initial reading of each PST’s
responses by the two researchers, (b) finding common themes and identifying
categories and subcategories, (c) coding the data according to the identified
categories, and (d) checking inter-rater reliability. For the analysis, a meaning
unit, which Graneheim and Lundman (2004) describes as comprised of “words,
sentences, or paragraphs containing aspects related to each other through their
content and context” (p. 106), was used. The PSTs’ meaning units were coded
according to the categories they referenced. After identifying the themes for
coding, the two researchers independently coded a random sample of data from
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Part 1
1) What mathematical understandings and procedures are critical in modeling
fraction addition? (i.e., What should be clearly depicted in your model of
fraction addition?). Explain.
2) Below is an area model showing %4 + % using fraction circles or
drawings. Is this model effective to support students’ understanding of
fraction addition? If yes, explain. If not, provide revised drawings or an
alternative model and explain.

<« Dw-DD

4

1 1 1
4 2 4
Part 2
Using the area model, you will model the following problems.
@Ll+2 ®)2+2 (1+3 3+ (l+1 (H2+6
4 4 4 4 4 8 4 8 35 3005

1) Show fraction addition for each problem using the area model including
the final result and notations. In your drawings, partitions need to be clearly
marked and pictures need to be drawn proportionately to accurately show the
fractional quantities.

2) Rank the problems in order to indicate the effectiveness of the model.
(Use a scale of 1- 6 with 6 representing the most effective case of using the
area model and 1 representing the least effective case of using the model).
Explain why you ranked the effectiveness of the area model in this order.

3) For the problems you ranked as 1, 2, 3 (1 being the least effective case),
provide an alternative model that you think is more effective.

Fig. 2 Tasks provided in this study

10 PSTs (about 12% of the entire data set). The concordance between the two
coders was 89%. For the remaining data, the two coders jointly coded and
discrepancies between coders were discussed until an agreement was reached.
The inductively developed coding schemes are reported in Tables 2 and 3 as well
as in Fig. 3 in the following section. The patterns in the PSTs’ responses are
summarized as the frequency of codes.

Findings and Discussion

This section summarizes PSTs’ identification of critical mathematical ideas in the
fraction addition area model, their perceived model breaking points in using the area
model, and their suggestions for alternative models when they noticed the model
breaking points. In the following sub-sections, frequencies are reported to show the
overall tendencies.
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Table 1 Features of sample problems provided in this study

Sample problem Features

(a) % +% Both addends are between 0 and 1.

Sum is smaller than 1.

Both addends have the same denominators.
(b) %-i—% Both addends are between 0 and 1.

Sum is larger than 1.

Both addends have the same denominators.
(©) }‘ + % Both addends are between 0 and 1.

Sum is smaller than 1.

One denominator is a multiple of another denominator.
(d) % + % One addend is bigger than 1.

Sum is larger than 1.

One denominator is a multiple of another denominator.
(e) % +% Both addends are between 0 and 1.

Sum is smaller than 1.

Two denominators are co-prime.
M2+ One addend is bigger than 1.

Sum is larger than 1.

Two denominators are co-prime.

Table 2 Critical ideas considered by PSTs

Main category (frequency) Subcategory (frequency)

Concept (30%): Whole/parts of a whole (13%)
Identifies a specific mathematical concept that students

Denominators (11%)
should understand.

Simplifying (2%)
Multiplication (2%)
Addition (1%)
Procedure (48%): Finding common denominator (27%)

Identifies a mathematical procedure or process that students

Adding fractions with like denominators (12%)
should know or understand.

General statement about knowing
mathematical procedures (10%)

Depiction/presentation (67%): Clarity of the depiction of a fraction (25%)

Identifies a characteristic or quality of the depiction or the
presentation of a mathematical concept or procedure as
something that is necessary or important to students’
understanding.

Clarity/accuracy of the depiction of the model
or examples (20%)

Clarity of the depiction of the numerator and/or
the denominator (10%)

Visual nature of the depiction of a
mathematical concept or procedure (5%)

Inclusion of models and examples of
mathematical models and examples (6%)

Practice with a mathematical concept or
procedure (1%)

No response recorded or response was illegible (7%)

*Some PSTs addressed multiple aspects and strategies and their work was coded into multiple categories,
which explains why column total of the main category is more than 100%
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Table 3 PSTs’ identifications of model breaking points

Category (frequency)* Subcategory (frequency)*

Denominator (67%): When having a large denominator
Identifies an aspect or characteristic of the denominator as the point at (31%)

which the area model is no longer effective. When having addends with unlike
denominators (22%)

Referring to another aspect of the
denominator (10%)

When having addends with like
denominators (6%)

Improper fractions/mixed numbers (41%): identifies an aspect or characteristic of improper fractions or mixed
numbers as the point at which the area model is no longer effective.

Size (11%): identifies the size of numbers in general as the point at which the area model is no longer effective.

Other (11%): identifies another aspect or characteristic as the point at which the area model is no longer
effective.

Not applicable (4%): participant provides no answer or writes an answer that is unreadable.

*Some PSTs addressed multiple aspects and strategies and their work was coded into multiple categories,
which explains some columns totaling to more than 100%

PSTs’ Consideration of Critical Ideas in Modeling Fraction Addition

When asked to present key ideas to be considered in using an area model for fraction
addition, PSTs shared various ideas as shown in Table 2.

This finding shows that the PSTs considered various aspects of modeling fraction
addition, including conceptual, procedural, and representational aspects. The most
frequently mentioned was the representational aspect. However, the majority of

PSTs' performance
90%

80% @ Correct

70% M Incorrect

60%
50%

[
/4
2
/
Z
/
40% ¥4
Z
Z
2
/

& Partially Correct

/

30%
20%
10%

7
g
g
/

, /
28 U8 »
A 2 1
71 B/
/

a

0%

(a) 1/4+2/4 (b)3/4+2/4 (c)1/4+3/8 (d)3/4+9/18 (e) 1/3+1/5 (£)2/3+6/5

Fig. 3 PSTs’ performance of modeling on the given questions
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responses were given in general terms highlighting the clarity and accuracy of the
representation, instead of being specific about what it meant to be clear or accurate.
Also, much attention was given to the depiction of each fraction addend (e.g. clear
depiction of the denominator and the numerator). When asked to evaluate the effec-
tiveness of the given area model for Y4+ ' (see part 1 in Fig. 2 earlier), most PSTs
perceived that the given model was effective. However, it is worth noting that attention
was given largely to the representational aspect (e.g. use of colors) and procedural
aspects (e.g. showing the common denominator) in their explanations.

The PSTs gave more attention to procedural than to conceptual aspects. In particular,
they frequently mentioned the procedure of finding common denominators, demon-
strating that they thought this was a necessary step in order to add fractions. van de
Walle and Lovin (2006) refer to the myth of common denominators, which is the
common belief that in order to add or subtract fractions, one must first obtain their
common denominators. They assert that the statement should be replaced with “in
order to use the standard algorithm to add or subtract fractions, you must first get
common denominators...the algorithm is designed to work only with common
denominators” (p. 90). PSTs’ attention to finding the common denominators may
allude to their buying into the myth.

The “same whole” concept (i.e. the size of the area model whole must be the same
for the two given fractions) should be considered essential to producing an appropriate
model for fraction addition. However, as further evidence of their lack of conceptual
thinking, this principle was not explicitly addressed by the PSTs, suggesting their
unawareness of the same whole requirement in modeling fraction addition.

PSTs’ Performance in Modeling and Consideration of Model Breaking Points

In order to examine PSTs’ considerations of model breaking points, we first asked them
to model and solve each of six problems using the area model (see Table 1 earlier) and
then to present their considerations of model breaking points.

PSTs’ Performance in Modeling

We coded PSTs’ performance by examining both drawn models and written equations.
PSTs’ responses were coded as “correct” (C) when they presented both the correct
equation and the correct model, “incorrect” (I) when they produced neither, and
“partially correct” (PC) when they presented either the correct equation or the correct
model. Figure 3 shows the results.

As questions became more complicated (e.g. featuring use of an improper [sum
larger than 1] fraction addend, or denominators with co-primes), the PSTs produced
more incorrect or partially correct responses. In PC cases, they mostly provided correct
equations but incorrect models. Common reasons for a PC coding included (a) using
different sizes for the whole unit 1 when adding fractions (e.g. using two different sizes
of rectangles, that is, two different whole units although the two fraction addends were
correctly drawn), (b) not showing equal partitioning, or (c) not using the area model
(e.g. using the set model).

We also examined the models used by PSTs regardless of the correctness of the
models. Overall, the majority of PSTs favored exclusively using one shape for the
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whole (e.g. 38 PSTs exclusively used a rectangular model and 20 PSTs exclusively
used a circular model) (see Fig. 4-1). Nineteen PSTs used a combination of circular and
rectangular models, tending to use the circular model for the simple cases such as
problems (a) and (b) in part 2 of the questionnaire (see Fig. 2) and the rectangular
model for more complicated cases (see Fig. 4-2). Some PSTs exhibited difficulty in
using models to solve problems (e) and (f). They tended to show the procedural process
for finding the common denominator or just represent the fraction numeral and show
the final result involving common denominators without illustrating the process of
finding common denominators (see Fig. 4-3). Some PSTs used different models which
did not have the same sized wholes. These PSTs used the rectangular area model
seemingly without paying attention to the size of whole for each fraction (see Figure 4-
4).

PSTs’ Consideration of Model Breaking Points. PSTs ranked the effectiveness of the
area model for problems using a scale of 1-6, with 6 representing the case for which the
area model was most effective and 1 representing the case for which it was least
effective. We added the ranking values associated with each problem to represent the
PSTs’ overall assessments. Problem (a) 1/4 + 2/4 was recognized as the case for which
the model was most effective (sum of ranking scores 429) whereas problem (f) 2/3 + 6/
5 was assessed as the case for which it was most ineffective (ranking score 153).
Problems (b) 3/4 +2/4 and (c) 1/4 + 3/8 were assessed at similar effectiveness levels
(ranking scores 343 and 339 respectively) as were problems (d) 3/4 +9/8 and (e) 1/3 +
1/5 (rank scores 242 and 237 respectively). These results suggest that PSTs perceived
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Fig. 4 Examples of PSTs’ models
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the area model as increasingly ineffective as the sum became bigger than one whole or
when the two denominators were co-prime. To justify their rankings, PSTs addressed
the points at which they perceived the area model lost its effectiveness (see Table 3).

Two major breaking points emerging in the data analysis were related to denomi-
nators and the presence of improper fractions or mixed numbers. More specifically,
about 67% of PSTs pointed out factors related to denominators of fractions as the basis
for their rankings of the effectiveness of models, which had the following order: for
fractions with the same denominators, for denominators with a relationship of multi-
ples, and for different denominators. About 41% of PSTs identified the presence of
improper fractions or mixed numbers as a condition in which the area model was no
longer effective.

Alternative Models Suggested by PSTs

When asked to suggest alternative models for the problems for which the area model
was least effective, PSTs proposed a variety of models (see Table 4).

The set model was the most frequently presented alternative model. This is an
interesting finding in that the set model is a less frequently used model in school
curricula and instruction. Also, although PSTs were asked specifically to present
models, the third most frequent response was to present algorithms without models.
Notably, some PSTs suggested using commercial manipulatives without further expla-
nation even though it would not be feasible to use them to show such denominators as
1/15 in problems (e) and (f), perhaps alluding to PSTs’ reliance on “magical hope”
(Ball, 1992). To justify their alternative models, PSTs provided various explanations
(see Table 5).

According to the area model breaking points identified, PSTs justified their alterna-
tive models by suggesting they could more clearly depict the fractions involved in the
addition or could better handle bigger denominators and improper fractions. Also, some
suggested that the messiness in using the area model could be overcome by using
different models.

Table 4 Alternative models suggested by PSTs

Alternative model suggested Number of responses*
Set model 72
Rectangular drawn model 48
Algorithms 39
Length model (line segment, number line) 34
Circular drawn model 25
Commercial fraction circles 10
Commercial fraction bars 9
N/A (no response) or not clear or incomplete 12

*Each PST proposed an altemative model for each of the three problems for which they considered the area
model least effective, resulting in a total of 249 alternative models

@ Springer



562 J-E. Lee, M. Y. Lee

Table 5 Justifications for alternative models

Category (frequency)* Subcategory (frequency)*

Fractions (83%): Representation of common denominator (39%)
Due to the way it represents the fraction-related concepts

Sizes of denominator and numerator (25%)
and procedures.

Representation of a whole or parts of a whole
(12%)

Presence of the like denominator within the
problem (7%)

Visual (57%): due to its visual effectiveness and visual clarity
Ease/difficulty in general (51%): due to its ease or difficulty
Representation of improper fractions (25%)

Reaction/emotive (2%): due to an emotional reaction (i.e. annoyance, frustration) in drawing or working the
problem

Unclear or no response (5%)

*Some PSTs addressed multiple aspects and strategies so their work was coded into multiple categories,
resulting in some columns totaling to more than 100%

Implications for Teacher Education

In this empirical study, most PSTs represented easy fraction addition well but showed
difficulties with representing fraction addition that included improper fractions or
fractions with unlike and relatively large denominators. These difficulties were associ-
ated with the PSTs’ tendency to rely on algorithm-based thinking when they worked on
the fraction addition problems featuring complex fractions, following the procedure of
first finding common denominators by calculation, getting the answer from their
computation, and then attempting to represent the result of the computation using area
models. Also, several PSTs revealed many misconceptions in drawing area models,
which may confirm findings in prior studies showing that content knowledge impacts
the drawing of area models (Ball, 1992; Ball et al., 2008). Moreover, when PSTs were
asked to find the point at which the area model was no longer effective for fraction
addition, the PSTs identified breaking points as the advent of improper fractions (41%)
or large-sized denominators (31%), which is similar to what Vig et al. (2014) suggested.
From the findings of this study, we derived the following implications for teacher
educators.

First, we recommend that teacher educators encourage PSTs to draw representations
as a strategy for engaging in mathematical reasoning, that is, as part of the problem-
solving process, rather than merely to show the results of their computations. Drawing
representations while reasoning mathematically is related to Cai’s (2005) notion of
pedagogical representations because the act of drawing facilitates visually unpacking
the important ideas of fraction addition. However, using representations to show the
result of a computation is related to Cai’s (2005) notion of solution representations in
that it does not guide or reveal the thinking processes involved finding common
denominators. In this study, although a majority of the PSTs had difficulty representing
fraction additions that involved complex fractions, only half identified the breaking
point of the area models. We attributed this result to PSTs’ prevalent use of algorithm-
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based thinking in representing fraction addition using area models. That is, because
PSTs tended to first use their algorithms to add two fractions before drawing the area
models, the inclusion of improper or large-sized denominators did not make it difficult
to solve the problems, which may have obviated the need to think about model
breaking points. Thus, PSTs need to be encouraged to use pedagogical representations
more often in their mathematics content courses and be shown how to use them
instructionally in their methods courses.

Second, we recommend that teacher educators design tasks that lead PSTs to
realize model breaking points by using hands-on graphics to work through prob-
lems. In this study, PSTs who drew representations as a means to support their
mathematical reasoning about adding two fractions tended to identify breaking
points of area models when they faced difficulties in solving the last two problems
on the worksheet. That is, the hands-on experience of solving problems using area
model representations seemed to help PSTs think about the breaking points. This
approach supports the first recommendation in that encouraging PSTs to construct
their own representations in order to support and reveal their reasoning processes
may be an effective way for them to learn about pedagogical representations and
understand the rationale behind using them.

Third, we recommend that teacher educators provide PSTs more opportunities to
explore the affordances and constraints of various models, representations, and manip-
ulatives in teacher education programs. In this study, half of PSTs identified breaking
points of area models, but as alternatives, many of them proposed set models, which are
not effective for addressing the breaking points of the area model because there could
be even more limitations in showing how a particular set can be partitioned. This
finding may be explained by two reasons: (1) the PSTs preferred to use set models
because they made it easy to represent the common denominators that PSTs found in
their calculation or (2) the PSTs did not know the breaking point of set models owing to
their lack of experience with set models in their teacher education programs. Set models
appear to be used infrequently in textbooks and classroom instruction, but learning
about them would benefit students by expanding their repertoires and enabling them to
discern the capabilities of different models. For effective mathematics teaching, it is
unfeasible to use only one type of model because all models have breaking points (Vig
et al., 2014) and different models are appropriate for different problems. Thus, math-
ematics teachers have to know when and in which conditions particular models are
effective to use. When considering the nature of teaching, which requires continuous
instructional decision-making corresponding to students’ responses and the problem
context, teacher educators need to engage PSTs in drawing models as pedagogical as
well solution representations, exploring the breaking points of various models, and
practicing thinking of possible alternative models by working on tasks similar to those
provided in this study.
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