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Abstract
An effective way to improve students’ mathematical knowledge is to have them
construct multiple solutions for real-world problems. Prior knowledge is a relevant
prerequisite for learning outcomes, and the experience of competence is a basic need
that has to be fulfilled to improve achievement. In the current experimental study (N =
307), we investigated how the construction of multiple solutions for real-world prob-
lems by applying multiple (two) mathematical procedures affected students’ procedural
and conceptual knowledge and their experience of competence. Path analyses showed
that constructing multiple solutions for real-world problems increased students’ feelings
of competence and affected their procedural and conceptual knowledge indirectly
through the experience of competence. Moreover, students’ prior knowledge affected
their knowledge at posttest directly as well as indirectly via their experience of
competence.
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Introduction

Constructing, comparing, and reflecting on multiple solutions are important instruc-
tional elements that are part of high-quality teaching standards in different countries
(National Council of Teachers of Mathematics, 2000). Studying the effects of con-
structing multiple solutions on students’ learning is an important goal for research in
mathematics education and has thereby been intensively investigated in the last decade.
Yet, such research efforts have focused on the question of how multiple solutions can
be taught effectively, and only a few studies have analyzed the effects of constructing
multiple solutions on students’ mathematical knowledge-related outcomes (Levav-
Waynberg & Leikin, 2012; Star & Rittle-Johnson, 2008). Moreover, there are not many
studies on the effects of constructing multiple solutions for real-world problems, despite
evidence that the ability to solve real-world problems is important in mathematics
education (Niss, Blum, & Galbraith, 2007). Further, the experience of competence has
rarely been taken into account in mathematics education research (Schukajlow &
Krug, 2014), but it is considered an important educational variable (Deci & Ryan,
2000) that can transmit the effects of constructing multiple solutions (Schukajlow,
Krug & Rakoczy, 2015) and prior knowledge (Hänze & Berger, 2007) on
knowledge-related outcomes.

In this study, we conducted a field trial to investigate how constructing multiple
solutions for real-world problems by applying multiple mathematical procedures affects
students’ procedural and conceptual knowledge and their experience of competence
and how students’ knowledge and experience of competence are related to each other.

Theoretical Background, Prior Research, and Hypotheses

MultiMa Research Project

This study was conducted as part of the project called Multiple Solutions for Mathe-
matics Teaching Oriented Toward Students’ Self-Regulation (MultiMa; for an
overview, see Schukajlow & Krug, 2014). In the first stage of the project, we analyzed
how constructing multiple solutions for real-world problems with vague conditions
affected students’ achievements, beliefs, emotions, and strategies (Schukajlow &
Rakoczy, 2016). In the second stage of the project, we investigated how students’
achievements and perceptions of learning were affected by constructing multiple
solutions for real-world problems by applying different mathematical procedures.

The Experience of Competence

According to self-determination theory, every living organism has a system of basic
psychological needs that are integrated into a complex system of behavior and moti-
vational control (Deci & Ryan, 2000). These psychological needs are assumed to be
important not only for well-being, psychological growth, and integrity (Ryan, 1995) but
also for a variety of developmental processes (Deci & Ryan, 2000). Thus, the sufficient
fulfillment of psychological needs is a necessary requirement for the optimal function-
ing of the entire psychological system (Ryan, 1995), and experiences related to the
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fulfillment of these psychological needs are presumed to play a crucial role in learning
(Krapp, 2005). Three essential needs have been postulated: competence, autonomy, and
social relatedness. The need for competence refers to Bthe desire to feel efficacious, to
have an effect on one’s environment, and to be able to attain valued outcomes^ (Deci,
1998, p. 152). It Bencompasses people’s strivings to control outcomes and to experience
effectance; in other words, to understand the instrumentalities that lead to desired
outcomes and to be able to reliably effect those instrumentalities^ (Deci & Ryan,
1991, p. 243). In summary, this basic need is closely related to the inherent satisfaction
that results from engaging in activities (e.g., solving tasks during a teaching unit) and
extending one’s own capabilities (e.g., learning to solve real-world problems with a
new mathematical procedure; Krapp, 2005).

The experience of competence plays a particularly important role in teaching and
learning and is prominently featured in social cognitive models of achievement moti-
vation (Wigfield, Battle, Keller, & Eccles, 2002) and in learning theories on self-
regulation (Boekaerts & Corno, 2005). It has also been found to enhance achievement
(Miserandino, 1996). Furthermore, the experience of competence is closely related to
other motivational constructs such as self-efficacy beliefs (Bandura, 2003) because
both constructs refer to a person’s cognitions about his or her own ability to perform an
action. Whereas the experience of competence refers to how a person feels while
working on a problem, self-efficacy expectations refer to the person’s ability to
organize and execute a course of action in the future.

Procedural and Conceptual Knowledge

The positive development of students’ procedural and conceptual knowledge is an
important component of mathematics achievement (Rittle-Johnson, Schneider, & Star,
2015) and is therefore essential for students’ learning of mathematics (Star, 2007).
Procedural and conceptual knowledge represent the ends of a knowledge continuum
(Rittle-Johnson, Siegler, & Alibali, 2001). Procedural knowledge can be defined in
relation to the skills required to solve problems (Canobi 2009) and thereby involves the
ability to execute a series of steps or actions to accomplish a goal (Rittle-Johnson et al.,
2015). This type of knowledge Boften develops through problem-solving practice, and
thus is tied to particular problem types^ (Rittle-Johnson et al., 2015, p. 588). On the
other end of the continuum, conceptual knowledge is defined as the knowledge of
concepts, which are abstract and general principles (Canobi, 2009). Conceptual knowl-
edge involves the comprehension of mathematical concepts, the underlying unifying
principles that govern a domain, and their interrelations (Rittle-Johnson et al., 2015).

Effects of Prior Knowledge on the Experience of Competence

Prior procedural and conceptual knowledge are important factors that influence stu-
dents’ learning. Students with higher achievement in mathematics have been found to
report more self-efficacy while working on mathematical tasks than other students
(Heinze, Reiss, & Rudolph, 2005). As higher achievement in mathematics is correlated
with students’ self-efficacy beliefs (Heinze et al., 2005), and self-efficacy beliefs are
closely related to the experience of competence (Bandura, 2003), students’ prior
knowledge might be positively related to the experience of competence. Further

Multiple Solutions for Real-World Problems, Experience of... 1607



evidence for this positive relation comes from the finding that students with higher
achievement in mathematics report greater interest and more positive emotions while
doing math, and both variables are closely connected to the experience of competence
(Krapp, 2005). On the basis of this empirical evidence, we expected positive effects of
prior procedural and conceptual knowledge on the experience of competence (Hypoth-
esis 1). The relation between prior knowledge and the experience of competence was
analyzed in a study in physics (Hänze & Berger, 2007), but this relation has yet to be
tested in mathematics.

Effects of the Experience of Competence and Prior Knowledge on Students’
Knowledge

Not only might the experience of competence be influenced by students’ knowledge,
but it might also influence their knowledge. Strong feelings of competence are mean-
ingful for students’ intrinsic motivation (Ryan & Deci, 2000), which has a positive
influence on academic outcomes (Hattie, 2009). Furthermore, the experience of com-
petence is a valuable part of self-efficacy beliefs (Bandura, 2003), which predict
students’ achievements in mathematics (Pietsch, Walker, & Chapman, 2003). In addi-
tion, Hänze and Berger (2007) found a direct influence of the experience of competence
on students’ achievement in physics, and Schukajlow et al. (2015) confirmed this
finding in mathematics. Thus, we hypothesized a positive effect of the experience of
competence on students’ knowledge at posttest (Hypothesis 2).

The positive effect of prior knowledge on knowledge at posttest can be hypothesized
on the basis of the similar conceptualizations of the pretest and posttest. Both tests
assessed students’ conceptual and procedural knowledge. Thus, students who achieved
higher scores on the pretest were expected to show higher scores on the posttest also.
However, an additional indirect effect of prior knowledge on knowledge at posttest
was of interest. As prior knowledge should affect students’ experience of compe-
tence during the teaching unit, and their experience of competence should influ-
ence their knowledge at posttest, we expected students’ prior knowledge to have an
indirect effect on their knowledge at posttest via their experience of competence
(Hypothesis 3).

Multiple Solutions and Real-World Problems

Encouraging students to construct multiple solutions for a problem is considered a
high-quality element of teaching (e.g., National Council of Teachers of Mathematics,
2000). Constructing multiple solutions and comparing them are important elements of
conceptions such as cognitive flexibility theory (Spiro, Coulson, Feltovich, &
Anderson, 1988) or cognitive apprenticeship (Collins, Brown, & Newman, 1989).
Multiple solutions have been explored in the context of research on problem solving
(Becker & Shimada, 1997), and researchers have found that solving problems in more
than one way is crucial for constructing comprehensive knowledge (Silver,
Ghousseini, Gosen, Charalambous, & Font Strawhun, 2005), fosters the connectedness
of knowledge (Levav-Waynberg & Leikin, 2012), helps in the development of a broad
range of strategies and representations that foster flexibility (Rittle-Johnson & Star,
2009), and leads to a deeper understanding of the subject at hand (Neubrand, 2006).
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One important question in the topic of multiple solutions is how they should be
taught in the classroom. Empirical studies have found that students who compared and
contrasted different solutions for the same problem made greater gains in procedural
knowledge and flexibility than students who reflected on each solution in isolation
(Rittle-Johnson & Star, 2007). In addition to this, the practices of reflecting on and
discussing multiple solutions were found to be relevant factors that could improve
student learning (Rittle-Johnson & Star, 2009).

Most studies on multiple solutions have focused on intra-mathematical tasks (Leikin
& Levav-Waynberg, 2007; Levav-Waynberg & Leikin, 2012; Rittle-Johnson & Star,
2007, 2009), but we have focused on the construction of multiple solutions while
solving real-world problems. Analyses of problem-solving activities (Blum & Leiss,
2007) have shown that there are different ways to construct multiple solutions while
solving real-world problems. We distinguish between three categories of multiple
solutions. The first category of multiple solutions results from making different as-
sumptions while solving real-world problems with vague conditions and usually leads
to different outcomes. This is the first way to create multiple solutions and was the
focus of our previous study. The second category of multiple solutions results from
applying different mathematical procedures or strategies to solve a problem and usually
leads to the same mathematical outcome. The combination of these two types is also
possible and may be considered a third category of multiple solutions. The effects of
the second category of multiple solutions are still an open research question and will be
addressed in this article.

In the sample problem BDriving School^ (Fig. 1), two different driving schools are
presented, each with a basic fee and a specific cost for each driving lesson. Students are
requested to determine when it is worth going to one school or the other. Two mathe-
matical procedures that are appropriate for solving real-world problems on the topic of
linear functions involve (a) the computation of differences and (b) the use of a table.

To solve a real-world problem by computing differences, one has to understand the
meaning of the important values and to transfer information between reality and
mathematics several times. Whereas the basic fee for BBolls Driving School^ is $150
(= $200 − $50) more expensive than the basic fee for BHilberts Driving School,^ each

Fig. 1 Real-world BDriving School^ task
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driving lesson at Hilberts Driving School is $5 (= $35 − $30) more expensive than at
Bolls Driving School. The question is as follows: How many driving lessons at the
more expensive Bolls Driving School does one have to take until the cheaper driving
lessons pay off? This occurs after exactly 30 (= $150 / $5) driving lessons. This result
has to be interpreted—for example, BUp to 30 driving lessons, Hilberts Driving School
is cheaper^—and validated.

Another way to solve this problem is to apply a procedure that involves a table.
Students can make assumptions about a possible number of driving lessons (e.g., 10,
20, 40,…), calculate the total cost for both driving schools, compare the costs, identify
up to what number of driving lessons one should choose Hilberts Driving School, and
write a recommendation for which school is preferable for certain numbers of driving
lessons. Although the mathematical procedures can be applied independently, they can
also be linked to each other.

Using zero driving lessons as a starting point for the mathematical procedure Btable^
is equivalent to the difference in the basic fees ($150), which is calculated when using
the mathematical procedure Bdifferences.^ If a student takes one driving lesson, then
the difference between the costs decreases from $150 to $145. In this way, the $5
difference in the cost per driving lesson can be identified, the difference that is also used
in the mathematical procedure differences. With each driving lesson, the differences in
the costs decrease proportionally. If a student takes five (10, 20, 30) instead of one
driving lesson, the difference decreases from $145 to $125 ($100, $50, $0) (Fig. 2).

Therefore, in the table procedure, a multistep procedure (× times the $5 difference) is
used to identify the number of driving lessons that makes the cost of the two driving
schools equal. This is equivalent to the operation used in the mathematical procedure
differences in which students calculate the same number of driving lessons in just one
step by dividing $150 by $5.

Effects of Constructing Multiple Solutions on Students’ Knowledge and Experience
of Competence

The development of multiple solutions allows different solutions to be linked, com-
pared, and reflected on and should therefore foster procedural flexibility (Rittle-

Fig. 2 Linking the mathematical procedures
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Johnson & Star, 2009), which is an important part of deep procedural knowledge (Star,
2007). Constructing multiple solutions should lead to a deeper understanding of the
topic at hand (Neubrand, 2006) and thus may improve students’ conceptual knowledge.
However, these theoretical considerations have yet to be confirmed empirically. In the
study by Star and Rittle-Johnson (2008), students who were instructed to solve the
linear equation problems in multiple ways achieved the same procedural knowledge
scores on transfer problems as students who were instructed to solve the same problems
by applying one mathematical procedure. To the best of our knowledge, no study has
explored the effects of constructing multiple solutions on conceptual knowledge. In
conclusion, in accordance with the theoretical considerations, we expected that con-
structing multiple solutions by applying multiple mathematical procedures and empha-
sizing the links between the mathematical procedures would improve students’ proce-
dural and conceptual knowledge (Hypothesis 4).

An important goal of intervention studies is to identify variables that intervene
between treatment conditions and learning outcomes. In research on multiple solutions,
students’ experience of competence was expected to act as a transmitting variable for
the effects of the treatment condition on motivational and cognitive outcomes
(Schukajlow & Krug, 2014; Schukajlow et al., 2015). This idea was confirmed for
real-world problems with vague conditions because the number of solutions was found
to have positive effects on the experience of competence (Schukajlow & Krug, 2014;
Schukajlow et al., 2015). In the present study, we expected that constructing multiple
solutions would positively affect students’ experience of competence (Hypothesis 5).
Because the experience of competence was expected to predict students’ knowledge at
posttest (see Hypothesis 2), we hypothesized indirect effects of constructing multiple
solutions on students’ knowledge through the experience of competence (Hypothesis
6).

Path Models and Hypotheses

For an analysis of the links between the treatment conditions (constructing multiple
solutions by applying multiple mathematical procedures [MS] vs. one solution by
applying one mathematical procedure [OS]), students’ knowledge, and their experience
of competence, we applied two path models with the same structure to the data (one for
procedural and one for conceptual knowledge in solving real-world problems). This
allowed us to test direct effects on students’ experience of competence and their
knowledge and also to examine whether the experience of competence would transmit
the effects of the experimentally manipulated treatment conditions or cognitive prereq-
uisites on the outcomes. In our path models, we proposed that the total effect of
treatment condition or individual prerequisite (MS vs. OS and prior knowledge) on
students’ outcomes (knowledge at posttest) would consist of indirect effects (via the
experience of competence) and direct effects (direct paths from the treatment condition
or prior knowledge to knowledge at posttest).

Our path analytic model was based on theoretical considerations and prior research
on the effects of constructing multiple solutions and students’ cognitive prerequisites on
students’ knowledge. Because constructing multiple solutions included the application
of both mathematical procedures (i.e., table and differences), we analyzed the effects of
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constructing multiple solutions (MS) against both possible mathematical procedures
(table [OS1] and differences [OS2]) (Fig. 3).

The following primary hypotheses were tested for procedural and conceptual
knowledge:

Hypothesis 1. Prior knowledge will positively affect students’ experience of compe-
tence (EoC) in mathematics classes.

Hypothesis 2. Students’ EoC will positively affect their knowledge at posttest.
Hypothesis 3. Prior knowledge will indirectly affect knowledge at posttest such that

the positive effects will be transmitted through the EoC in mathematics
classes.

Hypothesis 4. Constructing multiple solutions will positively affect students’ knowl-
edge at posttest.

Hypothesis 5. Constructing multiple solutions will positively affect students’ EoC.
Hypothesis 6. Constructing multiple solutions will indirectly affect knowledge at

posttest such that the positive effects will be transmitted through the
EoC during the teaching unit.

Method

Participants and Procedure

A total of 307 German ninth graders (48.26% female adolescents; mean age =
14.6 years) from four comprehensive schools (German Gesamtschule) that each had
three middle-track classes took part in this study. Students were parallelized according
to their grades in mathematics. That is, on the basis of students’ grades in mathematics,
each of the 12 classes was divided into two parts with the same number of students in
each part in such a way that the average level of achievement in the two parts did not
differ, and each part was instructed in a separate room. Furthermore, students in the
same classes were never assigned to the same treatment condition, and each treatment
condition occurred with the same frequency at each school.

In total, there were 24 groups: 8 groups in the MS condition, 8 in the OS1 condition,
and 8 in the OS2 condition. Students in the MS condition constructed two solutions,

Fig. 3 Hypothesized path analytic model

K. Achmetli et al.1612



whereas students in the OS conditions constructed one solution only. Before and after
the teaching unit, the participants completed tests on procedural and conceptual
knowledge in solving real-world problems. After solving the first problem during the
second session, students reported their experience of competence during the teaching
unit (see Fig. 4).

Six mathematics teachers between 27 and 60 years of age (three women) instructed
students to solve real-world problems in the multiple-solution and one-solution condi-
tions in separate rooms. Each teacher taught the same number of student groups in each
treatment condition so the influence of teachers’ personality on students’ learning did
not differ between conditions. For the teaching unit, the teachers were given all of the
real-world tasks and the solution spaces as well as an instruction manual with lesson
plans for each condition.

The teaching unit was implemented during regular classes before students learned to
use linear equations and was based on the student-centered method for teaching real-
world problems, which has demonstrated a positive influence on students’ learning
(Schukajlow et al., 2012). In the MS condition, the first four problems contained the
modification BApply two different mathematical procedures to solve this problem.
Write down both procedures.^ In the first session, a teacher first demonstrated how
real-world problems could be solved by using one specific mathematical procedure (in
the OS conditions) or by using multiple mathematical procedures (in the MS condi-
tion). Then, students solved two such problems that were based on the student-centered
method. After the first problem in the second session in the MS condition, the teacher
highlighted and summarized the links between the two mathematical procedures and
compared and contrasted the mathematical procedures. In the OS conditions, students
solved the same tasks as students in the MS condition and solved an additional task to
compensate for the time needed for the comparing and linking of two mathematical
procedures in the MS condition. In sum, students in the MS condition solved a total of
five problems, whereas students in the OS conditions each solved a total of six
problems.

The fidelity of the treatment was ensured by applying the following procedures. The
teachers had experience teaching real-world problems and attended a 1-day training
session to learn the teaching methods they were expected to apply in the present study.

Fig. 4 Overview of the study design
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All lessons were observed and videotaped by research group members, and students’
solutions were collected. Analyses of the videos and solutions confirmed that the
instruction time did not differ between the conditions and that the teachers provided
students with the intended tasks, which required students’ to construct multiple solu-
tions or one solution for real-world problems. In addition, no differences between
treatment conditions in the amount of time spent on tasks were reported by the
observers. During the first session in the MS condition, students used the time to solve
the problems by applying two mathematical procedures, whereas in the OS conditions,
students discussed the solution for longer than in the MS condition. Furthermore, as
intended, the number of mathematical procedures that were applied by students in the
MS condition was significantly higher than in the OS conditions (see Achmetli,
Schukajlow & Krug, 2014).

Measures

Tests of Procedural and Conceptual Knowledge. On the basis of the differentiation of
knowledge in the study by Rittle-Johnson and Star (2007), we assessed two types of
knowledge with respect to the topic of linear functions in order to test students’
progress. Measures of procedural knowledge almost always involve solving familiar
problems, for which the procedures needed to solve them are known (Rittle-Johnson
et al., 2015). For the measurement of conceptual knowledge, a large variety of tasks
(e.g., explanations of judgments) can be used (Rittle-Johnson & Schneider, 2014). One
critical feature of conceptual tasks is that they have to be relatively unfamiliar to
participants (Rittle-Johnson et al., 2015).

Students’ procedural and conceptual knowledge in solving real-world problems
was estimated by applying a two-dimensional Rasch model (Bond & Fox, 2001).
This model allowed us to construct parallel test versions (with no item overlap) for
each scale (here, procedural and conceptual knowledge in solving real-world
problems) at two measurement points (pretest and posttest). Thus, students’ knowl-
edge could be compared between time points. Students’ procedural knowledge in
solving real-world problems was tested with 12 items, and their conceptual knowl-
edge in solving real-world problems was tested with 11 items. Because each student
solved similar but not identical items at pretest and posttest, memorization effects
were minimized. The ConQuest software (Wu, Adams, & Wilson, 1998) was used
to scale students’ data. Weighted likelihood estimator (WLE) parameters (Warm,
1989) were estimated for each student and represented students’ knowledge with
continuous scales.

The EAP test reliabilities, which indicate how well the items were spread along the
measure in the current sample (Fisher, 1992), were 0.86 for procedural knowledge and
0.68 for conceptual knowledge in solving real-world problems and thus above the
typical cutoff value of 0.50 (Rupp, Templin & Henson, 2010). Sample items from the
test are presented in Fig. 5. The test as a whole is provided as supplementary material.

Because procedural knowledge often develops through problem-solving practice
and is thus tied to particular problem types (Rittle-Johnson et al., 2015), all items
from this dimension were relatively similar to the tasks students solved during the
teaching unit and required students to construct just one solution. Procedural
knowledge was assessed with a partial credit model. Students’ responses received
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a score of 0 for an incorrect solution, 1 if they got the right mathematical result but
presented an incorrect interpretation or did not interpret the result, or 2 if both the
result and the interpretation were correct. On the conceptual knowledge test,
students’ responses were scored 1 for choosing the right answer and providing a
correct explanation or 0 for an incorrect solution. In order to assess conceptual
knowledge as the comprehension of mathematical concepts with underlying prin-
ciples and their interrelations (Rittle-Johnson et al., 2015), all items were construct-
ed so that students needed to explain their solutions without executing any math-
ematical procedure. Therefore, all students who used a calculation to determine the
exact solution were given a score of 0.

Experience of Competence Scale. We used a 5-point Likert scale that ranged from 1
(not at all true) to 5 (completely true). It was comprised of three items that referred to
students’ perceptions of the extent to which they were able to implement the given
tasks in the actual learning environment. Item 1 (BI noticed that I really understood
things^), which came from the study by Hänze and Berger (2007), refers to
Bunderstanding the instrumentalities that lead to desired outcomes^ (Deci & Ryan,
1991). The second item (BI felt able to master the work^) also came from the study by
Hänze and Berger (2007) and refers to attaining valued outcomes (Deci, 1998). The
third item (BI felt confident about my knowledge about the topic today^), which we
developed in our previous study (Schukajlow & Krug, 2014), refers to a person’s desire
to feel efficacious (Deci, 1998).

The internal consistency reliability of the experience of competence scale measured
as Cronbach’s alpha was 0.74. This value is comparable to the reliability found in the
study by Hänze and Berger (2007), who reported a reliability of 0.82.

Data Analysis

We tested the hypothesized model with regard to procedural and conceptual knowledge
in solving real-world problems using the experience of competence as an intervening
variable. The treatment factor was dummy coded (MS vs. OS1: 0 = OS1; 1 =MS; MS
vs. OS2: 0 = OS2; 1 =MS). To test the hypotheses, we computed two path models with
18 free parameters and 307 subjects. The ratio of subjects to parameters was 17 (307/
18), which was above the critical value of 5 that was required for obtaining solid results
(Kline, 2005).

Fig. 5 Sample items for assessing procedural and conceptual knowledge
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Clustering of the Data. To increase the external validity of the current study, the
students were instructed in groups of 10 to 16 students from the same mathematics
class rather than individually. To examine the degree of dependence within the groups
(n = 24) for prior procedural and conceptual knowledge, we calculated intra-class
correlation coefficients (ICCs) using the statistical program Mplus (Muthén & Muthén,
1998–2012) and transformed them into design effects (Muthén & Satorra, 1995) to
indicate the loss of statistical power due to the dependence of observations. The
resulting design effects of 3.84 for procedural and 2.86 for conceptual knowledge were
above the critical value of 2 (Muthén & Satorra, 1995). Furthermore, the between-
group variability was significant (p < 0.001) for both types of knowledge. Thus, we
calculated fit statistics and assessed the effects using maximum-likelihood estimations
with adjusted standard errors (MLR) using the type = complex analysis in Mplus. This
statistical method takes into account the dependence of observations for parameter
estimates and goodness-of-fit model testing (Muthén & Muthén, 1998–2012).

Missing Values. The percentage of missing values in the current study differed across
the measures from 8.5% for the experience of competence during the teaching unit to
6.5% on the posttest measures. The missing values in the current study were estimated
by applying the maximum-likelihood algorithm implemented in Mplus (Muthén &
Muthén, 1998–2012). This algorithm uses all of the information from the covariance
matrices to estimate the missing values.

Results

Analysis of Fit in Path Models

The correlation matrix of the variables is presented in Table 1. The correlations were in
the expected direction.

The means and standard deviations of the variables are presented separately for each
treatment condition in Table 2.

We applied the combination of cutoff values for the comparative fit index (CFI >
0.95) and the standardized root mean square residual (SRMR < 0.05) to test the
goodness of fit of the model. In addition, we also calculated the chi-squared

Table 1 Correlations between all variables

Variable 1 2 3 4 5

1. Prior procedural knowledge –

2. Prior conceptual knowledge 0.39* –

3. Experience of competence 0.17* 0.19* –

4. Procedural knowledge at posttest 0.51* 0.38* 0.16* –

5. Conceptual knowledge at posttest 0.50* 0.38* 0.25* 0.50* –

*p < 0.01, two-tailed
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goodness-of-fit statistic. Thus, both path models fit the data well according to all fit
indices (see Table 3).

Tests of Hypotheses

In this section, we present the results of the estimates calculated for the hypothesized
path models. Because the treatment conditions represented a binary factor (MS vs. OS1
and MS vs. OS2), StdY values were used to calculate the standardized estimates in
Mplus. Thus, β coefficients can be interpreted as the predicted change in (residualized)
criterion measures (in standard deviation units) when the treatment changes from 0 (one
solution) to 1 (multiple solutions). (Fig. 6)

Effects of Prior Knowledge on the Experience of Competence. Students with higher
prior knowledge felt more competent during the teaching unit (model PK: β = 0.17,
SE = 0.05, p < 0.001; model CK: β = 0.21, SE = 0.05, p < 0.001). Thus, students’ prior
knowledge was important for their experience of competence during the teaching unit.

Effects of the Experience of Competence on Knowledge at Posttest. Students’ experi-
ence of competence during the teaching unit predicted their procedural knowledge at
posttest (β = 0.08, SE = 0.04, p = 0.030) and their conceptual knowledge at posttest (β =

Table 2 Means and standard deviations

MS OS1 OS2

Variable M SD M SD M SD

1. Prior procedural knowledge − 1.03 0.91 − 1.33 1.00 − 1.31 1.02

2. Prior conceptual knowledge − 0.27 1.60 − 0.34 1.39 − 0.47 1.52

3. Experience of competence 4.44 0.60 4.21 0.87 4.22 0.75

4. Procedural knowledge at posttest 0.51 1.02 0.27 1.12 0.41 1.06

5. Conceptual knowledge at posttest 0.15 1.63 − 0.24 1.44 − 0.23 1.24

Table 3 Fit values for the path models for procedural knowledge (model PK) and conceptual knowledge
(model CK)

Model PK Model CK

R2 0.27 0.18

χ2 2.320 0.366

df 2 2

p > 0.05 > 0.05

CFI 1.000 1.000

SRMR 0.029 0.016

R2 = variance explained at posttest; p = two-tailed

CFI comparative fit index, SRMR standardized root mean square residual
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0.17, SE = 0.05, p = 0.001). Students who reported feeling very competent during the
teaching unit showed better results for both procedural and conceptual knowledge at
posttest.

Effects of Prior Knowledge on Knowledge at Posttest via the Experience of
Competence. As hypothesized, prior conceptual knowledge indirectly positively af-
fected conceptual knowledge at posttest with the experience of competence as an
intervening factor (β = 0.04, SE = 0.02, p = 0.018). The indirect effects of prior proce-
dural knowledge on procedural knowledge at posttest with the experience of compe-
tence as an intervening variable were marginally significant (β = 0.014, SE = 0.01, p =
0.071). Therefore, we found that students who had a lot of knowledge before the
teaching unit and felt more competent during the teaching unit showed improvements
in their procedural and conceptual knowledge over and above the well-known effect of
prior knowledge. However, the increase in the indirect effects was small compared with
the direct effects of prior knowledge.

Effects of Treatment Condition on Knowledge at Posttest. Contrary to our expecta-
tions, we found no total effects of constructing multiple solutions on procedural or
conceptual knowledge in solving real-world problems at posttest (model PK: β = 0.01,
SE = 0.11, p = 0.451 [MS vs. OS1]; β = − 0.02, SE = 0.10, p = 0.418 [MS vs. OS2];
model CK: β = 0.08, SE = 0.09, p = 0.161 [MS vs. OS1]; β = 0.07, SE = 0.11, p = 0.272
[MS vs. OS2]). Thus, students in the multiple-solution condition did not differ from
students in the one-solution conditions in their procedural or conceptual knowledge in
solving real-world problems after the teaching unit.

Effects of Treatment Condition on the Experience of Competence. As expected,
constructing multiple solutions positively affected students’ experience of competence
(model PK: β = 0.12, SE = 0.06, p = 0.031 [MS vs. OS1]; β = 0.11, SE = 0.04, p =
0.006 [MS vs. OS2]; model CK: β = 0.14, SE = 0.06, p = 0.017 [MS vs. OS1]; β = 0.13,
SE = 0.04, p = 0.001 [MS vs. OS2]). Thus, students in the multiple-solution condition
reported feeling more competent during the teaching unit.

Effects of Treatment Condition on Knowledge at Posttest via the Experience of
Competence. We found marginally significant positive indirect effects of the treatment
on procedural knowledge in solving real-world problems at posttest transmitted via the

Fig. 6 Graphical illustration of direct effects in the hypothesized path models for procedural and conceptual
knowledge. Significant paths (p < 0.05, one-tailed) are illustrated with solid lines and nonsignificant paths with
broken lines
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experience of competence (β = 0.01, SE = 0.01, p = 0.055 [MS vs. OS1]; β = 0.01,
SE = 0.01, p = 0.071 [MS vs. OS2]) as well as positive indirect effects of the treatment
on conceptual knowledge in solving real-world problems at posttest transmitted via the
experience of competence (β = 0.02, SE = 0.01, p = 0.018 [MS vs. OS1]; β = 0.02,
SE = 0.01, p = 0.006 [MS vs. OS2]). Constructing multiple solutions for real-world
problems provides an opportunity to improve procedural and conceptual knowledge in
solving real-world problems indirectly through the experience of competence.

Discussion

The effect of constructing multiple solutions for real-world problems on students’
knowledge is an important issue in mathematics education on the basis of theoretical
propositions that constructing multiple solutions should have positive effects on stu-
dents’ achievements (Levav-Waynberg & Leikin, 2012; Neubrand, 2006; Rittle-
Johnson & Star, 2009; Silver et al., 2005), and the ability to solve real-world problems
is important for students’ current and future lives (Niss et al., 2007). However, besides
case studies, only one randomized experimental study previously investigated the
impact of constructing multiple solutions for real-world problems on knowledge
(Schukajlow et al., 2015). Moreover, the focus of this previous study was on
constructing multiple solutions by making different assumptions about real-world
problems with vague conditions, whereas the effects of constructing multiple
solutions for real-world problems by applying multiple mathematical procedures
on students’ achievement had yet to be investigated, and thus, the current study
was conducted to fill this gap.

In the present study, we addressed these research gaps and examined the effects of
constructing multiple solutions for real-world problems on students’ knowledge, clar-
ified the role of the experience of competence while solving real-world problems in the
development of students’ knowledge, and analyzed the impact of prior knowledge on
students’ knowledge at posttest when taking the experience of competence into ac-
count. In order to explore the connections between the treatment conditions, students’
experience of competence, and their knowledge, we hypothesized a path model. As
expected, the predicted path models provided a good fit to the data for procedural and
conceptual knowledge in solving real-world problems. Thus, the models adequately
described the influence of the treatment condition and prior knowledge on students’
knowledge at posttest.

Effects of Prior Knowledge on the Experience of Competence

The expected positive influence of prior knowledge on students’ experience of com-
petence was derived from studies in the domains of educational psychology and science
education (Hänze & Berger, 2007; Pekrun, Goetz, Frenzel, Barchfeld, & Perry, 2011)
and had yet to be analyzed for mathematics education. Our results provided an
empirical confirmation of this effect in mathematics education and clearly indicated
that students’ prior knowledge has a significant influence on their experience of
competence.
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Effects of the Experience of Competence and Prior Knowledge on Students’
Knowledge at Posttest

The experience of competence predicted students’ procedural and conceptual knowl-
edge in solving real-world problems as hypothesized on the basis of self-determination
theory (Deci and Ryan 2000) and self-efficacy expectancies (Bandura, 2003). This
finding confirms empirical results in the same domain (Schukajlow et al., 2015) and in
other domains (Hänze & Berger, 2007).

We found evidence for the indirect effects of students’ prior knowledge on
students’ knowledge at posttest via their experience of competence as we predicted
on the basis of theoretical and empirical considerations from previous studies
(Bandura, 2003; Hänze & Berger, 2007; Hattie, 2009; Pietsch et al., 2003; Ryan
& Deci, 2000). Higher procedural and conceptual knowledge helps students
experience greater competence in the classroom. As a result, students with
higher prior knowledge tend to learn more and demonstrate more knowledge at
posttest. Given that this indirect effect was nonsignificant when Schukajlow et al.
(2015) tested it, the confirmation of this effect in the current study should be
acknowledged.

Effects of Constructing Multiple Solutions on Students’ Knowledge and Experience
of Competence

Derived from different theoretical assumptions, we hypothesized total effects of con-
structing multiple solutions on students’ knowledge at posttest. However, the results of
our study did not support this prediction. Students in the MS condition and students in
the OS conditions were similar in their procedural and conceptual knowledge of how to
solve real-world problems using linear functions at posttest after the four-lesson
teaching units. This result is in line with the findings from Levav-Waynberg and
Leikin’s (2012) study in which no effects of constructing multiple solutions for intra-
mathematical problems on knowledge-related measures were found. Similar results
were also found in the study by Star and Rittle-Johnson (2008). However, the control
group in Star and Rittle-Johnson’s study spent much more time solving different
problems with the same standard approach used by the experimental group, whereas
in the present study, students in the control group solved only one extra problem to
compensate for the time needed to compare and link the two mathematical procedures
in the MS condition. A possible reason for our finding is that the problems on the
posttest required only one solution, and we argue that there were no differences in
knowledge between the groups because one solution is enough when solving problems
in real life.

Furthermore, given that a crucial point in the measurement of treatment effects is
that the treatment tasks need to provide a good match with the test (Hattie et al., 1996),
the way the problems were formulated on the posttest may have negatively impacted
the achievement of students in the MS condition in our study because the ability to
construct multiple solutions was not captured adequately by the posttest. Other studies
have either assessed other aspects of student achievement or have applied different
approaches in which problems must be solved in multiple ways, thus offering advan-
tages for constructing multiple solutions for intra-mathematical problems with regard to
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creativity and procedural flexibility (Levav-Waynberg & Leikin, 2012; Rittle-Johnson
et al., 2009). The influence of constructing multiple solutions for real-world problems
should be addressed in future studies by presenting problems that require the construc-
tion of multiple solutions.

Our findings indicate that the opportunities to link, compare, and contrast
different mathematical procedures provided students with feedback regarding their
competence and that students felt more competent. However, whether these effects
are due to the nature of the problems to be solved or to the design of the
corresponding teaching unit remains an open question. Furthermore, students’
experience of competence was found to be a transmitting variable between the
treatment condition and knowledge at posttest. These findings extended previous
results (Schukajlow et al., 2015). Linking, comparing, and contrasting mathemat-
ical procedures should be considered alongside other factors for improving stu-
dents’ experience of competence during the teaching unit because such procedures
can have effects on students’ procedural and conceptual knowledge in solving real-
world problems at posttest.

Strengths and Limitations

The effects of the treatment condition and prior knowledge on students’ knowledge at
posttest were examined by applying path analyses. The active manipulation of the
treatment conditions in our study (MS vs. OS1 and OS2) is a necessary condition for
causally interpreting the effect of the treatment on students’ knowledge. However, the
validity of the analysis of path models strongly depends on the time points at which the
data were collected and on evidence from previous research about the possibilities of
the direction of effects such as the impact of the experience of competence on students’
knowledge at posttest. To test the hypothesized path models, we collected data before,
during, and after the teaching unit to ensure that the data used in our analyses would be
ordered along a timeline. Such ordering of data allows conclusions to be drawn about
the direction of influence of measured factors (e.g., from students’ prior knowledge to
their experience of competence during the teaching unit) and therefore allowed us to
test the hypothesized path models.

The path models were derived from theories about procedural and conceptual
knowledge (Rittle-Johnson et al., 2015), self-determination theory (Deci & Ryan,
2000), and approaches for solving real-world problems (Niss et al., 2007) and con-
structing multiple solutions (Levav-Waynberg & Leikin 2012; Rittle-Johnson & Star,
2007; Schukajlow & Krug, 2014). Theoretical insights and the results of previous
empirical studies have supported the hypothesized paths between the applied treatment
conditions, the experience of competence, prior knowledge, and knowledge at posttest.
However, these path models may be incomplete as students’ prior self-beliefs or other
intervening variables such as emotions (Goldin, 2014; Schukajlow & Rakoczy, 2016)
or feedback from teachers (Rittle-Johnson & Star, 2009) could affect students’ expe-
rience of competence or their knowledge.

We investigated the effects of this intervention across a relatively short time period,
and most of the effects were statistically significant but medium or small in size.
Although the indirect effects of the intervention via the experience of competence
and the direct effects of the experience of competence on procedural and conceptual
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knowledge were small, they might be practically important for learning because
improving students’ experience of competence was found to increase not only cogni-
tive (e.g., knowledge) but also affective (e.g., interest; Schukajlow & Krug, 2014)
outcomes. As previously determined, both cognitive and affective outcomes are im-
portant for learning. Furthermore, such effects can be expected to be stronger across a
longer period of time, and thus, the current approach should be replicated for a longer
intervention period. Furthermore, the stability of the effects on knowledge is an
important issue, which needs to be addressed with follow-up measures (see e.g.,
Rittle-Johnson & Star, 2009). Another limitation of the study involves the kinds of
mathematical procedures (table and differences) we used because these represent a
factor that can influence the effects of constructing multiple solutions on students’
knowledge. The results might be different if other mathematical procedures (e.g.,
graphical or algebraic) were applied. Moreover, because of the design of our
intervention, the number of mathematical procedures implemented in the experi-
mental condition was exactly two; and thus, the term multiple was limited to two
solutions in our study. The effects of constructing multiple solutions on students’
knowledge and their experience of competence might be different if a larger
number of mathematical procedures could be implemented. Furthermore, future
studies should extend phases of linking, comparing, and contrasting different
mathematical procedures to strengthen the effects of constructing multiple solu-
tions on students’ knowledge. Additional qualitative analyses of students’ solution
processes could help to clarify the role of the experience of competence while
solving real-world problems in the development of students’ knowledge as well as
to analyze the impact of prior knowledge on students’ knowledge at posttest when
taking the experience of competence into account.

Conclusion

Constructing multiple solutions in the mathematics classroom is an important teaching
element that has not been investigated very often in experimental studies (Schukajlow
et al., 2015). Existing research frameworks usually focus on the implementation of
multiple-solution tasks (Leikin & Levav-Waynberg, 2007; Levav-Waynberg & Leikin,
2012) and on the impact of comparisons on students’ learning (Rittle-Johnson & Star,
2007; Star & Rittle-Johnson, 2008). Extending this research, Schukajlow et al. (2015)
investigated the effect of constructing multiple solutions by making different assumptions
about real-world problems with vague conditions on students’ achievement while
highlighting the importance of exploring the effectiveness of constructing multiple
solutions for real-world problems on knowledge-related measures. The results of the
current study verified that the experience of competence is a factor that transmits the effect
of constructing multiple solutions on students’ knowledge at posttest. In addition, the
results showed that students’ prior knowledge positively affects their experience of
competence, and we found evidence that students’ prior knowledge positively affects
their knowledge at posttest via their experience of competence. Therefore, students’ prior
knowledge and their experience of competence during a teaching unit are important
factors that should be taken into account when teaching students to construct multiple
solutions to solve real-world problems.
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