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Abstract Statistics is an increasingly important component of the mathematics curric-
ulum. StatSmart was a project intended to influence middle-years students’ learning
outcomes in statistics through the provision of appropriate professional learning op-
portunities and technology to teachers. Participating students in grade 5/6 to grade 9
undertook three tests, a pre-test, a post-test and a longitudinal retention test over a
period of 2 years. Their teachers completed a survey that included items measuring
pedagogical content knowledge (PCK) for teaching statistics. Despite the development
of valid instruments to measure both student and teacher content knowledge and
teachers’ PCK, linking teachers’ knowledge directly to students’ learning outcomes
has proved elusive. Multilevel modelling of results from 789 students for whom there
were 3 completed tests and measures from their teachers indicated that students’
outcomes were influenced positively by their initial teacher’s PCK. Extended partici-
pation of teachers in the project also appeared to reduce negative effects of changing
teachers.
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Introduction

Since the last decade of the twentieth century, statistics has had a defined place within
the school mathematics curricula of many countries, including the USA (National
Council of Teachers of Mathematics, 1989), Australia (Australian Education Council
(AEC), 1991), and New Zealand (Ministry of Education [MENZ], 1992). Although
there have been some revisions to the suggested content over the years (e.g. Australian
Curriculum, Assessment and Reporting Authority, 2011; Franklin et al., 2007; MENZ,
2007; National Council of Teachers of Mathematics, 2000), the place of statistics has
been consolidated and a research field of statistics education established. The progress
of this field has been summarised in the reviews of Konold & Higgins (2003) and
Shaughnessy (2007). As progress was made on documenting students’ developing
understanding, the scope widened to include teachers’ understanding of statistics
and their needs to facilitate successful implementation of the statistics component of
the mathematics curriculum in the classroom. The many issues surrounding the
complexities of translating the curriculum to successful learning outcomes for
students via teachers in classrooms were explored in detail by Batanero, Burrill &
Reading (2011) following an intensive International Commission on Mathematical
Instruction (ICMI) and International Association for Statistics Education (IASE)
joint study in 2008. Acknowledging that many teachers had not studied statistics in
their own education and training, many of the studies looked at the pre-service and
in-service learning of teachers and the measurement of their improvement in
understanding content and pedagogy (e.g. Callingham & Watson, 2011; Makar &
Fielding-Wells, 2011; Pierce & Chick, 2011).

Of concern in this paper is the complicated relationship between teachers’ pedagog-
ical content knowledge (PCK) for teaching statistics and students’ learning outcomes as
they develop understanding of statistical concepts. As part of a complex 3-year study
that took place between 2007 and 2010 associated with a professional learning
programme for teachers in statistics, instruments were developed and/or adapted to
measure various aspects of teachers’ knowledge for teaching statistics and of students’
understanding of the concepts (Callingham & Watson, 2007). This paper reports on
teachers’ initial levels of PCK for teaching statistics and the change in student under-
standing as measured at three points in time: before exposure to a unit on statistics, after
the unit, and 1 year later.

Measuring Teachers’ Knowledge

Interest in measuring teachers’ knowledge for teaching mathematics has developed
since Shulman’s (1987) general categorization of seven types of teachers’ knowledge
required for successful teaching: curriculum knowledge, general pedagogical knowl-
edge, content knowledge, pedagogical content knowledge, knowledge of learners and
their characteristics, knowledge of education contexts, and knowledge of education
ends, purposes, and values. Since Shulman published his seminal work, many ap-
proaches have been taken, and attempts have been made to describe, characterise, and
measure teachers’ mathematics knowledge. Ma (1999) described elementary teachers’
deep connected mathematics knowledge as Profound Understanding of Fundamental
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Mathematics (PUFM). Even & Tirosh (2002) went beyond mathematics knowledge to
consider teachers’ knowledge of students’ mathematical learning.

Other researchers have worked with or adapted Shulman’s framework for the
teaching of mathematics or statistics. For example, Watson (2001) developed a profile
instrument to measure teachers’ knowledge on each of Shulman’s dimensions in
relation to the teaching of data and chance. This instrument was later broadened for
the teaching of middle school mathematics more generally (Beswick, Callingham &
Watson, 2012; Watson, Brown, Beswick & Wright, 2011).

A major contribution to the field was that of Hill, Ball and colleagues (e.g. Ball,
Thames & Phelps, 2008; Hill, Schilling & Ball, 2004; Hill, Sleep, Lewis & Ball, 2007).
They adapted Shulman’s work, originally focussing on the mathematics knowledge
required but later expanding their work to acknowledge other necessary aspects:
common content knowledge, specialised content knowledge, knowledge at the math-
ematical horizon, knowledge of content and students, knowledge of content and
teaching and knowledge of curriculum. These components encompass what others
have continued to recognise as pedagogical content knowledge including an implicit
appreciation of students as learners (Callingham & Watson, 2011) and the recognition
of the particular affordances of tasks chosen by teachers for use in the classroom
(Chick, 2007). More specifically in relation to teaching statistics, Groth (2007) synthe-
sised the work of Ball and her colleagues into four categories for the statistics
classroom: common knowledge, specialised knowledge, mathematical knowledge
and non-mathematical knowledge, implicitly recognising the importance of context in
statistics (Callingham, Watson & Burgess, 2012).

In the StatSmart project, pedagogical content knowledge was framed within
Shulman’s (1987) original definition:

the blending of content and pedagogy into an understanding of how topics,
problems, or issues are organized, represented, and adapted to the diverse
interests and abilities of learners, and presented for instruction. Pedagogical
content knowledge is the category most likely to distinguish the understanding
of the content specialist from that of the pedagogue. (1987, p. 8)

This definition was chosen because it was closely aligned to the aims of the study,
which were focussed on the overall improvement of statistics teaching rather than
attempting to develop a fine-grained description of the nature of teachers’ knowledge
for teaching statistics. Although it was not the original intention behind Shulman’s
work, with the increasing pressure for accountability in schooling and the scale of the
project, there was also interest in providing solid quantitative data about both teachers’
knowledge and students’ learning outcomes in statistics.

Within Shulman’s broad definition of PCK, given teachers’ lack of depth in statistical
understanding (Batanero, Burrill & Reading, 2011), recognising students’ misconcep-
tions and strategies to remediate these became a focus of StatSmart, with the intention of
improving the quality of statistics teaching in the project schools. Instruments were
developed to measure teachers’ statistical PCK that considered (i) their prediction of
students’ likely answers to statistical problems; (ii) teachers’ responses to students’
actual answers taken from student surveys; and (iii) teachers’ intervention strategies in
relation to students’ current knowledge (see Callingham & Watson, 2011 for further
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details). As such, these instruments addressed many of the aspects of Ball et al.’s (2008)
conceptualisation of teachers’ knowledge, and Groth’s (2007) framework for consider-
ing teachers’ statistical knowledge. For example, items relating to prediction of correct
and incorrect responses drew on both teachers’ own statistical understanding, without
which they could not predict high-level responses, and their specialised knowledge of
statistics in the classroom, which they needed to identify students’ common miscon-
ceptions. Time constraints on teachers prevented the administration of more nuanced
instruments because these would have required a longer survey with more items to
address clearly the different domains. Hence, a Bthick^ construct of teachers’ statistical
PCK was the target variable used in the StatSmart study.

Measuring Student Understanding

In contrast to the measurement of teacher knowledge, measuring student knowledge has a
longer history. The measurement of student understanding of statistical concepts dates
back to ideas associatedwith Baverage^, usually interpreted as the arithmeticmean, as well
as concepts in probability. Both of these topics were typically found in earlier curriculum
documents associated with procedures for calculating means and probabilities. In the
1980s, Pollatsek, Lima & Well (1981) and Mevarech (1983) demonstrated student
difficulty with weighted averages, as did Strauss & Bichler (1988) with the general
properties of the mean. Mokros & Russell (1995) identified the dilemma of representa-
tiveness for averages, and Cai (1995, 1998) revealed difficulties with the notion of mean
due to students’ failure to work the algorithm backward. Similarly, Green (1983, 1986,
1991) produced the first large-scale longitudinal research in the related area of probability.

With the advent of the statistics component of national curricula, interest in mea-
suring student understanding over a broader range of statistical ideas grew, for example
including sampling (Watson & Moritz, 2000) and beginning inference (Watson &
Moritz, 1999). The work of Watson and colleagues was consolidated in a scale of
statistical literacy (Watson & Callingham, 2003) based on student surveys, and in a
scale of statistical understanding reflecting adoption of the concepts of variation and
expectation (Watson, Callingham & Kelly, 2007) based on in-depth student interviews.
Many of the items used in these studies drew on the earlier work of other researchers,
such as Batanero and her colleagues (e.g. Batanero Estepa, Godino & Green, 1996).

The StatSmart study drew on this body of work to develop instruments to measure
students’ statistical understanding. Items included many that had been used in prior
studies (e.g. Watson & Callingham, 2003) together with a small number of new items to
expand the item pool and provide additional information about specific statistical ideas.

Relationship Between Teacher Knowledge and Students’ Outcomes

Despite the activity on developing instruments and identifying key aspects of teacher
knowledge, it has been surprisingly difficult to link teacher knowledge directly to
students’ learning outcomes. It has long been recognised that using proxy measures of
teachers’mathematical knowledge, such as qualifications or training experience, shows
no relationship to students’ learning outcomes in mathematics (e.g. Mewborn, 2001).
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A major contribution to the field was made by Hill and colleagues (Hill et al.,
2004; Hill, Rowan & Ball,2005) who unpacked ideas about teachers’ specialised
mathematical knowledge and developed an instrument to measure elementary teachers’
mathematical knowledge for teaching. This measure included actions such as providing
examples, explaining concepts, correcting work and using a range of representations of
mathematical ideas. They found that teachers’ Bknowledge of mathematics for
teaching^ predicted gain scores in two lower elementary grades.

More recently, a German study of a representative sample of grade 10 classrooms
over 1 year identified that teachers’ mathematics pedagogical content knowledge had a
large positive impact on their own students’ learning gains (Baumert et al., 2010). They
identified that 39 % of the variance between classrooms was due to the variable they
identified as PCK. Further, they indicated that the relationship was linear and that PCK
was more important than content knowledge.

These findings suggest that classroom teachers understand mathematical ideas in
specialised ways, and that this specialised knowledge has a positive impact on students’
learning gains. In the study reported here, the context was statistics, rather than pure
mathematics, and students’ learning trajectories were considered using at least three
data points. Rowan, Correnti & Miller (2002) have suggested that this approach avoids
some of the difficulties associated with using learning gains. In addition, similar to the
Hill et al. (2005) and the Baumert et al. (2010) studies, a direct measure of teachers’
knowledge was used, rather than proxy measures such as mathematical qualifications.

There were a number of differences between the StatSmart study and those of
Hill et al. (2005) and Baumert et al. (2010). These two studies identified a link
between teachers’ PCK and their current students’ learning outcomes. StatSmart, in
contrast, was a 3-year longitudinal study in which the context of the project meant
that there was no control by researchers over which grades and classes teachers
taught, at what point in the school year statistics was taught or any changes to
teachers and classes during the study. During the project, students changed classes
and teachers, sometimes into classes taught by teachers not participating in
StatSmart, some teachers left their schools and others taught different grades from
year to year. In addition, as is common in the Australian situation, where students
were grouped by ability, teachers taught different ability groups of students from
year to year and, sometimes, in the same year had a high- and low-ability group,
both of which undertook the StatSmart tests. In this naturalistic situation,
untangling the influence of a particular current teacher proved impossible because
of the number of uncontrolled variables.

PCK could be considered as a measure of teacher quality, with teachers having
higher levels of PCK being more likely to teach classes showing gains in content
knowledge (Baumert et al., 2010; Hill et al., 2004, 2005). The study design was,
therefore, a pre- and post-test followed by a follow-up test to see to what extent changes
in students’ outcomes were maintained (Callingham & Watson, 2007). This longitudi-
nal design allowed a consideration of both the influence of the initial teachers’ PCK on
students’ outcomes when they were actively teaching the class, and also the mainte-
nance of that influence over time.

A decision was thus made to consider only the initial teacher’s PCK on a particular
student’s outcomes. It is known that students’ prior achievement is a predictor of future
learning outcomes (Dochy et al., 1999), and this was reflected in the study design.
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Hence, it is not unreasonable to suppose that the influence of an initial teacher’s PCK
might continue to impact on students’ future learning outcomes.

Methodology

The Context

The context of the research reported here was a 3-year research project, StatSmart, in
conjunction with the Australian Bureau of Statistics (ABS), the US manufacturer of the
software Fathom (Finzer, 2002) and TinkerPlots (Konold & Miller, 2005) and an
independent expert in professional learning for teachers of mathematics. Initially, 42
teachers were chosen from 18 schools in three Australian states. A commitment was
made by the teachers and schools to implement statistics units within the middle school
years (grades 5 to 9) and their state’s mathematics curriculum, based on the research
findings on the development of student understanding (Watson, 2006) and employing
one or both of the software packages that were provided to every school. To assist
further, each year, a 2-day workshop with all expenses paid was held in the ABS offices
in Melbourne, including the software developers from the USA. Teachers were expect-
ed to complete a teacher profile, including items developed to measure PCK. Examples
of items used in the profile are found in Watson, Callingham & Donne (2008) based on
proportional reasoning and in Callingham & Watson (2011) based on odds.

Participants

Students

Students in the middle years of schooling (ages 10 to 15 years) together with their
teachers were the target groups. These students and teachers were located in three
Australian states that had similar but not identical curricula (see Callingham, 2010 for
details). Over the course of the project, each student undertook three surveys of
statistical literacy. The first two were taken at the start and end of the first year in
which they entered the study, and the third survey was a follow-up taken about
12 months after the second survey. Over the 3-year study, there were two phases of
students who completed all three surveys and one phase that completed only the first
two surveys (see Callingham & Watson, 2007 for details of the research design). A
small number of students completed a fourth survey because they happened to be in a
class taught by a project teacher at the time the survey was completed.

The sample used in the analysis reported here consisted of 789 students for whom
there were three or four data points over 3 years and who did not change schools. All of
these students were part of phase 1 and phase 2 of the study. More specifically, 70
students had four observations and the remaining 719 had three observations. All of the
students did an initial survey and a follow-up survey after about 6 months while they
were still in the same year groups at school. After 12 months, most of them (n=765)
completed a longitudinal survey. A small number had different participation patterns
(see Table 1 for details). All of these students were taught by teachers who had
completed the initial teacher survey and for whom there were PCK measures available.
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There was an approximately even split of male and female students (48.7 % male),
and just over 10 % of the students came from backgrounds where they did not speak
English at home (non-English speaking background (NESB)=10.6 %). When they
commenced the study, students’ ages ranged from 10.1 to 15.8 years (M=12.9, SD=
1.0), and most (72 %) of them were attending a secondary school.

Teachers

At their first test, these students were taught by 36 different teachers located in 15
schools. Of these teachers, just over half (56 %) were male. Teachers also completed
three surveys, one in each year of the project. Particular care was taken to ensure that
teachers could be associated with particular groups of students in order to associate
teachers’ measured knowledge directly with students’ outcomes. The teachers had
varied backgrounds in both the level of mathematics studied and teaching experience,
summarised in Table 2.

Instruments and Analysis

Surveys

Teachers completed a profile instrument that included a set of 12 items designed to
measure PCK in statistics, rather than general mathematics. The PCK items were based
on real students’ survey responses from previous studies to provide authenticity.

Table 1 Test participation patterns for 789 students with teacher PCK data

Rd 1 Rd 2 Rd 3 Rd 4 Rd 5 Rd 6 Total

√ √ √ √ 70

√ √ √ 352

√ √ √ 24

√ √ √ 343

Total 789

Rd 1, Rd 2, etc. refer to the StatSmart test rounds

Table 2 Characteristics of StatSmart teachers

Mathematics
background

Number of teachers Mathematics teaching
experience

Number of teachers

No maths 3 91 % <2 years 0

1 semester tertiary 8 23 % 2–5 years 5 14 %

1 year tertiary 10 28 % 6–10 years 0

Undergraduate major 14 40 % 11–15 years 10 29 %

16–25 years 7 20 %

>25 years 13 37 %
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Figure 1 contains an example of an item that had been used in student surveys and was
intended to measure teachers’ content knowledge, knowledge of students as learners
and pedagogical content knowledge for intervention in the classroom. Contextually, it
refers to shops common in Australia and had been used in several previous studies. For
this item, students’ actual responses provided a pool of examples of students’ thinking
(e.g. Watson & Callingham, 2003) against which teachers’ responses could be com-
pared and coded.

A second item type asked teachers to respond to students’ actual answers to survey
questions (see Fig. 2 for an example). These items addressed teachers’ capacity to
provide student-centred ideas for intervention. Scoring rubrics were developed for
teachers’ responses to both types of survey question based on increasing complexity
and mathematisation. The rubrics for questions 5.3 and 5.4 are also shown in Fig. 2.

Students undertook one of three test forms, all linked by a core of 10 common items
(Callingham & Watson, 2007). Each test had between 22 and 24 items addressing
different aspects of statistical literacy, hereafter termed statistical literacy knowledge
(SLK), includingmeasures of central tendency, variation and sampling. The student tests
included several items that were also answered by teachers, including the supermarket
item shown in Fig. 1, and items addressing two-way tables (Watson & Callingham,
2014), and likelihood and sample size (Watson &Callingham, 2013). Hence, the student
and teacher surveys addressed the same content, albeit from different perspectives.

Both student and teacher responses to the surveys were analysed using Rasch
measurement using the software Winsteps 3.75.0 (Linacre, 2012). Rasch analysis
(Bond & Fox, 2007; Rasch, 1960) uses the interactions between items and test takers
(persons) to place all items and persons on the same interval scale. The approach is

Fig. 1 Typical teacher PCK item addressing knowledge of students and knowledge of pedagogy
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based on a probabilistic model underpinned by three key assumptions: (i) the items
address a single unidimensional construct; (ii) the probability of a correct or higher
level response increases monotonically with an increase in a person’s ability or
understanding; and (iii) all items are independent of each other. Where these assump-
tions are violated, the fit to the model falls outside acceptable parameters. Hence, the fit
to the model becomes of prime importance in determining the validity of the construct
and the suitability of the measures obtained for the intended purpose. The specific
model used was the Partial Credit Model (PCM) (Masters, 1982) where the scoring
rubrics, for both students and teachers, were used to provide partial scores.

Model fit is reported by Rasch modelling programs as four statistics: the Infit is a
weighted least squares measure and the Outfit is the unweighted measure. Both have an
ideal value of 1.0, and values suitable for measurement purposes lie between 0.5 and
1.5 (Linacre, 2002). In addition, a standardised z score is provided for each with
acceptable values lying between ±2. Rasch reliability statistics are the item and person
separation indices. These provide a measure of the consistency with which persons or
items are located on the scale produced. In general, person separation is considered
satisfactory if the index is >0.8 and item separation is satisfactory if the index is >0.9
(Linacre, 2013). Both indices are uninfluenced by model fit. The fit to the model and
reliability indices for the tests used in the analysis reported here for both students’ SLK
and teachers’ PCK are summarised in Table 3. Item separation indices are not available
for tests that are anchored to a previous administration. All fit and reliability statistics
for the tests used in the analysis were generally acceptable.

Rasch person measures in logits, the logarithm of the odds of success used as the
unit of Rasch measurement, were estimated for each of the three student tests. These
estimates were anchored to the first test to ensure that all were directly comparable on
the same measurement scale (Bond & Fox, 2007). A range of demographic variables

Consider the following problem that students were asked in a survey about chance and 
data: 

The average number of children in 10 families in the neighbourhood is 2.3.  
One family with 5 children leaves the neighbourhood. What is the average number of 
children per family now? 
Show your work here. 

Consider each of the following answers and explanations given by students in response 
to the problem. 
Explain how you would respond to each answer. 

5.3 
2.3 x 10 = 23 – 5 = 18 ÷ 10 = 1.8 

Code Description 
1 General response not involving the mathematics of the problem: “get student to explain thinking.” 
2 Comment on number of families or equation structure (problem content only). 
3 Questioning of student in relation to one of the issues: number of families or equation structure. 
4 Sequencing of task with questions for student to complete.

5.4 
I don’t know how many children in each family so how do you work it out? 

Code Description
0 Unsure how to proceed/no mathematics in response. 
1 Single isolated question or suggested approach, e.g., discuss average and how to work out. 
2 Extended explanation related to formulas involved. 
3 Suggestions that go beyond the formula to model the problem. 

Fig. 2 An example of student-answered items, together with the scoring rubrics, used in the teacher survey
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was also included. For the purpose of the analysis reported here, only the PCK measure
applicable to the students’ first test was used, usually the teacher’s initial measure.
These measures were then used as input variables to create hierarchical models.

Analysis

Simple descriptive techniques were initially used to explore the impact of teacher factors on
measures of students’ statistical understanding.Multilevel regressionmodels were then used
to control for the effects of demographic variables. These models were used to capture the
longitudinal nature of the outcome variable and dependence between students attending
given schools. It was not possible to model the dependence of students within classes,
because nearly two thirds of the students (63%) changed teachers after the second test, often
to teachers who were not part of the project, and from whom there were no PCK measures
available. In addition, only students who had undertaken test 1 or test 2 were tracked, so that
classes taught by a non-StatSmart teacher did not provide intact class data. Model estimates
were obtained using the software package R (R Development Core Team, 2011) and in
particular the Multilevel package (Bliese, 2012) as described in Faraway (2006).

Results

Descriptive Analysis

Initial results considered the changes in the overall SLK scores across time. At the student
level, SLK scores in tests 1 and 2 were correlated (r(787)=.67, p<.01), as were scores
between tests 2 and 3 (r(787)=.67, p<.01). On average, students obtained relatively low
SLK scores in their first test (M=−0.53, SD=0.71) and these improved in their second test
(M=−0.25, SD=0.64), with this increase statistically significant (t (1521)1=9.4, p<.01, d≈
0.4). The scores, however, appeared to decline slightly for the third test (M=−0.27, SD=
0.65), though this was not statistically significant (t (1547)=1.4, p<.01, d≈0.05)2. This
pattern is not unexpected in studies of this type, where the pre- and post-tests occur within a
relatively short period, and the longitudinal test is some considerable time after the post-test

1 Degrees of freedom based on Welch’s t test
2 The 70 students who did four tests reported a non-significant increase of 0.05 logits on their last test.

Table 3 Summary statistics for item (I) and person (P) measures for student SLK tests and teacher PCK
assessment

Test Rasch item
separation
index

Rasch person
separation
index

Infit
(I)

Infitz
(I)

Outfit
(I)

Outfitz
(I)

Infit
(P)

Infitz
(P)

Outfit
(P)

Outfitz
(P)

SLK 1 0.99 0.86 0.99 −0.20 0.98 −0.30 1.06 0.10 0.98 0.00

SLK 2 Anchored 0.85 1.06 0.70 1.08 0.70 1.13 0.40 1.13 0.50

SLK 3 Anchored 0.84 1.10 1.20 1.11 1.20 1.17 0.60 1.18 0.70

Teacher PCK 0.93 0.77 1.00 0.10 0.99 0.00 1.03 0.00 0.99 0.00

1348 R. Callingham et al.



(Cohen, Manion &Morrison, 2011). The growth pattern also appeared to be influenced by
grade level with differences occurring between test 2 and test 3. Figure 3 shows the
comparative results in three tests for two pairs of grade groupings, Grades 5 and 6, and
Grades 8 and 9 as box-and-whisker plots. The box shows the inter-quartile range of scores,
and the heavy line across each box is the median. The small circles represent scores falling
below the 10th percentile or above the 90th percentile. As shown in Fig. 3, the 124 students
in grades 5 and 6 showed a slight increase between these tests, whereas the scores of the 285
students in grades 8 and 9 fell slightly. Similar patterns have been shown in other studies
across the middle years of schooling (e.g. Hill, Rowe, Holmes-Smith & Russell, 1996).

Next, the impact of the teacher on students’ SLK scores was explored. Given the
restriction caused by changing teachers within schools, comparisons were made at the
student rather than teacher level. PCK scores for the initial teacher, the one teaching the
students for the period including tests 1 and 2, ranged from −1.61 to 2.47 logits (M=0.25,
SD=0.78). These were weakly correlated with the students’ SLK scores in tests 1
(r(787)=.17, p<.01) and 2 (r(787)=.08, p=.02), but not in test 3 (r(787)=.00,
p=.80), suggesting a waning effect. By way of comparison, the correlation between
teachers’ PCK scores and students’ SLK scores for test 1, aggregated to the teacher level,
revealed a similar association (r(34)=.27, p=.11), suggesting the reported positive asso-
ciation is not an artefact of the grouping in these data.

Given the large number of students who changed teachers between tests 2 and 3, the
effect due to this change was also considered. In particular, the results of students who
did not change teachers were compared with those who changed to a teacher in the
StatSmart project and with those who changed to a teacher not in the StatSmart project
(see Table 4). As is seen in the table, the students who changed to a non-StatSmart
teacher tended to have a fall in results between tests 2 and 3, though this was only
significant at the 10 % level (t(977)=1.7, p=.08, d≈0.1). Students who did not change
teachers and those who changed to StatSmart teachers experienced small, non-
significant gains. Those who did not change teachers started from a much lower mean

−
4

−
3

−
2

−
1

0
1

2
3

S
lk

 s
co

re

Grades 5 &  6
Grades 8 & 9

Test 1 Test 2 Test 3
Fig. 3 Distribution of SLK scores across three tests for younger and older students
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result in their first test than the other two groups. This particular group tended to be
younger (M=12.6 years) than the other students (M=12.9 years), and as is seen in
Fig. 1, younger students tended to score lower in these tests than their older peers. They
were also more likely to be in a primary school setting, where teachers may follow a
class of students over more than 1 year. Continuing to be taught by a teacher who was
involved with the project, however, appeared to have a positive influence on students’
outcomes, and this finding is further considered in the Discussion.

Other teacher factors were also considered. Students taught by female teachers, for
example, on average scored lower than students taught by male teachers in test 1 (t(771)=
6.3, p<.01, d≈0.4), test 2 (t(782)=5.8, p<.01, d≈0.4) and test 3 (t(787)=5.0, p<.01, d≈0.3).
Further, those students taught by teachers with a tertiary-level mathematics background
performed better than those taught by less-qualified teachers in each of test 1 (F(3, 776)=
20.6, p<.01), test 2 (F(3, 776)=18.0, p<.01) and test 3 (F(3, 776)=6.6, p<.01). In both cases,
however, the lower performing groupswere likely to be younger students in primary settings.

One school-level factor was also considered. The Indicator of Community Socio-
Educational Advantage (ICSEA) measure (Australian Curriculum, Assessment and
Reporting Authority, 2012) was used to assess the impact of school-level socio-
economic status on students’ SLK scores. The mean for ICSEA is set at 1000, and
the schools in the study had ICSEA scores ranging from 912 to 1168. At the school
level, correlations between this index and mean SLK scores were positively associated
in each of test 1 (r(13)=.65, p<.01), test 2 (r(13)=.67, p<.01) and test 3 (r(13)=.69,
p<.01), suggesting that ICSEA has a strong influence on between-school variation.

Multivariate Analysis

Initially, an analysis of variancewas conducted on the SLK results for each of the three tests
against class and school groups. For test 1, results suggested that 15% of the variance could
be attributed to between-school effects, 28 % to between-class effects and the remainder to
between-student effects. Similar results were obtained for the other tests, suggesting that
grouping by classes and schools was desirable. As reported earlier, however, grouping by
classes was not possible because most students changed teachers after test 2, a situation
common in the Australian context. Instead, the change of teachers was modelled
using a change-teacher variable. Given the risk that standard errors may be
overestimated, a more stringent critical value of 1 % was adopted, as recom-
mended by Thomas (2001).

A random intercept model was applied to these data. The model assumes that at the
individual student level, growth in statistical understanding is linear and expressed as

ð1Þ

Table 4 Influence of changing teachers on students’ SLK scores

Status Mean/SD test 1 Mean/SD test 2 Mean/SD test 3 Number of students

Changed to non-StatSmart teacher −0.44/0.64 −0.18/0.56 −0.24/0.64 498

Changed to StatSmart teacher −0.91/0.89 −0.54/0.75 −0.47/0.67 125

Did not change teachers −0.52/0.66 −0.23/0.70 −0.20/0.62 166
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3 A random slopes model that allows different growth trajectories was also tested but failed to converge.
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where the errors (ϵtij) are assumed to be independent, distributed normally and with a
common variance. Ytij is the mathematics achievement of student i, from school j, at
time t (t=0, 0.4, 1.4, and for some 2.4 years). The initial status of student i from school j
is denoted β0ij, and the model assumes that growth during the period of the study is the
same3 for each student β1. The parameter β0ij, however, is assumed to vary randomly
across students within schools, in that

β0i j ¼ γ00 j þ u0i j ð2Þ
where γ00j is the estimated initial mean score for all students attending school j and u0ij
is the discrepancy between this and the initial score of student i in school j. The
parameter γ00j is assumed to vary randomly across schools, in that

γ00 j ¼ τ000 þ uj ð3Þ
where τ000 is the grand mean initial score for all students across all schools and uj the
discrepancy between this grand mean and the mean for school j.

Equations (1), (2) and (3) above represent the unconditional model reported as
model 1 in Table 5. In line with recommendations from Dedrick et al. (2009),
underlying assumptions of the model, including the absence of an autoregressive
structure, were assessed and found to be satisfactory. As is seen in Table 3, the null
model predicted that students’ participation in the study for 1 year was associated with
an increase in SLK of 0.14 logits.

In developing the final model, several factors were introduced in order to explain
each of the variance components in the null model: the residual or within-student
variance, var(ϵtij); the between-student variance, var(u0ij); and the between-school
variance, var(uj). Changing teachers, for example, was found to be a significant
predictor of SLK scores that reduced within-student variance from 0.134 to 0.128
(5 % reduction). Student-level factors, including their standardised age when they
completed test 1 (agez), whether they spoke a language other than English (NESB=
1) and the standardised PCK score of their initial teacher (PCKZ), were significant
predictors of SLK that reduced between-student variance from 0.185 to 0.178 (6 %
reduction). Other teacher factors such as sex and mathematical background did not
predict SLK in the model. Finally, the standardised ICSEA index (ICSEAZ) was found
to be a significant predictor of SLK that reduced between-school variance from 0.089
to 0.028 (69 % reduction).

Given the results of the descriptive analysis, two interactions were then introduced
into the model. The first was an interaction between PCK and time, in that the earlier
analysis suggested a waning effect. The second was an interaction between commence-
ment age in the project and time, in that results displayed in Fig. 1 suggest that older
students typically had greater initial scores than their younger peers but less steep
growth trajectories. Both of these interactions were found to be significant predictors of
SLK that improved model fit (based on a comparison of deviance test). The final model
is shown as model 2 in Table 5.

As is seen in model 2 of Table 5, changing teacher to a StatSmart teacher (chgtss=1)
was not significantly different to not changing teachers at all. Changing teacher to a
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non-StatSmart teacher (chgtns=1), however, was associated with a significant reduc-
tion in SLK scores (γ ¼ � 0:14Þ. Student-level factors, including their standardised
age when they completed test 1 (agez), whether they spoke a language other than
English (NESB=1) and the standardised PCK score of their initial teacher (PCKZ),
were significant predictors of SLK that reduced between-student variance. Students
with non-English-speaking backgrounds, for example, were predicted to score 0.17
logits lower than their peers throughout the study. The model also suggests that
teachers’ initial PCK was associated with higher SLK scores (γ ¼ 0:07), but that this
association fell by 0.03 logits with each year that the student was in the study. The
ICSEA index was found to be a significant predictor of SLK that reduced between-
school variance, in that students from schools with an ICSEA value one standard
deviation higher than the mean were predicted to score on average 0.23 logits higher
than their peers.

Discussion

In the final model, a substantial part of the between-school variance was explained by
socio-economic factors represented by the school variable ICSEA. Age of the student at
the first test and whether the student spoke a language other than English at home

Table 5 Results of multilevel models

Variable Model 1 Model 2

Estimate SE Estimate SE

Fixed effects

Initial mean SLK γ00ð Þ −0.44a 0.08 −0.42 0.05

Time 0.14 0.01 0.20 0.02

chgtss −0.06 0.04b

chgtns −0.14 0.03

agez 0.16 0.02

NESB −0.17 0.06

PCKZ 0.07 0.02

ICSEAZ 0.23 0.04

PCKZ * time −0.03 0.01

agez * time −0.05 0.01

Random effects

Within-student varðϵti) 0.134 0.128

Between-student var u0ið Þ 0.185 0.173

Between-school var u1ið Þ 0.089 0.028

Model deviance 3354 3205

Number of parameters 5 13

a All effects are in logits
b This effect is not statistically significant. All others are significant at the 1 % level



contributed substantially to between-student variance explained. These results are not
surprising and echo those from other studies (Hattie, 2008). Of particular interest,
however, is the effect of the first teacher’s measured pedagogical content knowledge
(PCK). This variable had a significant effect on students’ achievement, in line with
other studies undertaken with elementary teachers (Hill et al., 2005), or with students
nearing the end of high school (Baumert et al., 2010). The StatSmart study addressed
the middle years of schooling, hence establishing that PCK is a key variable for
considering teachers’ impacts on their students’ learning across the years of schooling.
The PCK/time interaction term, however, was negative, suggesting a waning effect, in
that the influence of good, or bad, teachers wanes as students progress through school.
Intuitively, this finding seems sensible. It is the current teacher who is likely to have
immediate impact, but because of the nature of the study, modelling this effect proved
impossible. The teacher’s mathematical background, gender and years of teaching
experience had no significant impact on students’ measured achievement, in line with
other studies (e.g. Mewborn, 2001). Although this study was undertaken in the context
of statistics education, there is no reason to suppose that it would not apply in the
mathematics domain more generally, given that statistics is taught within the mathe-
matics curriculum.

StatSmart was able to track both students and their teachers across time. It proved
difficult to find similar studies in which both student and teacher achievement data
were available and linked together, other than the two referred to earlier (Hill et al.,
2005; Baumert et al., 2010). Sustainability across time appears to be imperative at
the teacher level. Effective schools are known to provide consistency for students as
they move up the grade levels (Hill et al., 1996; Hill & Rowe, 1998). The finding
that changing to a non-StatSmart teacher had a negative effect on students’ mea-
sured achievement is important. Much is made in the research literature of key
transitions, such as the move from primary to secondary school, but there is little to
identify other transitions.

The StatSmart study appears to indicate that moving from one teacher to another
teacher having similar professional learning experiences reduced any negative effects
of transition. Rowan et al. (2002) argued that using students’ individual growth
trajectories tracked across at least three time points, as was done in this study, is
preferable to using single achievement scores or gain scores. They also showed that
when elementary students moved from class to class across years, the effect of
changing teachers was inconsistent, with some students making gains and others not.
The difficulties of establishing teacher effects across more than one class are well
documented (e.g. Hill & Rowe, 1998), especially in systems where schools attempt to
create classes each year that take account of the individual student’s needs, as is
common in Australia. The finding reported here has potential implications for systems
and schools. Although the identified teacher effects were small, they are educationally
important. Teacher quality is likely to be more amenable to policy intervention than are
the large effect variables of socio-economic status (ICSEA) and non-English-speaking
background (NESB) (Hattie, 2008).

Time in the programme also had a relatively large effect on students’ SLK scores.
Partly this is explained by increasing age and experience. The finding, however, has
potential implications for both policy makers and schools when taken together with the
changing teacher effects. Having a sustained focus by teachers who participated in
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professional learning for an extended period had a positive effect on their students’
achievement in this study. Many professional learning programmes are undertaken by
schools or systems for short periods, in line with funding availability. The StatSmart
project was a 3-year programme and retained a majority of the original teachers for the
whole period. These teachers were, by their continued presence in the project, highly
committed and during the 3 years made changes to their practice, and reported back on
these at annual conferences. In addition, there was ongoing contact with the research
team. Only rarely do projects such as StatSmart hold teachers over time, especially
where the schools are Bconscripted^ into professional learning studies by the funding
bodies (e.g. Watson, Brown, Beswick & Wright, 2011). The implication is that
education systems and schools need to make a long-term commitment to a particular
programme or approach to teaching, rather than commonly occurring situations where
one-off professional learning is delivered by an expert through workshops disconnected
from teachers’ classrooms.

The findings from this study must be considered in the light of the limitations
imposed by the naturalistic setting. There are myriad uncontrolled variables that
impact on students, in classes, in schools. These create considerable Bnoise^ and
unexplained variance in the data collected, and this is acknowledged. Nevertheless,
the findings are similar to those of other studies conducted in more controlled
conditions. In addition, the loss of teachers and students from the study over time
meant that the data set comprising a complete set of both teachers’ and students’
measures became too small to achieve sufficient statistical power. If funding had
permitted a much larger data set at the start of the study, the study design meant that
it might have been possible to track changes in teachers’ and students’ outcomes
across time and the association between these changes. Within the constraints of the
StatSmart study, this proved impossible.

Conclusion

This study has indicated that teachers’ pedagogical content knowledge in statis-
tics was associated with their students’ learning outcomes in different educational
contexts to those reported in previous studies. In addition, the findings indicated
that negative effects due to transitions to new teachers can be mitigated if the
new teacher has similar professional learning experiences. With these two find-
ings, the StatSmart study has added to the growing body of evidence that
knowing the subject matter alone is not sufficient for positive teaching outcomes.
It is the specialised way in which teachers understand their subject that counts.
The complex blend of subject matter knowledge and understanding of student
learning and school context, known as pedagogical content knowledge, makes a
difference, together with a sustained focus on, in this instance, specific profes-
sional learning.

One next step is to consider whether particular groups of students, such as low
achievers, benefit more than others. Another is to consider how the nature of PCK
changes with levels of schooling, and the effects of different approaches to developing
teachers’ PCK. There is still much to be researched in the area of teacher knowledge
and its influence on student outcomes.
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