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Abstract Identifying and expressing relations between quantities is a key aspect of
understanding and using functions. We are aiming to understand the development of
functions understanding throughout school years in Israel. A survey instrument was
developed with teachers and given to 20 high and average achieving students from each
of years 7–11 and to 10 high achieving students from year 12, a total of 110 students.
Our analytical approach is to identify qualitatively what students appeared to do and
whether their approaches led to complete solutions. We look for progress in under-
standing variables and relations between them, and we found that there does not appear
to be a strong link between curriculum and informal understandings of variables and
covariation, but there are other strengths.

Keywords Covariation . Correspondence . Functions . Rate of change . Variables

Introduction

We focus on the function concept as an explicit and implicit foundation for advanced
study involving mathematics. We take the view that function understanding combines
several earlier algebraic and graphical concepts, used both formally and informally. We
therefore set out to learn systematically about students’ particular ways of seeing
functions at different stages of secondary school, intending that our insights could
contribute to curriculum and pedagogic choices. We build on a strong body of research
that reveals dimensions and difficulties in learning functions to develop a survey
instrument that could be accessed by the youngest students but would also address
and examine what we interpreted would reveal progression right through to the oldest
students. Our aim in this paper is to report on data from Israeli students indicating
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progression in identifying and expressing a variety of relations between quantities. This
study is of importance beyond Israel because of the formal focus on functions in their
national curriculum from age 12. This small study also shows the value of longitudinal
study across school years, rather than depending on separate studies of particular
concepts and tasks.

Working closely with Israeli teachers, the survey was given to 20 high and
average achieving students from each of years 7–11 and to 10 high achieving
students from year 12, a total of 110 students. The ideas that contribute to the
function concept develop throughout students’ school experience, younger stu-
dents learning algebraic tools and also maybe plotting data from realistic situations
and interpreting it informally. Leinhardt, Zaslavsky & Stein (1990), in their review
of research into functions learning, describe different perspectives on functions:
“mathematical presentation [of functions] is usually from an algebraic function
rule to ordered pairs to a graph, or from a data table of ordered pairs to a graph. …
[and] scientific presentation, … proceeds from observation, to data array, to
ordered pairs of data, to selection of axis labels, to scale construction, to graph
and (maybe) to function.” (Leinhardt et al. 1990, p. 3). For us, progression refers
to these ideas and competencies developing over time. Our analytical approach is to
identify qualitatively what students appear to do, and whether their solutions are
complete, in a range of tasks relating to functions, and we try to account for their
behaviour. Indications of progression are presented as conjectures, based in a small
sample, about the role and effect of formal teaching about functions and variables, and
connections between formal knowledge and informal understandings.

First, we describe the curriculum context. We then review a selection of
literature about learning functions, followed by a description of our task design
intentions and methods of analysis. Subsequently, we analyse the students’ re-
sponses to the tasks, categorise them and identify progression. We compare the
responses to the literature and curriculum and make conjectures about the rela-
tionships between curriculum, teaching, design and progression, pointing out areas
for future research.

Curriculum Context

As a country with a centralised educational system, the Israeli school curriculum
is developed and regulated by the Ministry of Education, and textbooks have to
be officially approved. The national mathematics curriculum in Israel for sec-
ondary schools (Ministry of Education, 2009) provides detailed recommendations
related to teaching functions. In seventh grade (year 7, ages 12–13), one main
aim is presenting the concept of function as a relationship between two quanti-
ties, one depending on the other. Four different representations are used: verbal,
graphs, tables of values and algebraic expressions; formal notation is introduced,
either using y or f(x); and a (numerical) function is defined as matching a
particular number to any number (chosen from a domain). Rate is also taught
in year 7, and a second aim with functions is to compare the change (including
varying rates) in the value of y or f(x) when x changes using graphs and tables.
Before/earlier to year seven, students work on patterns and sequences. The main
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focus in year 8 is the linear function, emphasising its constant rate of change,
straight line graphs and the form y=mx+b.1 The focus in year 9 is on charac-
teristics and transformations of quadratic functions. In years 10–12, formal
calculus is introduced. This curriculum information provides the background
for raising conjectures.

Theoretical Background

There is a substantial body of literature about difficulties and possibilities in students’
learning of functions while understanding its foundational role in higher mathematics
(e.g. Sajka, 2003; Vinner & Dreyfus, 1989). Dreyfus & Einsenberg (1982) conducted a
progression study in grades 6 to 9, focusing on the formation of a functions concept
rather than components of such a concept. We are more interested in the components
and draw to some extent on studies of learners’ behaviour in particular conceptual
contexts.

In their seminal review of research on school tasks associated with functions, graphs
and graphing, Leinhardt et al. (1990) developed four overlapping constructs: the action
of the student or learner, the situation, the variables and their nature and the focus. We
found their framework to be useful for designing and characterising our tasks as well as
in interpreting the findings. We therefore used it as an organiser for a review of relevant
literature.

Action

Leinhardt et al. (1990) classify tasks into two, non-exclusive, categories of action:
interpretation and construction. By ‘interpretation’, they mean the action by which a
student gains meaning from a graph, equation or situation. ‘Construction’ is about
generating new objects that are not given, such as building a graph or an algebraic
representation. Interpretation can be local, such as determining when specific events or
conditions are met, or it can be global, such as focusing on patterns or rate of change
and gaining meaning about the relationship between variables, their covariation.
Understanding global features of a graph is valuable for later mathematics: calculus
and modeling. Goldenberg (1987) has pointed out that a qualitative approach to
relationships, necessary for interpretation in realistic contexts, uses students’ common
sense, intuitions and reality-checking strategies. Construction, like interpretation, can
also be either local (e.g. plot points) or global (e.g. sketch a graph).

Two general approaches to interpreting and constructing functional relationships
from data are often discussed in the literature arising from observations of students’
methods: correspondence and covariation (e.g. Confrey & Smith, 1994, 1995). The
correspondence approach builds a rule for determining the unique y-value from any
given x-value, thus building a correspondence between x and y. The correspondence
approach is emphasised in the notation: y=f(x) and also some teaching methods, such

1 Straight line graphs include proportional and affine relations; we use ‘linear’ for all these in common with
curricula and school-based use of the term.
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as input–output models, and makes a plausible contribution towards understanding that
relations between two sets of numbers might (sometimes) be expressed as general
algebraic ‘rules’. The Israeli curriculum gives emphasis to a correspondence view of
function by introducing f(x) notation as an option, which the teachers in our survey
adopted.

A covariation approach to functions involves an understanding of the manner in
which the dependent and independent variables change. It entails being able to
coordinate movement from ym to ym+l with movement from xm to xm+l. With tables
of values, it involves the coordination of the variation in two or more columns as one
moves down (or up) the table; with a graph, it involves understanding changes in
vertical value as one moves horizontally. A covariation approach is a precursor both to
calculus and to modeling natural phenomena. Our perspective is that these approaches
need to be connected to provide a full understanding, so we see ‘rate of change’ as an
instantiation of a relationship in which changes in one variable can be expressed
formally or numerically in terms of changes in another variable, where covariation
more generally might not provide this precision. In situations where rate of change can
be calculated, it might be correctly deduced through a procedural approach such as
comparing step sizes or drawing ‘gradient’ triangles without any awareness of what it
means in terms of covariation; alternatively, a student might express a situation
qualitatively in terms of covariation but be unable to operationalise this idea as a rate
of change. The Israeli curriculum includes varying and constant rates of change with
graphs and tables and practical situations, so encourages a covariational view as well as
a correspondence view.

Research about generalising from sequential data arising from spatial sequence
patterns shows that students tend to reason about the differences in the dependent
variable only (e.g. Stacey, 1989). Lack of attention to the independent variable means
that a student could appear to be thinking of covariation by considering step change in
the dependent variable, particularly where sequence patterns have been a normal
classroom practice, without any sense of coordinating this with the position variable
or time variable. A full covariation approach is considered by some authors to be harder
to understand because the focus is on change rather than quantity (Mevarech &
Kramarsky, 1997). However, children have been seen to possess intuitive ideas about
covariation through observations of physical phenomena that surround them every day
(Confrey & Smith, 1994), and a recursive approach to sequential data can provide a
basis for covariational reasoning.

Carlson, Jacobs, Coe, Larsen & Hsu (2002) use observations of calculus students
working in a dynamic function situation to propose a framework of five mental actions
that describe the reasoning abilities involved: (1) coordination of variables; (2) direction
of change; (3) coordination of the amount of change in the two variables; (4) average
rate of change over uniform increments; and (5) instantaneous rate of change. Flexible
movement between mental actions 3, 4, and 5 was difficult for precalculus students,
and many only employed mental actions 1 and 2. Confrey & Smith (1994) report that
young children were able to develop the idea of ‘unit per unit’ (p. 153) comparison in
concrete situations, while Blanton & Kaput (2011) revealed that children at early age
can demonstrate covariation when a problem is contextualised and a pattern is directly
proportional to the step number—they could articulate y=mx relationships in discrete
situations. So while rate of change can be understood in some circumstances, varying
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rate of change is a significant hurdle. Herbert & Pierce (2012) identified important
aspects of rate of change that were missing or incomplete among year 10 students:
awareness of relationships between two changing quantities, especially when varying,
and quantification of rate of change.

Most studies about generalisation of functions presented as spatial sequences agree
that young adolescents find it difficult to reach theoretical generalisations; they tend to
use a term-to-term approach to the dependent variable so that later terms, beyond the
given, are difficult to evaluate (e.g. Radford, 2008; Stacey, 1989). Several researchers
have suggested that task presentation influences students’ approaches since presenting
data as numerical sequences can encourage a term-to-term approach, which can be
successful in generating subsequent terms but significantly precedes their capability to
generalise a function (e.g. Orton, Orton & Roper, 1999). Where students are asked to
construct generalisations from sequential spatial diagrams instead of numerical data,
they might build up the shape by adding components or count sub-configurations and
subtract sides that overlap. Rivera & Becker (2008) found the latter approach to be
more error-prone. Misapplication of proportional reasoning in sequential contexts, and
also in word problems, is common, leading students to assume, for example, that f(100)
must be equal to 10f(10) (Stacey, 1989; Van Dooren, De Bock, Hessels, Janssens &
Verschaffel 2005). In the study of Van Dooren, in which the situations were not
presented as sequences, frequency of this error peaked in grade 5 and fell in later years.

Situation

‘Situation’ refers to two aspects: the surrounding setting of the task and the context of the
problem. The setting for our survey is always the classroom and students are used to
‘taking tests’ in that place. To take account of different pathways towards functions,
school mathematics often includes contextual applications, designed to deepen students’
understanding of the abstract mathematical concepts as well as to give experience of the
processes of mathematical modeling. Much of the research about functions, such as
covariation, involves students’ understanding physical phenomena, and children can
often analyse and handle covariation using everyday knowledge before they can do
so in formal settings. For example, Dreyfus & Eisenberg (1982) observed that
intuitive understandings were not necessarily associated with formal understanding
of functions; they also identified some progression of intuitions during grades 6 to 9.

Variables

The notion of a variable is fundamental to understanding functional relationships and
graphical representations and is a prerequisite for making sense of covarying quantities.
There are several meanings and aspects of variables. A variable might be seen as static
or dynamic: the static interpretation emphasises a variable as a symbolic tool for
generalisation or for describing patterns; the dynamic focuses on how variations in
one quantity relate to variations in others (Janvier, 1981). A dynamic approach to
variable can be represented in a number of ways (e.g. use of dynamic software to
generate a graph as the dependent variable changes).

A variable can be contextual or abstract. Contextualised variables are most often
continuous in nature, although they may not be represented as continuous. Many
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contextualised tasks include a time variable. Interpretation and construction of graphs
in which one of the variables is time are relatively easy because the variation associated
with time seems natural (Janvier, 1981). This can lead to students to ignore the meaning
of the independent variable or to interpret the shape of a graph of a situation as a picture
of that situation (e.g. Schultz, Clement & Mokros, 1986). The construction of axes is
not straightforward (Leinhardt et al., 1990), particularly when the variables are unusual
for the learner. If these are provided, students do not need to identify variables and
decide how to represent them. In sequence tasks, the independent variable might not be
recognised because it is the natural number sequence; in input–output tasks, the
independent variable might be seen as a specific value or a placeholder. When variables
are abstract, e.g. numbers, there is little research about students’ understanding.
Variables can be numeric or non-numeric, discrete or continuous and might also be
compound units or rates, such as speed, density and price per unit.

Focus

‘Focus’ refers to the location of the attention within a specific task. There may be
several possible foci in any task. A novice may focus on axes, scales or how individual
points are connected, because they are drawing or calculating or plotting these, where a
task author or teacher may expect the focus to be on a particular property of a function.

The considerations described in the above sections guided the design of our survey
tasks. To understand progression towards functions in school contexts, we based our
design on what is already known about learning about functions and also on what is
known about the curriculum that students have experienced and what teachers expect of
students.

Design of Survey Tasks

First, we developed a hypothetical conceptual map of functions seen from both pure
mathematical and modeling perspectives based on our own experience. We compared
this map to the curriculum, and to the literature, and to teachers’ expectations. From this
conceptual investigation, which cannot be reported here for reasons of space, we
identified understanding relationships between variables as a key idea in all possible
pathways of development towards functions understanding in school. In order to
understand functions for calculus or modeling purposes, they need to understand rate
of change, and for this, they have to recognise variables, identify them and understand
how they relate. We developed the survey instrument over several design cycles
working closely with eight teachers, four in Israel and four in England to ensure a
breadth of curriculum perspectives. We used tasks from Wilmot, Schoenfeld, Wilson,
Champney & Zahner (2011) and Swan (1980) as resources as these are based on the
considerations above. As well as working on the instrument, the same teachers also
conducted the survey and provided insights about their pedagogy.

We included task features to address the framework from Leinhardt et al. (1990)
described above (see Table 1) with each individual task addressing several issues that
arose in our review. The questions had to be accessible for students in years 7 to 12.
Together with the teachers, we made tasks that appeared familiar so that students would
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be able to access them but varied the representations so that students may not respond
habitually to them. The familiarity of language used was agreed with the teachers. It
was then trialed and the outcomes and difficulties were discussed with teachers and
further adaptations made. Our aim was to support students to find out what they can do,
rather than offer questions that might encourage common errors. The final version

Table 1 The tasks in terms of the four constructs suggested by Leinhardt et al. (1990)

Task A Task B Task C

Action Interpretation task: making
sense of the table of values
and comparing both data
columns; using the notion
of rate of change

Local action on particular
values

1.2 Global action finding the
general rate of change

Mainly constructing: a
spatial structure; a method
of calculation; a corresponding
algebraic expression.
Interpretation of a geometrical
pattern; linear relation between
number of hexagons and
perimeter.

2.1 Local and quantitative
actions (calculating
perimeter for given small
number of hexagons)

2.2 Global actions of
structuring generalisation,
possibly finding rate of
change or expressing overall
structure

Translation between
geometric, verbal and
algebraic expression

Interpretation task: matching
graphs and verbal situations

Global qualitative: relate entire
graph (or part of it) to the
situation; identify variables
and relations between them;
patterns of covariation;
contextual features and zeroes

Translation between
representations

Situation Data presented in tabular
form, but not sequential.
Context is a realistic
position/time relation.

Data presented in geometric
and verbal relational form.

Realistic contexts: (i) audience
noise; (ii) cinema prices; (iii)
inflation; (iv) racetrack

Context: artificial but
‘realistic’ discrete spatial
growth situation.

Dynamic, continuous, varying
rates of change in four
situations: (i) time, volume of
noise; (ii) price, profit; (iii)
time, price/price rise; (iv)
speed, time (as dependent
variable)

Variables Dynamic
Familiar context. Time as

independent variable,
presented as if discrete

Linear

Dynamic or static
Spatial sequence. Sequence

number as independent
variable

Variable can be a tool for
expressing overall structure

Linear

Compound variables in
situations iii, price rise, and
iv, speed. Time is not always
the independent variable

Choice of variables in situation ii

Focus Relating dependent and
independent variables

Rate of change deduced
from data/ movement
of lift

Relations between discrete
variables; avoiding
assumptions about
sequential patterns

Can be approached via
covariation or
correspondence
reasoning

Relating two representations:
verbal situations and graphs

Identifying variables, relations
between the variables;
covariation
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using six tasks was approved by the teachers. The final design and our analysis
therefore drew on teachers’ knowledge and expectations of students, teachers’ reports
of the order and content of their teaching, knowledge of curriculum, knowledge of tasks
familiar in textbooks and tests and knowledge from research literature as described
above. For this paper, we focus on the three survey tasks that involve identification of
variables and the relationships between quantities. Information about other tasks and
performance of other students can be found elsewhere (Ayalon, Lerman & Watson,
2013, 2014a, b; Ayalon, Watson & Lerman, manuscript submitted for publication). The
tasks appear in the ‘Results’ section below so that students’ responses can be directly
compared to the task presentations.

We started with tasks involving linear data for several reasons, younger students in
our range would be familiar with linear sequence tasks and hence there would be access
for all, and data arising from familiar phenomena are usually presented in sequential
tabular form. We wanted to deter students from reasoning directly from numbers as in
Orton et al. (1999). Instead, we wanted to see if they could reason about the situational
variables, including the independent variable. We took this into account in our design
of task A (Fig. 1 in ‘Results’ section) by not having a natural number sequence as the
independent variable and in task B (Fig. 2 in ‘Results’ section) by presenting
non-sequential data for a sequential growth structure, thus upsetting some of the
tendencies reported in Stacey (1989) and Orton et al. (1999) but retaining
spatial diagram ordering used by Radford (2008). We reasoned that this would
encourage students to take the independent variable into account and hence
enable them to transform recursive approaches into covariational approaches.
We also chose not to present proportional situations, since Van Dooren et al.
(2005) had shown these to be fairly easy for younger students, and we wanted
to see if students would avoid making incorrect proportional assumptions. The
tabular and non-tabular presentations provide opportunities to show correspon-
dence or covariational reasoning to generalise the situations. We asked for verbalisation
of the relationship to get extra information about students’ reasoning, and this could also
provide scaffolding for some students to construct the algebraic form (Radford, 2000).

You are staying in a hotel on its 14
th

floor. You are going to use the lift to go down to the parking level. 

The hotel has a ground level numbered zero, and there are several parking levels underneath the zero 

floor. 

The table below shows what floor you reach after a number of seconds. 

1.1 Where will the li� be a�er seven seconds? Explain 
your answer.

1.2 At what rate does the li� descend? Explain your 
answer.

1.3 You might want to check whether your answer to 
ques�on 1.2 fits with your answer to ques�on 1.1.

Number of seconds Floor number

0 14

2 10

4 6

6 2

7 ?

Fig. 1 Task A
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Task C (Fig. 3 in ‘Results’ section) involves matching four verbal descriptions of
non-linear situations to sketches of graphs. Dynamic situations involving matching
verbal situations and graphs support the role of functions in representing variations (e.g.
Swan, 1980). Our four situations focus on identifying the variables, forming the
relation between them (in particular covariation) and noticing contextual features.
Rates of change vary in all the situations. We added a drawing of axes to each situation
included in the original task (Swan, 1980) and asked students to label variables to help
them be explicit about variables and relations; we did this because it might scaffold
students’ attention to choice and behaviour of variables (Leinhardt et al., 1990). This
subset of tasks from the whole survey presents varied opportunities for students to
identify contextual and quasi-contextual (task B) variables and reason about behaviour
and relations between independent and dependent variables in formal (algebraic) and
informal (verbal) ways. Students who do well in these tasks would be prepared for
applications and modeling with functions and for considering more formal approaches
to varied rates of change.

Table 1 above shows how these three tasks address the categories and considerations
arising in this summary of the theoretical background.

Methods

Sample

To make conjectures about progression towards the function concept in secondary
years of schooling, we needed detailed data from a suitable spread of students in terms
of age and past attainment, including higher achieving students who are most likely to
need functions in later study or employment. We needed a sample that is large enough
to encompass a wide range of possible responses while being small enough to analyse
individual responses in detail. The survey was given to two suitable Israeli classes from

Fig. 2 Task B
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each of year 7 to year 11, a highest achieving class (H) and a middle achieving class
(M) and to a high achieving Israeli class (H) of year 12. The reason for including high
and middle achieving groups was to get a spread of possible competency with the tasks.
Year 7 to 11 classes were from two schools with each school providing data from
alternate years. The year 12 class was from a third school for practical reasons. Using a
range of schools ensured that we were not reporting an individual school effects, that
we did not overburden institutions and that teachers engaged in productive discussions
when they met. The survey was done in normal lessons, and we took random
anonymised samples of 10 scripts from each class (110 scripts).

Fig. 3 Task C
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Data Analysis

For each task, we used a grounded approach to categorising all the different approaches
students had taken. The responses were coded and organised according to the reasoning
that could be inferred from answers. Decisions about interpretation were made collab-
oratively among the research team by discussion and consensus. We constantly checked
categorisations against the whole data set, and between ourselves, testing distinctions to
see if all responses fitted into one and only one category. This process required several
passes through the whole data. The analytical process was thus iterative and compar-
ative. For each task, the categories of responses are task-specific and include all
approaches, whether successful or not. This is to generate as full a picture as possible
of what students do in functions-related tasks. Detailed categories are presented below
relating to each task.

Results

For each task, we introduce the task, the teachers’ expectations, the analytical catego-
ries (with examples) and quantitative results representing the distribution of the cate-
gories across years within the H and M groups. We report these cohorts separately so
that the performance of the highest achieving students can be seen, and we draw
attention to significant similarities or differences between the H and M cohorts in case
there are some. We focus our remarks on identification of variables and relating
variables.

Task A (Fig. 1) focuses on rate of change, implicitly and explicitly, when an elevator
descends. Constant speed is implied and was assumed by all teachers and students. The
2-s gaps followed by a ‘break’ in the time sequence in the data table were designed to
help students notice that the term-to-term pattern of the table vertically requires some
thought; the missing value was an attempt to draw attention to the break so that students
would not be controlled by a linear pattern down the table. Question 1.2 asks explicitly
for rate, which is not defined but examples are given, so that the data table needs to be
transformed into ‘floors per second’. The last part of the task is intended to encourage
critical reflection.

Teachers anticipated that students of all ages and groups would spot the correct
missing value in 1.1 and succeed in finding the correct rate in 1.2. Although the concept
of rate of change is not met formally until the end of year 7, teachers expected that year
7 students would be able to answer intuitively. Three categories of expressions of rate
of change emerged, as presented in Table 2.

Tables 3 and 4 present the distribution of the categories of expressions of rate of
change in the H and M classes, respectively. As shown in Table 3, almost all H group
students provided formal expressions of rate of change as floors per seconds for
question 1.2, but 10 % chose the wrong answer of −2 when asked to find where the
lift will be after 7 s, explaining that the lift is going down four every second. However,
when asked to find the rate at which the lift descends, they used both variables to get
the correct answer. Despite the stimulus in question 1.3, there was no evidence that any
rethought question 1.1. The familiarity of the tabular form had apparently led them to
ignore the independent variable until they had to use it for 1.2. In the M classes, a
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higher proportion of students made this mistake, and nine students, mainly younger
ones, made this error throughout the whole task.

H and M classes both show some progression towards full capability in task A,
although progress in M classes is a trend rather than a smooth increase. In the H classes,
there is nearly full competence by year 8, whereas in the M classes, this happens by
year 10. All students appeared to assume constant speed, as had the teachers.

Task B

Task B (Fig. 2) asks students to interpret a geometric pattern sequence that represents
the perimeter of a chain of hexagons. It asks for a general expression which could be
developed in a number of ways, such as using correspondence or covariation, and is a

Table 3 Distribution of the categories of expressions of rate of change within the H classes

Code Year 7 Year 8 Year 9 Year 10 Year 11 Year 12 Total

1 0 1 0 0 0 0 1 (2 %)

2 3 0 1 1 0 1 6 (10 %)

3 7 9 9 9 10 9 53 (88 %)

Total 10 10 10 10 10 10 60

1164 Michal Ayalon et al.

Table 2 Categories of response for task A

Category Description Example

1 Term-to-term reasoning, focusing on
step size in the right hand column

Q 1.1 (Year 8 H group student)
[−2] because the number of floors is going

down in 4’s.
Q 1.2 (same student)
[Four floors per second] because in the beginning

it is 14 and then 10 and then 6 and each time
going down in 4’s.

2 Term-to-term as above for 1.1, moving
to covariation reasoning about floors
per second for 1.2

Q 1.1 (Year 7 M group student)
[−2] because the sequence is going down in 4

so 14−4=10−4=6−4=2−4=−2
Q 1.2 (same student)
[Two floors per second] because 0=14, 2=10,

etc. Every second 2 floors. Meaning based
on the table in 2 s the lift is going down
4 floors=2 floors per second.

3 Covariation/rate: both variables compared
throughout

Q 1.1 (Year 10 H group student)
[0] One can see that there is regularity in the

rate of the lift’s descent. For each 2 s passed,
the lift goes down 4 floors. Thus, if after floor
2 a second passes, we will be in floor 0.

Q 1.2 (same student)
[Two floors per second] We found in the previous

question that for every 2 s the lift goes down
in 4’s. So the ratio 2:4 is 1:2, meaning
2 floors per second.



familiar type of task for students, although data are presented in an unfamiliar way.
Question 2.1 requires finding numerical relations between given numbers of hexagons
and the corresponding perimeter according to a given pattern. To avoid sequential
reasoning, we presented data non-sequentially. Question 2.2 asks for a general compu-
tation method to obtain the perimeter of a large number of hexagons. This question
cannot be answered directly from the data as a relationship has to be inferred by
transforming the given data and comparing it to the diagram. Question 2.3 asks for an
algebraic expression to describe the perimeter of any number of hexagons. This is an
explicit request for a new representation and no direct support is given, but the previous
questions are intended to direct students towards understanding the relations and
structure they need to express. Question 2.4 asks for an explanation, that is a transfor-
mation into words.

Teachers expected students of year 7 classes to do fairly well since such tasks are
posed in that year, although M students could find generating the algebraic expression
in 2.3 difficult. Such tasks are not used after year 7 so they expected difficulties in 2.3
to be repeated in year 8 and onward, including for some H class students. Teachers also
reported that students would probably use correspondence approaches since such
methods were familiar. They expected students to use input–output reasoning with
the step size as the multiplier.

Two parallel iterative and comparative analysis processes were implemented, one to
describe approaches to functional reasoning and another to classify formality of
generalisation. Five categories of approaches to functional reasoning emerged in
students’ attempts to find and express relations in the data, as presented in Table 5.

Success in generalising was also categorised to see which approaches were more
successful: (1) no correct generalisation of any kind; (2) generalisation expressed
correctly in verbal terms only; or (3) generalisation expressed correctly verbally as
well as algebraically.

Tables 6 and 7 present the distribution of the approaches to functional reasoning in
students’ responses in the H and M, respectively. As shown in Table 6, the most
common approach to conceptualising the functional relationships within both classes
was the correspondence approach with students suggesting a general rule for the
relation between the number of hexagons and the perimeter. The covariation
approach of coordinating the two varying quantities while attending to the
ways in which they change in relation to each other was less widespread,
and was rare in the M classes, possibly because it required reorganisation of
the data. In the H classes, a few students assumed linearity and then used
formal knowledge: coordinate geometry and arithmetic sequences.

Table 4 Distribution of the categories of expressions of rate of change within the M classes

Code # Year 7 Year 8 Year 9 Year 10 Year 11 Total

1 3 3 2 0 0 8 (16 %)

2 2 2 4 0 1 9 (18 %)

3 5 5 4 10 9 33 (66 %)

Total 10 10 10 10 10 50 (100 %)
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The triples in the cells of Tables 6 and 7 show the distribution of generalisation
categories as described above.

As Table 6 shows, almost all students in the H classes generated the correct
generalisation verbally and succeeded in forming it algebraically. Only one student
verbalised a correct calculation without generating the corresponding algebraic expres-
sion. As shown in Table 7, about half of the M class students generated the correct
generalisation verbally and succeeded in forming it algebraically, with four students
verbalising a correct calculation without generating the corresponding algebraic ex-
pression. We cannot assume that verbalisation preceded the construction of a symbolic
representation (Radford, 2000), but success in these two tasks was closely related.

For both H and M students, those who did not succeed with the correspondence
approach applied deconstructive forms of generalisation based on counting each sub-

Table 6 Distribution of the approaches to functional reasoning and representation of generalisation within the
H classes

H classes Year 7 Year 8 Year 9 Year 10 Year 11 Year 12 Total

a. No answer 0 0 0 0 0 0 0

b. Correspondence
approach

8 (2,0,6) 7 (0,0,7) 7 (0,0,7) 7 (0,0,7) 9 (0,0,9) 5 (0,0,5) 43 (72 %)
(2,0,41)

c. Covariation
approach

2 (1,0,1) 2 (0,1,1) 2 (1,0,1) 2 (0,0,2) 0 3 (0,0,3) 11 (18 %)
(2,1,8)

d. Equation using two
pairs of points

0 1 (0,0,1) 0 1 (0,0,1) 0 0 2 (3 %)
(0,0,2)

e. Using arithmetic
sequence

0 0 1 (0,0,1) 0 1 (0,0,1) 2 (0,0,2) 4 (6 %)
(0,0,4)

Total 10 (1,2,7) 10 (0,1,9) 10 (1,0,9) 10 (0,0,10) 10 (0,0,10) 10 (0,1,9) 60 (100 %)
(4,1,55)

1166 Michal Ayalon et al.

Table 5 Categories of functional reasoning for task B

Category Description of category Example

a No answer, often ‘I don’t know’.

b Correspondence: Developing a general rule of
the relation between the number of hexagon
and the perimeter

The number of hexagons multiplied by 4 plus
two sides which close the sequence 4x+2
(Year 10 M group student)

c Covariation: Comparing and coordinating the
two varying quantities; mentioning how
perimeter increases when numbers of
hexagons increases

4n+2 because for every one more hexagon
the number of sides goes up in four,
meaning the perimeter increases in 4’s.
Plus the two additional sides of the
first and the last hexagons
(Year 12 student)

d Finding the parameters of equation using two
data pairs, i.e. recognising linearity and
using Cartesian geometrical approach

(1, 6), (3, 14) 14−6
3−1 ¼ 8

2 ¼ 4;
6 ¼ 4 1̇þ b→b ¼ 2→y ¼ 4xþ 2
(Year 10 H group student)

e Using formulae for arithmetic sequences 6, 10, 14, 18… d = 4; an = 6 + (n-1) ·
4 = 4n + 2 (Yr8 H group student)



configuration and did not manage to take away sides that overlap, similar to findings of
Rivera & Becker (2008) who used similar sequential spatial sequences. For example, a
student wrote ‘100×6−50=550, because you multiply the number of hexagons by the
number of sides and then subtract the common sides’. Those who did not succeed with
a covariation approach failed because they did not take starting values into account.

There is progression in the H classes and nearly full competence from year 8
onwards. In the M classes, although rate of success was lower, the overall trend is
towards success, achieving nearly full competence in year 10. Proportions of students
using various approaches are broadly similar across ages.

Task C

In task C (Fig. 3), students had to match four situations to graphs, selected according to
an expected increase of difficulty: (i) straightforward identification of unidimensional
variables; (ii) choice of variables; (iii) the use of compound variables; and (iv)
compound variables and an inverse relationship. All situations focus on identifying
variables, forming relations between them (in particular covariation) and noticing
contextual features, such as zeroes and constants. In the terms of Carlson et al.
(2002), these tasks would show us whether students could coordinate variables; identify
the right direction of change; and maybe coordinate the amount of change in the two
variables, i.e. their levels 1, 2 and 3 of covariation, always supposing that they first
identified suitable variables.

Teachers reported that students from year 7 onwards meet various real-life graphs,
e.g. conversion, distance/time and volume/time graphs, but students are usually given
the variables. The teachers anticipated difficulties for all students as they are not used to
constructing the variables themselves. Older students would not necessarily succeed
more than the younger students, they suggested, but students from groups H would
succeed more than students from M groups, as H students are more used to complex
and unfamiliar tasks.

An iterative comparison of all 110×4 responses resulted in three general codes:

1. No choice, often accompanied by ‘I don’t know’

Table 7 Distribution of the approaches to functional reasoning and representation of generalisation within the
M classes

M classes Yr7 Yr8 Yr9 Yr10 Yr11 Total

a. No answer 2 (2,0,0) 4 (4,0,0) 4 (4,0,0) 0 2 (2,0,0) 12 (24 %) (12,0,0)

b. Correspondence
approach

6 (4,2,0) 5 (2,0,3) 6 (0,2,4) 10 (0,0,10) 8 (0,0,8) 35 (70 %) (6,4,25)

c. Covariation approach 2 (0,0,2) 1 (1,0,0) 0 0 0 3 (6 %) (1,0,2)

d. Equation using two pairs
of points

0 0 0 0 0 0

e. Using arithmetic
sequence

0 0 0 0 0 0

Total 10 (6,2,2) 10 (7,0,3) 10 (4,2,4) 10 (0,0,10) 10 (2,0,8) 50 (100 %) (19,4,27)
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2. Lack of full analysis
3. Full analysis

Full analysis, which ought to show relevant choice of variables and the Carlson et al.
(2002) first three levels applied to the situation that had been described verbally, was
hampered by five sources of difficulty, which we exemplify in Table 8.

Tables 9 and 10 present the distribution of categories taking all four situations into
account in H and M classes, respectively. Students were less competent in this task than
in tasks A and B. Moreover, in both H and M groups, there is no age-related
progression towards full analytical interpretation. The quadruples in the cells show
the distribution between the situations i–iv, respectively.

Analysis of the sources for difficulties in category 2 revealed that categories 2a, 2b,
2c, 2d and 2e (see Table 8) constituted 1, 16, 38, 40 and 5 % of all the H classes’
responses, respectively. Similarly, these categories constituted 7, 21, 40, 25 and 7 % of
all the M classes’ responses, respectively. These findings show the criticality of
identifying relevant variables and interpreting covariation in the verbal statement and
the graph (2b, 2c, 2d), rather than the picture/graph confusion (2a) prominent in the
literature (Schultz, Clement & Mokros, 1986). 2e is not described in the literature as far
as we have been able to ascertain.

There was considerable variation in the frequency of these difficulties between
situations. Irrelevant choice of one variable (2b) appeared in situations ii and iv only,
plotting profit against time instead of ticket price in ii and distance or the distance

Table 8 Categories of difficulties in Task C

Code Sub-category Example of a student response

2a Focus on one variable with picture/
graph confusion

Chose l for situation ii: because its position is
not that high and not that low, exactly as the
price of the ticket should be. (Year 7 M group
student)

2b Choosing one relevant and one
irrelevant variable and forming
an irrelevant relation

Chose a for situation iv: The faster you run the
distance you will pass would be longer [wrote
distance as the y and speed as the x]. (Year 1
2 student)

2c Choosing relevant variables but forming
an inadequate relation between them

Chose l for situation iii: The raising had already
began from a certain height (certain price)
and increased moderately and constantly
[wrote time as x and price as y]. (Year 8
H group student)

2d Failing to take into account all contextual
features

Chose d for situation i. You can see that the
amount of clapping is gradually increases
over time [wrote time as x and amount of
clapping as y]. (Year 11 H group student)

2e Attending to some parts of the graph
while ignoring others

Chose graph j for situation ii. When the price is
low, the loss is high; when the price is high,
the loss is high; when the price is reasonable,
the loss is low [wrote price as the x and profit
as the y; the middle part of the graph is marked].
(Year 10 H group student)
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remaining as related to time or speed in situation iv (see second example in Table 8).
Most responses associated with category 2c appeared in situation iv, making the linear
assumption, and situation iii, making the linear assumption (see third example in
Table 8) or choosing the wrong way up. 2d problems were most common in situation
i, i.e. not noticing that there was a period when all were applauding (saturation)
(see fourth example in Table 8). All the 2a and 2e problems appeared in
situation ii (see first and fifth examples in Table 8). There was little variation
in the frequency of these categories across years, suggesting that certain sources
of difficulties may be associated with some situations and not with others, and
they persist in advanced years.

Discussion

No generalisations can be assumed from our small data set; rather we generate
conjectures about conceptualisation and progression towards function understanding
that can contribute to future thinking, and we challenge some assumptions about
learners. From this data, with these three tasks, with these students, there appears to
be progression over time towards a strong understanding of functions in the areas of
rate of change and building correspondence relations in discrete, sequential, linear
situations. In the H classes, there is nearly full competence by year 8, in the M classes
by year 10. However, there is no discernible progression over time in matching graphs
to verbal descriptions of situations; these appear to be situation-specific.

Table 10 Distribution of level of analysis within the M classes

Year 7 Year 8 Year 9 Year 10 Year 11 Total

1. No information 27 (6,7,7,7) 2 (0,0,1,1) 18 (3,6,4,5) 15 (2,5,3,5) 16 (2,5,4,5) 78 (39 %)
(13,23,19,23)

2. Lack of full
analysis

9 (2,3,2,3) 29 (9,8,6,6) 17 (4,4,5,4) 15 (6,4,2,3) 19 (6,3,6,4) 89 (44 %)
(27,22,21,20)

3. Full analysis 4 (2,0,2,0) 9 (1,2,3,3) 5 (3,0,1,1) 10 (2,1,5,2) 5 (2,2,0,1) 33 (17 %)
(10,5,11,7)

Total 40 40 40 40 40 200 (100 %)

Table 9 Distribution of level of analysis within the H classes

Year 7 Year 8 Year 9 Year 10 Year 11 Year 12 Total

1. No information 17 (3,4,3,7) 5 (0,1,2,2) 5 (0,3,1,1) 2 (0,1,1,0) 9 (1,3,2,3) 6 (1,2,1,2) 44 (18 %)
(5,14,10,15)

2. Lack of full
analysis

15 (5,4,3,3) 24 (7,6,6,5) 20 (8,2,3,7) 20 (10,2,1,7) 18 (8,3,5,2) 20 (7,3,4,6) 117 (49 %)
(45,20,22,30)

3. Full analysis 8 (2,2,4,0) 11 (3,3,2,3) 15 (2,5,6,2) 18 (0,7,8,3) 13 (1,4,3,5) 14 (2,5,5,2) 79 (33 %)
(10,26,28,15)

Total 40 40 40 40 40 40 240 (100 %)
(100 %)
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Both tasks A and B were designed to disrupt naive recursive reasoning and
encourage students towards thinking about the situations and structures from which
the data comes, rather than just thinking about numbers. Students in H and M classes
were relatively successful and made some progress in overcoming unusual features in
familiar task types to construct correct rates of change in task A and generalisations in
task B. In task A, students showed high levels of competence with the global task of
finding rate of change but made some mistakes with local data, although these were to
some extent induced by the task presentation having unfamiliar features. Older students
did not make these local mistakes, perhaps because of having more experience with
non-sequential data presented in tabular form. Rate of change was mainly correctly
deduced.

In task B, students overwhelmingly took a constructive, correspondence approach
either by making local correct assumptions about linear functions or by analysing
global overall structure. It seems that their curriculum experience has allowed them
to develop a robust understanding of linear correspondence relations that do not depend
on sequential data, even in a sequential context—only a very few tried to resort to
sequential methods. This is contrary to some research reports in similar sequence
pattern contexts with the same age of students: that they tend to begin with a term-
to-term/additive approach (e.g. Stacey, 1989; Orton et al., 1999). No students assumed
proportionality and few used term-to-term reasoning; the majority of students opted for
a correspondence approach to produce an input–output model and explain it appropri-
ately. This is contrary to some results about improperly applied direct proportional
reasoning (Stacey, 1989; Van Dooren et al., 2005) However, in the study by Van
Dooren et al. (2005), no sequence diagrams were provided, just a worded situation in
similar form to the text of task B. They found that students within our age range had
begun to distinguish between proportional and non-proportional situations in linear
contexts, like ours, and their error rate was about 20 %. We go further than van Dooren
et al. to claim that task design, curriculum and teaching, as well as age, make a
difference.

In task C, there was no overall progression that we could discern, for either H or M
classes, although H classes did better throughout. The sources of difficulties encoun-
tered by students appeared not to change across years in both H and M groups, but they
did vary between specific situations, suggesting that certain sources of difficulties may
be associated with some situations and not with others. In situation i, the main difficulty
was taking all features into account (i.e. considering saturation), but the variables were
fairly easy to discern. In situation ii, the most common problem was identifying
variables and a tendency to try and use an irrelevant variable of ‘time’—a tendency
known in the literature (e.g. Janvier, 1981). In situations iii and iv, forming a relation-
ship that related to the contextual details was the main difficulty. In these situations,
compound variables—rate of price change and speed—had to be considered, known to
cause difficulty (Herbert & Pierce, 2012; Orton, 1983), although, according to the
curriculum and to teachers, the concept of rate is formally introduced in the curriculum
in year 7 and assumed (by the teachers) to be informally understood before that.
Overall, no positive curriculum effects on task C responses can be indicated, since
there were no signs of progress. This is as the teachers anticipated, but this does not
mean we should not be concerned, as identifying variables and relating their behaviours
should be a focus in mathematics learning. Moreover, Dreyfus & Eisenberg (1982)
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found that intuitive approaches did show some improvement during adolescence in
their study. Being able to identify variables, including continuous, non-time, simple and
compound situational variables, is valuable for advanced mathematics: calculus
and modeling (e.g. Goldenberg, 1987). If students are always given variables
and graphs (as according to the teachers is the case), they may be able to
deduce covariational relationships but only undertake a small part of the
modeling process that gives broad purpose to understanding functions. If we
consider modeling capability to be a valued aim, the findings of this study
suggest that students need to be presented with more opportunities to identify
and express variables. We would also argue that the first stage of understanding
covariation of Carlson et al. (2002) (i.e. coordination of variables) depends on
first understanding the nature of the variables involved.

To better understand these findings, we further ask about the effects of task design
and curriculum: Was it the task design that avoided the production of common
problems of incorrect proportional reasoning or over-dependence on term-to-term
reasoning? Certainly, our tasks were designed to challenge these tendencies, but the
use of correspondence reasoning would also be due to curriculum, and teaching and
students needed to be capable of adapting methods, which they did. We could also ask
if formal teaching of functions in year 7 onwards plays a part? Certainly teaching and
curriculum play a part, because students were very competent in using correspondence
successfully, and perhaps, the use of f(x) notation enables them to focus on functions as
‘actions on x’ rather than as sequential change. However, our initial analysis of two
other tasks in the survey that relate to formal knowledge does not show formal
techniques and concepts being used progressively and consistently through the
curriculum, rather they peak in years where these are taught but are not
sustained at the same level in subsequent years. Use of formal knowledge
seemed to be dependent on recency. We conjecture that conceptual understand-
ing of linear functions is more complex, and more robust, than formal knowl-
edge alone but are unable to provide evidence in this paper. All we can say is
that it would be premature to assume that formal teaching had allowed the
correspondence approach to dominate. Our data does, however, support a concern about
lack of progression in task C, which indicates difficulties with modeling realistic
phenomena, particularly worrying as the Israeli curriculum introduces the idea of
variable rate of change in year 7.

Conclusion

Our approach looks at progression towards the function concept through secondary
years in Israel, where the curriculum takes a formal approach to functions, alongside a
realistic approach, from grade 7 onwards. Some findings contradict statements about
students’ difficulties reported elsewhere, so we conjecture that curriculum, pedagogy
and our task design played a part in producing different results: the successful use of
correspondence approaches in linear contexts. We also raise concerns about lack of
progression in some aspects of modeling contexts: identification of relevant variables
and understanding how they relate, despite curriculum focus in early secondary years
on varied rates of change.
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Our future research will consist of comparison of data from England, where the
function curriculum is less formal, in order to learn more about the effects of curric-
ulum. The survey could be applied across wider samples in individual countries, using
our categorisation, to smooth out effects of different pedagogy and focus on curriculum
effects.
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