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ABSTRACT. This article reports on a longitudinal observation study about students’
development in their use of procedures to calculate instantaneous rate of change. Different
procedures for solving tasks on rate of change are taught in mathematics and physics classes,
and together they form a repertoire. Our study took an actor-oriented perspective, which we
operationalized as a search for students’ personal constructions of relationships between (1)
learning from mathematics and physics classes and (2) interview tasks. We followed 10
students for 2 years (from grade 10 to 12), during which we administered 4 task-based
interviews. We analyzed the breadth and connectedness of students’ repertoire of procedures
and report on the long-term development thereof. We conclude that often procedures are not
part of students’ repertoire shortly after the first introduction of this procedure in class.
Students need time to acquire single procedures, and much more time to develop a broad and
connected repertoire. In the development of their repertoire, there are major differences
between students. From an actor-oriented perspective, many personal constructions are visible
between learning and interview tasks. Students often use procedures that differ from
procedures that are most appropriate from an expert’s perspective. We also observed from an
actor-oriented perspective that words such as velocity, steepness, or slope act as bridge for
creating relationships between situations and procedures.

KEY WORDS: actor-oriented transfer, calculus, longitudinal study, procedures, rate of
change, students’ development, transfer

INTRODUCTION

Transfer of knowledge is a well-known and much discussed issue in the area of
learning and instruction (e.g. Anderson, Reder & Simon, 1996, 1997; Greeno,
1997). In research on transfer, it is often reported that students hardly apply
assumed knowledge from mathematics to other school subjects, such as
physics (Basson, 2002; Cui, 2006; Tuminaro, 2004). These studies on transfer
between mathematics and physics are dominated by two perspectives. First, the
direction of transfer is considered as unidirectional, that is, from mathematics to
physics. Second, studies on transfer often cover a limited period of time
because researchers study the effect of a specific mathematics course on a
specific physics course. Contrary to these studies, our study focuses on the
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effect of prior activities that took place in both mathematics and physics classes,
on students’ choice of procedures to calculate rate of change. Furthermore, we
followed students’ development over a longer period of time: from grade 10 to
grade 12 (approximate ages 16 to 18).

This study aims to contribute to understanding the mechanisms
underlying transfer, addressing the question how students develop their
use of rate of change procedures learned in mathematics and physics
classes and how students, on the long run, construct relationships between
procedures learned in these different, but related, school subjects. By
studying their performances, we looked for clues on how to foster
students’ learning of differential calculus. Understanding this process can
help mathematics and physics teachers to give students opportunities to
develop a more inter-related understanding.

THEORETICAL FRAMEWORK

There is a rich body of research on transfer and it has a history of over
100 years. Review studies (e.g. Billett, 2013; Lobato, 2006, 2012)
describe that in the last decades a shift occurred from a cognitive to a
situated view on transfer. In the cognitive view, much attention is given to
transfer of knowledge from one situation to another situation, while the
situated view emphasizes the role of the learner who constructs
similarities between situations. In the next paragraph, we will discuss
major differences between these perspectives.

Cognitive and Situated Perspective on Transfer

From a cognitive perspective, transfer is characterized as “how know-
ledge acquired from one task or situation can be applied to a different one”
(Nokes, 2009) or “the ability to apply knowledge learned in one context to a
new context” (Mestre, 2005). A feature of these definitions is the role of
‘knowledge,” which is subsequently applied to another situation.

The cognitive view investigates if a person transfers knowledge from
initial learning to a so-called transfer task. For example, Anderson et al.
(1996) found evidence that representation and degree of practice are
major determinants of the successful transfer from one task to another.
The researcher assumes that transfer of knowledge is possible from an
initial learning context to transfer tasks. The transfer tasks are designed in
such a way that, according to an expert view, specific earlier learned
knowledge can be used to solve the task.
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Lobato (2003) refers to such forms of transfer as ‘traditional
transfer’. Traditional transfer suggests that knowledge can be
separated from the situation in which it was learned. Lobato
considers not only traditional transfer but also its research method-
ologies as problematic. Lobato & Siebert (2002) object that
traditional transfer is based on expert knowledge instead of
knowledge of a person who acts in a situation. They state that
traditional transfer is the subject’s re-application of overt actions in
situations that the researcher deems similar.

In contrast with traditional transfer, transfer from a situated
perspective highlights the role of the learner. Greeno (1997, p.11)
formulates a research question in the situated perspective as: “when
someone has become more successful at participating in an activity in
one kind of situation, are there other situations in which that person
will also be more adept?” Lobato (2003) states that what experts
consider as a surface feature in a transfer task may be structurally
substantive for a learner. Lobato (2012) describes a situated view on
transfer, referred to as actor-oriented transfer, and she defines it as:
“the influence of a learner’s prior activities on his activity in novel
situations” (p.233).

In research on transfer taking an actor-oriented perspective, the
focus on the role of the learner has consequences for the design of
the transfer situation or transfer task. The goal is to analyze if and
how a student is affected by his participation in earlier activities.
For example, Greeno, Smith & Moore (1993) were interested in the
extent to which participating in an activity in one situation
influences the learners’ ability to participate in a different situation.
Although the transfer task is designed by an expert, the function of
the transfer task is to elicit activities by a learner and to investigate
if and how students construct similarities between this task and
earlier activities.

From the traditional perspective, it is often argued that students
cannot apply their mathematical knowledge in physics tasks. In this
statement, the direction of transfer is fixed: first students have to
learn mathematical principles and knowledge and thereafter apply
their knowledge in a different context. A fixed direction of transfer
contradicts the basic assumption of the actor-oriented transfer
perspective, namely the personal construction of similarities. Also,
studies by Zandieh (2000) and Marrongelle (2004) show that transfer
is not unidirectional but that knowledge from mathematics and
physics mutually interact.
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For our research, we choose the actor-oriented transfer perspective as
described by Lobato (2003). Lobato states that researchers in the actor-
oriented perspective:

e Look for the personal construction of relationships between activities
from an actor’s perspective;

e Investigate the effect of prior activities on current activities and how
actors construe situations as similar;

e Analyze what relationships of similarity are created by actors and
how these are supported by the environment.

Studies from the Actor-Oriented Perspective

Some studies report that from a traditional perspective students do not
transfer knowledge taught in mathematics lessons to physics tasks (Cui,
2006; Karakok, 2009). However, when data is analyzed from an actor-
oriented perspective, students do construct similarities between situations
in physics lessons and what is learned in mathematics. To get insight into
this statement, we will have a closer look at two studies.

Cui (2006) investigated students’ transfer of learning from calculus to
physics at college level. The participants in her study were 416 students
enrolled in a second semester physics course. For solving tasks in the
physics exams, the students could use mathematical procedures taught in
two calculus courses. Cui analyzed data both from a traditional and an
actor-oriented perspective. The traditional perspective was used by
correlating students’ calculus course grades and their physics exam
problem grade, and additionally by analyzing if variables indicating
performance on the physics exams and the calculus exams did cluster.
From the traditional perspective, weak evidence was found that students
transferred their calculus knowledge to physics exams. From the actor-
oriented perspective, the performance of students on physics problems
was analyzed by assigning scores for calculus and physics performance
for each section of the exam. Cui considers this as an indicator for actor-
oriented transfer because the analysis focuses on constructions of
similarity between calculus and physics aspects of a given problem. With
this analysis, statistically significant correlations were found between
students’ calculus and physics performance (Cui, 2006, p.85). Cui
concludes that there is more evidence for transfer when analyzed from
the perspective of the learner (actor-oriented transfer), focusing on
students’ dynamic constructions of similarities between two aspects of
their knowledge.
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Karakok (2009) investigated students’ transfer of the concept of
eigenvalues and eigenvectors learned in physics courses. Seven
students participated in three in-depth interviews before, during, and
after they had enrolled in these courses. From an actor-oriented
perspective, she analyzed what kind of experiences and views students
transferred from their courses to the interviews. Her analysis produced
evidence that six out of seven participants reconstructed experiences
from certain activities, exercises, and examples from the courses.
Karakok also analyzed data using a traditional perspective. This means
that she analyzed if students did transfer certain knowledge a priori
defined by the researcher. This analysis revealed that only one
participant seemed to transfer knowledge from the courses to the
interview tasks.

These studies (Cui, 2006; Karakok, 2009) concluded that transfer
was rare from a traditional transfer perspective; however, from an
actor-oriented perspective, it was observed that students constructed
relationships between previously learned knowledge and new situa-
tions.

Breadth and Connectedness of Rate of Change Procedures in Differential
Calculus

In this study, we operationalize actor-oriented transfer as how
students construct similarities between prior activities in mathematics
and physics lessons and new situations. The new situations are
offered through tasks which require the use of rate of change
procedures.

Procedures to calculate rate of change are part of the concept of
derivative. This concept is multi-faceted, so it is complex to determine to
what extent a student understands the concept (Zandieh, 2000). The
degree of understanding depends on the number and the strength of
connections between facts, representations, procedures, and ideas (Hiebert
& Carpenter, 1992). For the concept of derivative, connections can be
made between representations, such as graphical, numerical, and
symbolical representations (Roorda, Vos & Goedhart, 2009; Zandieh,
2000); procedures such as those for calculating average or instantaneous
rates of change (Kendal & Stacey, 2003); /ayers such as difference and
differential quotient (Hahkioniemi, 2006; Zandieh, 2000); words that give
meaning to the concept such as slope, increase, and velocity (Zandieh &
Knapp, 2006); and applications such as marginal costs, velocity, or
acceleration (Roorda et al., 2009).
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In this article, we will focus on the relationships between procedures
learned in mathematics and physics. We use the term procedures for
methods to solve certain types of problems. We are interested in
students’ procedural fluency as described by Kilpatrick, Swafford &
Findell (2001). Procedural fluency refers to the knowledge of proce-
dures, knowledge of when and how to use them appropriately, and skill
in performing them flexibly, accurately and efficiently (Kilpatrick et al.,
2001, p.121). In addition, we also study the way students relate chosen
procedures. For the construction of relationships between procedures
taught in different subjects, one part of procedural fluency is of
importance, namely the knowledge of using a procedure appropriately.
When solving a problem, students have to choose an appropriate
procedure. Sometimes, a physics procedure is most appropriate although
a mathematics procedure may also be useable. To make the right choice,
an overview over different procedures and connections between
procedures is necessary.

The entirety of procedures known by students will be defined in this
study as the student’s repertoire. Students show procedural fluency if
they have a broad and connected repertoire of different procedures.
These two aspects, breadth and connectedness, are central in this
study. Breadth of repertoire is defined as the number of procedures a
student mentions or uses to solve an interview tasks. Connectedness of
repertoire is defined as the relationships between procedures that a
student construes.

In Dutch physics classes, a number of rate of change procedures are
taught in grade 10. Kinematics starts with a graphical approach to
demonstrate relationships between distance, velocity and acceleration.
At this stage, students are taught a graphical procedure, which is
referred to as the tangent method. It is a procedure to calculate
instantaneous velocity for nonlinear situations by using a graph and
drawing a tangent, from which the steepness is calculated (Fig. 1). The
word steepness is a reoccurring term in the physics textbooks. Also,
students are taught to use formulas for calculating average and instantaneous
velocity, such as v = s/f and v = at. These formulas are used in physics while
relationships with derivatives are not mentioned. So to calculate instanta-
neous velocity, the emphasis is on the tangent method and on physics
formulas.

In mathematics classes, the derivative is introduced in grade 11. It
is founded on the transition from graphs to functions and on the
transition from a difference quotient to a differential quotient. The
rate of change is directly linked to the tangent of the graph. Some
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X

v(t) = plq

—
Figure 1. The tangent method as taught in physics classes: to calculate instantaneous
velocity, a tangent is drawn and the slope p/q is calculated (Middelink et al., 1998)

exercises in the mathematics textbook use distance—time graphs to
illustrate the meaning of instantaneous rate of change. The slope of
the line through two points on successively smaller intervals will
approximate the slope of the tangent. The physics distance—time
situation serves as an example to introduce the mathematical concept
of derivative. Note the difference between physics, where the
steepness of a tangent is calculated by using two points on the
tangent which are far apart (see Fig. 1), and mathematics, where the
slope of a tangent is approximated by using two points on the graph
on successively smaller intervals. Later in the school year, the
emphasis is on symbolic differentiation rules (power rule, chain rule,
product rule, quotient rule) and on the applications of these rules to
tasks on calculating extremes and formulas of tangent lines. Studies
on calculus (e.g. Kendal & Stacey, 2003; Orton, 1983) indicate that
many beginning calculus students master ‘symbolic differentiation’
without relating it to other procedures. Kendal & Stacey (2003) also
indicate that students relate symbolic and graphic procedures, but
graphic—numeric relationships and symbolic—numeric relationships are
rare. Roorda, Vos & Goedhart (2007) observed that students in think-
aloud sessions have difficulty in relating rate of change procedures
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learned in mathematics classes to rate of change procedures learned
in physics classes.

Many studies (e.g. Héhkioniemi, 2006; Kendal & Stacey, 2003)
document students’ repertoire after a single calculus course. These
studies, however, do not give insight into the long-term process of
constructing relationships between procedures learned in different school
subjects.

Summary of the Theoretical Framework

The consequences of our choices are now highlighted and visualized
in Fig. 2. We will use an actor-oriented transfer perspective by
looking at the selection of procedures by students, when working on
a rate of change task. Do they use procedures learned in physics or
procedures learned in mathematics classes? And which reasons do
they give for their choices? Furthermore, we investigate students’
breadth and connectedness of repertoire, by looking at the different
procedures mentioned or used by the students and the relationships
between procedures as indicated by the students. In our research
design, we choose a longitudinal approach to follow students’ long-
term development of their repertoire.

The above is guided by the following research question: How is
students’ long term development of breadth and connectedness of their
repertoire of rate of change procedures from an actor-oriented
perspective?

MEtHODS

Research Setting and Participants

To gain insight into students’ development of their repertoire, we
opted for a detailed description and analysis of work by individual
students (Roorda, 2012). Their development took place within an
educational setting in which procedures are taught in different school
subjects without coordination between curricula. According to Yin
(2003), case studies can contribute to a better understanding of
complex social phenomena. And because of the diversity within and
between schools, multiple cases give opportunities to analyze
similarities and differences between students (Creswell, 2002).
Therefore, we used a longitudinal multiple case study.
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Figure 2. The arrows indicate how we analyze actor-oriented transfer and breadth and
connectedness of repertoire

Because of our interest in relationships between mathematics and
physics, we selected students following a science track, which meant
that they take science and mathematics at an advanced level. We
selected students with varying abilities. Based on information of the
mathematics teacher in grade 10, ten students (six boys and four girls)
were selected from two regular Dutch schools. The teachers indicated
one student as weak, four as average, and five as good. In our study,
weak students are underrepresented because we looked for students who
most likely would move up from grade 10 to grades 11 and 12 without
delay. The students are indicated with pseudonyms: Andy, Bob, Casper,
Dorien, and Elly from school I, and Karin, Maaike, Nico, Otto, and Piet
from school II.

Interviews and Instruments

In many studies on the learning of derivatives, researchers have
investigated students’ conceptual knowledge by asking them explicitly
for the meaning of derivative (e.g. Hahkioniemi, 2006; Zandieh, 2000). In
contrast, in our study we did not use words that direct towards derivative.
To secure that students choose their own procedures, the procedures to
solve the task were not obvious to students, and in the task and during the
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interviews we avoided using directive words such as derivative,
differentiation, rate of change, tangent, or slope. By avoiding these
words, we did not lead students to the concept, but they had to make their
own choices on procedures.

While the students moved from grade 10 to grade 12, four task-based
interviews (Goldin, 2000) were conducted with half year intervals. The
tasks for the interviews were designed to provide in-depth information
about students’ repertoire.

The tasks. In all tasks, situations were described in which the
variables had a meaning in real life, such as distance, costs, or
volume. In this article, we focus on two tasks, named Barrel and
Ball. These tasks were selected because they offer students ample
opportunities to use and relate a variety of rate of change procedures.
The task Barrel was used in all four interviews, while the task Ball
was only used in interviews 2 and 4 (to avoid recognition of tasks
between the four interviews, we did not repeat all tasks in all
interviews). In both tasks, the assignment was to calculate velocity at
a certain point. However, the Barrel task resembles tasks used in
Dutch mathematics textbooks and the Ball task resembles tasks in
physics textbooks. Both tasks included a situation description and
various representations, such as a graph, a formula, and (in the Ball
task) a table. The complete tasks are given in Appendix A and
summarized here:

Barrel: A barrel contains a liquid, which runs out through a hole at
the bottom. The volume of the liquid in the barrel decreases over
time and is expressed as V' = 10 (2 — '/¢of)*. Also the V — ¢ graph is
presented. Students are assigned to calculate the outflow velocity at
t = 40.

Ball: A ball falls from a height of 90 cm. A table, a graph, and the
formula for the height, # = 0.9 — 4.9/ are presented. Students are
assigned to calculate the velocity of the ball at a certain point on the
graph, indicated by an arrow.

The interviews: The students were interviewed by the first author in a
small conversation room at their respective schools. All interviews were
videotaped and transcribed verbatim afterwards. During the interviews,
based on think-aloud and stimulated recall techniques, we used a protocol
to get as much information as possible on student’s knowledge of
procedures and the breadth and connectedness of their repertoire. First, a
student was asked to solve the task. During the solving of the problem,
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the interviewer did not interfere. Interventions by the interviewer occurred
at following instances:

e When a student thought for over a minute, he was asked for an
explication;

e When a student solved a problem, he was asked for clarification
of the procedure used;

e A student was asked up to twice if he knew other procedures to
check the correctness of the given answer;

e When a student used two or more procedures, he or she was

asked to compare these.

The above regulations aimed at encouraging students to mention and use
other procedures than the first chosen, and to explain relationships
between these procedures.

The first interview was held at a moment at which the concept of
derivative had not yet been introduced in mathematics classes.
However, at school I, the physics teacher had already introduced
kinematics. The second interview was held in the third month in
grade 11, a few weeks after the mathematics teacher introduced
differential calculus (difference quotient, differential quotient, calcu-
lations of derivatives of polynomials). At school II, the chapter on
kinematics was introduced in the first weeks of grade 11. Between
the second and the last interview, derivatives were a reoccurring topic
in mathematics lessons. Table 1 presents the period of the interviews
and the tasks used.

Data Analysis

We analyzed the written transcripts of the interviews and the written
answers to the problems. The analysis focused on identifying the
procedures used and the relationships that the students constructed
between the procedures. To determine students’ breadth of repertoire,
we identified the adequate procedures, that is, procedures which lead, if
correctly applied, to a correct solution. Next, we analyzed the accuracy of
the procedures by using three categories: (1) a student only mentions an
adequate procedure, (2) a student uses an adequate procedure but makes
mistakes in the calculations, and (3) a student uses an adequate procedure
correctly.

As an indicator for the connectedness of the repertoire, we analyzed
statements, in which students constructed relationships between proce-
dures. For instance, when students explain that an answer could be
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TABLE 1

The phasing of the interviews and the tasks used

Period between grades 10 and 12 Tasks used for the interview
Interview 1 Towards the end of grade 10 Task: Barrel
Interview 2 In the third month of grade 11 Task 1: Barrel
Task 2: Ball
Interview 3 Towards the end of grade 11 Task: Barrel
Interview 4 In the third month of grade 12 Task 1: Ball

Task 2: Barrel

calculated with procedure 1 but just as well with procedure 2, or when
students explain that procedures 1 and 2 should deliver the same answer,
we indicate this as a relationship between two procedures. The
relationship between the two procedures is constructed by their
exchangeable applicability.

ResuLts

This section presents the procedures used and the relationships mentioned
by students in the interviews based on the tasks Barrel and Ball. First, we
illustrate the development of the repertoire by highlighting the work of
three students. Second, we describe patterns in the development of the
repertoire of the ten students.

The Development of Three Students

We describe the results of three students, Elly, Dorien, and Bob, who vary
in the way they worked on the same tasks. We selected them because they
provide examples of patterns of actor-oriented transfer and the breadth
and connectedness of repertoire. For each of these three students, we first
present a table with a description of the procedures used and with details
of the problem solving process, and second, we interpret the results with
respect to breadth and connectedness of repertoire from an actor-oriented
perspective.

To calculate outflow velocity in the Barrel task, the students used or
mentioned in total four adequate procedures, indicated as (small)-interval,
graphical calculator (GC)-option, tangent method, and symbolic differentiation.
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In the Ball task, students used the same four procedures, but also physics
formulas. To illustrate these procedures:

1. (Small)-interval method: the calculation of the difference quotient on a
(small) interval for example [40; 41] or [40; 40,0001];

2. A graphical calculator-option: the option dy/dx to calculate instanta-
neous rate of change;

3. The tangent method : drawing an estimated tangent along the
graph at ¢ = 40;

4. Symbolic differentiation: determining the derivative and substitut-
ing ¢t = 40.

5. Physics formulas for the Ball task: v = g¢, or equating kinetic and
potential energy.

Students also used inadequate procedures. These procedures will be
described in the results of individual students.

The Development of Elly. According to her mathematics teacher, Elly is a
hardworking, but weak student who has to practice many exercises to master
a topic; small changes in a task make it difficult for her to solve the task.
Table 2 lists procedures used and explanations given by Elly in the four
consecutive interviews.

With respect to breadth and connectedness of repertoire, Table 2
shows that Elly mentions few adequate procedures and that she does
not relate procedures in the interviews. In the first three interviews
with the Barrel task, she mentions inadequate mathematics proce-
dures. In interview 4, Elly asks whether she could use the tangent
method (as learned in physics) in this task. In the last interview, she
solves the Ball task correctly using a physics formula. Throughout all
interviews, she does not use mathematics procedures such as
symbolic differentiation, discrete procedures, or graphic calculator
options.

From an actor-oriented perspective, we notice that the Ball task, which
was designed to resemble tasks in physics textbooks, is at first connected by
Elly to a task she remembered from a mathematics test. Yet, she eventually
mentions physics formulas, although she does not apply these formulas
accurately. However, she cannot reconstruct which formula is the correct one
between s = vt and v = st. She also mentions s = “ar* but cannot use either of
these formulas to reach a solution. In interview 4, she uses again a physics
formula with acceleration of gravity. Although her justification is incorrect
(the task is on instantaneous and not on average acceleration), she uses an
adequate formula (v = g-f) and she reaches a correct answer. Her repertoire in
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TABLE 2

Elly’s procedures and explanations

Interview 1 (task Barrel only)

Procedures: No adequate procedures

Explanations: Elly asks herself if the letter J represents “volume,” because in physics the letter
v means velocity. She tries to substitute values of # and V incorrectly, for example she inserts
t =40 and V' = 40 simultaneously.

Interview 2 (tasks Barrel and Ball)

Procedures: No adequate procedures

Explanations: Elly starts the Ball task with the remark: “I remember something like this
from my last mathematics test” [this test was about derivatives, and students had to
apply derivative rules in a task on velocity of a moving object]. Then, she writes:
“v =/t or t/s.” She says: “I am not good in remembering formulas.” She decides to use
the physics formula v = s/¢, because “s over ¢ sounds more familiar to me.” She
substitutes values for s and ¢. She remembers also a formula s = Yar*.
In the Barrel task, Elly divides the volume in the tank at # = 40 by the time passed,
40 min, which is an inadequate procedure.

Interview 3 (task Barrel only)

Procedures: No adequate procedures

Explanations: Elly calculates /(40) and says that she now knows that there is exactly
17 7/o1 in the tank. She says that she could calculate the outflow velocity if the graph
was a straight line, but now that it is “curved,” she cannot calculate it.

Interview 4 (tasks Barrel and Ball)

Procedures: Barrel—tangent method, Ball—physics formula

Explanations: In the Barrel task, Elly calculates the volume at # = 40 and notes again that
she can find an answer if there was a straight line. Then, she says: “I have to calculate it
at a certain time [...] but I’'m thinking about a tangent, then I have the average
velocity.” Then, she gives up, sighing: “it certainly is very simple.” In the Ball task,
Elly asks whether she can look it up in a book with physics formulas. Because the task
is about a falling ball, she connects this to a need for a formula that contains
acceleration of gravity. She decides to choose the formula v = g-z. She says: “I am
working on average acceleration, so I think I can use this formula” and then she fills in
g and #, which leads to the correct answer. After being asked for ways to check her
answer, she does not mention alternatives.

all interviews is narrow and disconnected, and the development of Elly’s
repertoire is very limited.

The Development of Dorien. According to Dorien’s grade 10 mathemat-
ics teacher, she has a good mathematical understanding, but when
working on a difficult task, she easily gives up. Her mathematics teacher
in grade 12 categorizes her as an average student with a reasonable
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TABLE 3

Dorien’s procedures and explanations

Interview 1 (task Barrel only)

Procedures: Barrel—interval method

Explanations: “In 40 minutes 40 — 17.5 litres flow out of the Barrel, but that will not give
velocity at this point.” She remarks that if she fills in 7 = 40 into the formula, she will
find the coordinates of the point on the graph. She concludes by saying: “I do not know
how to calculate velocity at that point, but I can calculate average velocity.”

Interview 2 (tasks Barrel and Ball)

Procedures: Ball—tangent method, derivative; Barrel—tangent method, derivative

Explanations: After reading the Ball task, Dorien says: “I think I have to use a tangent [indicates
a tangent at the graph]; I think this is about derivatives. But I am very bad in applying
mathematics to physics; I have to switch over completely.” So, she mentions in her first
remark two procedures and two subjects. Then, she writes down: “steepness = velocity” and
remarks that she is surest about the tangent method; she draws a tangent and calculates the
slope. When asked for other procedures, she calculates the derivative 4'(f) = —9.8¢ and says:
“Heys, this is the acceleration of gravity.” After filling in the time # = 0.24 and delivering the
answer, she compares answers and notices that the answers of both procedures match well.
In the Barrel task, Dorien says: “Actually this is the same as the Ball task. So I think I
will try a derivative.” She differentiates the formula without using the chain rule and
finds a wrong answer. She decides to check with the tangent method. She is convinced
that symbolic differentiation and the tangent method should give the same answer. She
explains the different answers to be caused by a miscalculation in the derivative.

Interview 3 (task Barrel only)

Procedures: Barrel—derivative, tangent method

Explanations: Dorien starts by saying: “I will use the derivative [....]. I will get a formula for
the velocity and I will fill in # = 40.” She differentiates the formula correctly and calculates
7'(40). She says that she can check this answer by using a tangent. She does not complete
the calculation with a tangent because she is convinced that her answer, found through the
derivative, is correct.

Interview 4 (tasks Barrel and Ball)

Procedures: Barrel—tangent method, derivative. Ball—tangent, derivative, physics formula

Explanations: Dorien calculates the slope of the tangent. She writes V' = % = g—g = 0.5625
and says that the outflow velocity is 563 1 per minute [this is incorrect, because of a mistake
in reading of Ay]. She checks her answer through the derivative /”(40) and obtains
444 1/min. She compares both answers by saying: “Either this one is inaccurate [points at the
tangent] or I made a mistake here [points at the derivative].”
In the Ball task, Dorien first wonders whether this task is about horizontal or vertical velocity.
She says that she recently learned theory about a horizontal throw. After a while, she says that,
because it is a distance—time graph, it is only about vertical velocity. She recalls a physics
formula for vertical velocity of a falling object (v, = g*7), but she does not fill this into the
formula. Then she says: “Because this is a distance—time graph, I think I can use the derivative,
or I can draw a tangent.”” She draws a tangent and writes down: v = § = % = % =2.5m/s
and says: “I calculate steepness with a tangent, and I think that everything I do with a tangent
can also be calculated with the derivative.” Finally, she notes that in the formula of the height,

the value 4.9 is half of acceleration of gravity.
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insight and a reasonable attitude towards work. Table 3 lists procedures
used and explanations given by Dorien in the four consecutive interviews.

With respect to breadth and connectedness of repertoire, Table 3 shows
that Dorien does not use adequate procedures in interview 1, but at this stage,
she demonstrates an awareness of the difference between linear procedures
and nonlinear procedures, of which she indicates that she is only able to
calculate the first one. In interviews 2, 3, and 4, Dorien’s repertoire centers
on two procedures, namely symbolic differentiation (learned in mathematics
classes) and the tangent method (learned in physics classes). Dorien is more
and more convinced that symbolic differentiation and the tangent method
give the same answer. She explains the different answers (in interviews 2 and
4) to be caused by either the inaccuracy of the tangent method or by a
miscalculation in the derivative. In interview 4, she explicitly states that
answers calculated with a tangent can also be calculated with the derivative.
One additional procedure, the physics formula that she uses in interview 4, is
not connected to the other two procedures by Dorien.

From an actor-oriented perspective, we notice that from interview 2
onwards (i.e. within 1 year), Dorien selects procedures from mathematics as
well as from physic in both tasks. This seems to be based on a deeper insight
that both tasks are about velocity at a certain time, which is, according to
Dorien, the same as steepness at a point of the graph. The first time she
combines both procedures (interview 2), she explicitly states that she is bad in
applying mathematics to physics. Additionally, in the Ball task in interview 4,
she recalls a physics formula for velocity of a falling object (v, = g*7).

A major step in Dorien’s development is made from interview 1 to
interview 2. She displays an early uptake of two procedures, both of which
she can use appropriately. From interview 2 onwards, her repertoire almost
remains the same, but she is surer about connections between symbolic
differentiation, learned in mathematics and the tangent method, learned in
physics. We qualify her repertoire in the final interview as firmly connected,
being based on two procedures which she strongly relates in her explanations.

The Development of Bob. Bob is a boy with a high appreciation of
science and mathematics. His mathematics teacher describes him as a
clever pupil but sometimes ‘sloppy’ in his calculations. Table 4 lists
procedures used and explanations given by Bob.

With respect to breadth and connectedness of repertoire, Table 4 shows
that Bob in interviews 1 and 2, Bob mentions a number of procedures but
does not say how they are related. In interview 3, he directly relates the
tangent method learned in physics lessons to procedures learned in
mathematics classes (symbolic differentiation and small-interval method).
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TABLE 4

Bob’s procedures and explanations

Interview 1 (task Barrel only)

Procedures: Barrel—tangent method

Explanations: Bob substitutes ¢ = 40 into the given formula. He draws a rectangle
under the graph (see Fig. 3). He points at the vertical axis and says: “Velocity is
of course the area of this rectangle” and he points at the rectangle under the
graph. Bob calculates the area of the rectangle [his choice seems to be based on a
procedure learned in physics class where students calculated velocity by estimating
the area under the acceleration graph]. After a few minutes, he says: “I think I
intend to draw a tangent, I remember it vaguely; I think I will find the average
velocity at that point” (see Fig. 3).
After evaluating both procedures, he decides the tangent method is adequate. Again, he
connects velocity, this time “in a point,” with the tangent method saying: “Yes, with a
tangent you can calculate velocity at one point, I am almost sure about that.”

Interview 2 (tasks Barrel and Ball)

Procedures: Ball—tangent method, derivative, physics formulas. Barrel—tangent method

Explanations: Bob mentions in the Ball task the tangent method. He proceeds by saying:
“Eh, I think, in mathematics you can use a derivative, but how did it work? [...] In a
distance-time graph you can find velocity with the derivative.” Bob is not sure of the
derivative and switches back to the tangent method saying: “A tangent will give me the
steepness in that point and then the area under the graph is the velocity.” At last he
mentions also the procedure of equating kinetic and potential energy. [Just as in
interview 1, Bob connects velocity with the area under the graph but also with taking
the derivative. The derivative is labelled by Bob as a mathematical procedure. The other
three used procedures (tangent method, area method, and energy balance) are only
learned in physics classes.]
In the Barrel task, he uses the tangent method. When the interviewer asks for other
procedures, Bob says he also could calculate the angle of the tangent with the y-axis to
find the slope.

Interview 3 (task Barrel only)

Procedures: Barrel—derivative, tangent method, small interval method

Explanations: Bob starts by mentioning the derivative. He says: “This is about the
steepness of the line, therefore I have to use derivatives, but, we are not working on
derivatives at the moment” [in his explanations the words steepness seems to trigger the
use of derivatives].
Bob calculates the derivative inaccurately, without using the chain rule. He plots the graph
of his derivative. This derivative graph intersects the graph of the volume exactly in a zero.
Bob says: “As the velocity is zero, the volume is also zero. When there is no water in the
tank, the water cannot flow with a certain velocity. [...] I think it is correct” [he also relates
this derivative to “velocity”].
Bob proceeds with other procedures by saying: “I can use a tangent, but now we learned
derivatives, tangents are less exact.[...] I can also calculate the volume at ¢t = 40
and 7 =40.001 and divide the difference by 0.001. This has to do with limits and is almost
the same as taking the derivative.”
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TABLE 4

(continued)

Interview 4 (tasks Barrel and Ball)

Procedures: Barrel—tangent method, derivative, graphic calculator option.
Ball—derivative, tangent method, small interval method, physics formula.

Explanations: In the Barrel and the Ball task, Bob says: “This task is about velocity,
therefore I have to calculate the slope in that point, say the tangent, actually taking the
derivative. I drew a tangent before, but I think I better use the derivative. Then I have
the velocity function and I can substitute t into it”, and “the derivative is the velocity
graph [...] it is about the steepness in this point. I can calculate the tangent with a
derivative. [...]. This part of the formula [points at 4.9¢%] is %at2 and velocity is g times
t; it is logical that the derivative is 9.81; acceleration times time is velocity.” In these
remarks, Bob uses words such as velocity, slope, tangent, and steepness. In both tasks,
he calculates the answer through symbolic differentiation and in the Ball task also
through physics formulas.

The relationship between tangent method and derivative is not
explicitly stated, but he mentions these procedures in one sentence
with an additional remark that tangents are less exact compared to
derivatives. In interview 4, Bob relates in both tasks words such as
velocity, slope, and steepness and he mentions different procedures to
calculate instantaneous rate of change. Relationships between these
words seem to promote his understanding of relationships between
procedures. At this final stage, the derivative is central in his
explanations.

From an actor-oriented perspective, we notice that in interviews 1 and
2 Bob prefers procedures learnt in physics classes, such as the tangent
method and physics formulas. The word velocity seems to be pivotal in
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Figure 3. Bob’s drawing in interview 1
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his explanations. This word also leads to an inadequate procedure because
velocity reminds him of the ‘area method,” a procedure taught in physics
classes to calculate distance traveled in a velocity—time graph (Fig. 3). In
the Ball task, he also uses the derivative (taught in mathematics classes),
but he is unsure about this procedure. In interviews 3 and 4, Bob does no
longer label the procedures used in the Barrel task as physics or
mathematics procedures, depending on the class where he learned them.

In Bob’s development, we notice a continuously increasing breadth, which
at first is still unconnected. In interviews 1 and 2, he mainly uses procedures
learned in physics and does not yet use the derivative on all possible occasions
(although it was taught). Compared to Dorien, he is later in making
connections between procedures, but once he starts making them, the
connectedness of his repertoire increases with its breadth. In interviews 3
and 4, he connects different terms (steepness, velocity, slope) and he mentions
and uses procedures learned in physics and mathematics to solve tasks.

The Development of All Ten Students

The detailed description of Bob, Dorien, and Elly are now placed in the
broader context of the results of all ten students. Table 5 (Barrel task) and
Table 6 (Ball task) present all adequate procedures mentioned or used by
the students. The tables show for each student which procedures were
used in the consecutive interviews, and also if procedures were used
accurately, inaccurately, or only mentioned. The ten students are indicated
as A, B (Bob), C, D (Dorien), E (Elly), K, M, N, O, and P.

Breadth and connectedness of repertoire. In interviews 1 and 2, most
students have a narrow and disconnected repertoire of rate of change
procedures. For example, Table 5 shows that most students (seven out of
ten) cannot solve the Barrel task in interview 1, in interview 2 the tangent
method (learned in physics classes) is the most frequently used procedure
(eight students); Table 6 shows that in the Ball task in interview 2
students often use the tangent method (six students), symbolic differen-
tiation (five students), and physics formulas (five students) but relation-
ships between procedures are rare. So, students are unsure about which
procedures can be used to calculate an instantaneous rate of change and
how these procedures are interrelated. Students who do relate procedures
(C, D, and N) explain that velocity or steepness can be calculated with
symbolic differentiation and also with the tangent method. The students
who display an early uptake of symbolic differentiation and connect this
procedure to the tangent method do thereafter hardly increase the breadth
of their repertoire.
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In the later interviews, most students become more pronounced about the
relationships between the tangent method and symbolic differentiation (see
Tables 5 and 6). Finally, in interview 4, after extension and repetition in
mathematics and physics lessons, seven students relate these two procedures
correctly in the Barrel task. These students make statements indicating that
they understand that the slope of a tangent can be calculated both by the
tangent method and the derivative and that both procedures are appropriate to
calculate instantaneous velocity. However, making this connection is not
self-evident as was observed with some students (e.g. Elly).

Few students express a relationship between symbolic differentiation and
physics formulas. In interview 2, four students use physics formulas, but
none of them uses them accurately, although physics formulas to calculate
velocity of a falling object have been taught at this stage. Also, in
mathematics classes at both schools, the students were taught that velocity
of an object can be calculated by symbolic differentiation. One year later, in
interview 4, two out of ten students (B and P) construct relationships
between symbolic differentiation, physical formulas, and other procedures.
Bridges between those procedures are the word velocity or the recognition of
the acceleration of gravity, 9.8. Piet, for example, states that the derivative of
distance is velocity and the derivative of velocity is acceleration. Other
students, such as Elly and Andy, use the formula v = g-¢ correctly, without
mentioning a relationship with mathematical procedures.

The actor oriented perspective. We notice the following: When students
solve rate of change tasks, they are affected by procedures learned in physics
and mathematics classes. The ten students in this study followed nearly the same
curriculum; nevertheless, for each student we see different patterns when
analyzed from an actor-oriented transfer perspective. Elly uses physics formulas
in tasks with a physics appearance (a falling ball) and she does hardly use
procedures taught in mathematics. Dorien combines from interview 2 onwards
two procedures: one taught in physics and the other taught in mathematics
because she knows that velocity and steepness are related and that she can tackle
many problems with both procedures. The third student, Bob, prefers
procedures learned in physics (tangent method and equating kinetic and
potential energy) in the first two interviews. From interview 3 onwards, he uses
words like velocity, steepness, and slope more often and he relates tasks more
easily to a variety of procedures leamed in physics and mathematics.

The observed development of Elly, Dorien, and Bob is person-
dependent, but nevertheless we can observe some patterns independent
of the individual students. Taking into account that interview 2 took place
after the introduction of the tangent method in physics and symbolic



STUDENTS DEVELOPMENT OF CONSTRUCTING RELATIONSHIPS. 885

differentiation in mathematics, we see in interview 2 that most students
prefer the tangent method in the Barrel task. Although this task resembles
tasks in mathematics textbooks, students prefer a procedure taught in physics.
In later interviews, we see that, in addition to the tangent method, students also
use symbolic differentiation. Statements in interviews 1, 2, and 3 by some
students show that they see the tangent method as a physics procedure and
differentiation as a mathematics procedure. In interview 4, this difference is
less visible, and at this stage some students mention the impreciseness of an
answer calculated by the tangent method and they prefer the precision of
symbolic differentiation. Some students no longer use non-symbolic
procedures as an alternative because they consider these as inaccurate.

Discussion

From the perspective that has been referred to as the traditional transfer
perspective, one can argue that transfer from mathematics or physics
procedures to tasks is disappointing because of the following:

(1) Students often use procedures that differ from procedures that are most
appropriate from an expert’s perspective. For example, in interview 2, after the
introduction of derivatives in mathematics classes, six (out of ten) students do
not use symbolic differentiation in a task that resembles tasks used in Dutch
mathematics textbooks. Even in interview 4 (November, grade 12) two
students do not use symbolic differentiation in the tasks Barrel and Ball.

(2) After introduction of differentiation rules in mathematics and
formulas for falling objects in physics, students do not mention
relationships between physics formulas and symbolic differentiation.
Even in interview 4, these relationships are seldom mentioned.

From an actor-oriented perspective, we see that prior activities in physics
or mathematics classes affect students’ work in the interview tasks. The
direction of relationships is not that students first learn mathematics and
subsequently apply this knowledge to physics tasks. Instead, we observe an
initial uptake of the tangent method (learned in physics lessons) and a
lingering uptake of symbolic differentiation (learned in mathematics
lessons), and in the later interviews, students relate terms and procedures
of mathematics more and more to terms and procedures of physics
reciprocally. This underlines results of Zandieh (2000) and Marrongelle
(2004) who observed that some students used physics knowledge to give
meaning to mathematics tasks.

In our study, most students construct more and stronger relationships
between procedures on the long run. Their constructions of similarities
progresses along different routes. The actor-oriented perspective is a good
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framework to analyze these routes because it is focused on the individual,
who is constructing relationships while solving a task. In constructing
similarities between situations, words play a crucial role. Some students
recognize that in a new situation the same word is central as in a situation
that was met before, whether it be in physics or mathematics. For some
students, the word velocity is central, while other students use words such
as steepness or slope. These students refer to these words when they
explain why they use specific procedures. So, such words act as bridge to
create relationships between situations and procedures.

This leads to a recommendation for research and education. It seems
important that students verbalize relationships between different words that
are related to rate of change. Relationships between words such as velocity,
derivative, steepness, and slope will give students opportunities to construct
relationships between situations. Further research is needed in order to
investigate if an educational program in which students are supported to
verbalize relationships between words concerning rate of change will help to
improve the construction of relationships between situations.

Our study shows that most students do not use procedures after their
immediate introduction, but only after repetition and extension of their
knowledge on derivatives and kinematics. This leads to the recommen-
dation to teach mathematics as a concentric curriculum—that is, a
curriculum in which students repeatedly work with the same concepts and
procedures, but in different contexts, at a level of increasing difficulty,
with new perspectives and with possibilities for weaker students to catch
up. Connectedness of students’ repertoire will probably benefit if teachers
of mathematics and physics not only mention relationships between
procedures learned in mathematics and in physics but also design tasks in
which relationships between school subjects are made explicit.

According to Lobato (2003), researchers in the actor-oriented transfer
perspective look for the influence of prior activities on current activities
and how learners construe situations as similar. In our research, all prior
activities were activities in physics and mathematics classes and the
current activity was working on tasks about rate of change. This means
that we opted for a limited interpretation of the term ‘activities.” From the
actor-oriented transfer perspective, ‘activities’ and ‘situations’ are meant
as the broad context, in which students learn. But, it is difficult, or even
impossible, for a researcher to describe these situations and activities, and
the similarities that students construct, in detail. For example, one student
in our research noted that two formulas were related because they were on
the same page of the book. Such minor details can easily be overlooked,
while they affect the construction of relationships by students.



STUDENTS DEVELOPMENT OF CONSTRUCTING RELATIONSHIPS. 887

Our research differs from previous research on the concept of derivative
because of the use of a longitudinal design with four interviews in the course of
grade 10 to grade 12. The longitudinal design enables the monitoring of
students’ personal development and the analysis of their repertoire and
explanations over time. The longitudinal design causes also methodological
complications. Some tasks were used in all interviews and other tasks were used
to vary and make the interview unpredictable to students. On this point, we were
not fully successful, as a few students recognized tasks from an earlier interview.
This may have affected the chosen strategies, although students did not repeat
themselves, but instead, demonstrated that their repertoire had expanded. If we
had used repetitively the same tasks, this would have enabled the full
comparison of students’ procedures and explanations between interviews, but
then we would have lost on the unpredictability of the consecutive interviews.
Therefore, for this type of longitudinal research, we recommend a balanced mix
of repeated and new tasks for the sequence of interviews.
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