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ABSTRACT. This study explores the effects of the presence of external representations of a
mathematical object (ERs) on problem solving performance associated with short double-
choice problems. The problems were borrowed from secondary school algebra and geometry,
and the ERs were either formulas, graphs of functions, or drawings of geometric figures.
Performance was evaluated according to the reaction time (RT) required for solving the problem
and the accuracy of the answer. Thirty high school students studying at high and regular levels
of instruction in mathematics (HL and RL) were asked to solve half of the problems with ERs
and half of the problems without ERs. Each task was solved by half of the students with ERs and
by half of the students without ERs. We found main effects of the representation mode with
particular effect on the RT and the main effects of the level of mathematical instruction and
mathematical subject with particular influence on the accuracy of students’ responses. We
explain our findings using the cognitive load theory and hypothesize that these findings are
associated with the different cognitive processes related to geometry and algebra.

KEY WORDS: accuracy, external representations, internal representations, level of instruction,
reaction time, solving mathematical problems, split attention effect

INTRODUCTION

Literature review reveals inconsistencies in the role of external repre-
sentations of mathematical objects (ERs) in problem solving. On the one
hand, researchers argue that ERs support problem solving performance
and mathematical reasoning by enabling mathematical communication
and conveying mathematical thought (Kilpatrick, Swafford & Findell,
2001; Larkin & Simon, 1987; National Council of Teachers of
Mathematics (NCTM), 1989, 2000). On the other hand, some studies
show that ERs as information sources can damage problem solving
performance by increasing cognitive load (Moreno & Mayer, 1999;
Sweller, van Merriénboer & Paas, 1998; Tarmizi & Sweller, 1988).

This study aimed to examine this inconsistency by analyzing student’s
problem solving performance on short double-choice problems that
require very quick (correct/incorrect) answers. We examine whether
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ERs influence the accuracy of the problem solving performance and the
reaction time (RT). Additionally, as part of a larger study, we examine
differences between the performance of students who learn mathematics
at a high level of instruction and of those who learn mathematics at a
regular level of instruction. We apply E-Prime software to implement RT
measurement (Schneider, Eschman & Zuccolotto, 2002).

THEORETICAL BACKGROUND

External and Internal Representations

Perceptual processes are activated by external representations while
cognitive processes are usually activated by internal representations (Zhang
& Norman, 1994; p. 118). Commonly, representations can be divided into
two interrelated categories: external and internal representations (Goldin,
2003; Goldin & Kaput, 1996; Kaput, 1998; Zhang, 1997).

External representations (ERs) refer to the physically embodied,
observable configurations such as words, graphs, pictures, equations,
and tables (Goldin & Kaput, 1996). ERs are considered as “acts stimuli
on the senses or embodiments of ideas and concepts™ (Janvier, Girardon
& Morand, 1993, p. 81). ERs, which enable manipulation with
mathematical relations and meanings, are involved in mathematical tasks
such as manipulations on algebraic expressions, geometry problems,
graph understanding, and more (Zhang, 1997).

Internal representations (IRs) are considered to be a mental image
corresponding to the internal formulation of what we see around us in
external reality. IRs are regarded as “cognitive or mental models, schemas,
concepts, conceptions, and mental objects” which are illusive and not
directly observed (Janvier et al., 1993; p. 81). IR determines knowledge and
memory structures (Zhang, 1997) and refer to possible mental configurations
of learners or problem solvers (Goldin & Kaput, 1996).

When communicating and expressing mathematical ideas, students and
teachers use ERs (Lesh, Post & Behr, 1987). Lesh, Landau & Hamilton
(1983) found five kinds of representations that are useful for mathemat-
ical understanding: (a) real life experiences, (b) manipulative models, (c)
pictures or diagrams, (d) spoken words, and (e) written symbols. Larkin
& Simon (1987) stress that visual representation (pictures, diagrams,
graphs, etc.) preserves, in great detail, information about the topological
and geometric relations between the components of the mathematical
objects more than verbal (spoken words) or symbolic (written symbols
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such as algebraic equations and formulas) representations do. Another
important distinction between different types of ER is the distinction
between dynamic ER, for example, shown on a computer monitor and
static ER that can be viewed printed on paper (Hegarty, 2004).

Mathematical reasoning requires manipulations with internal representa-
tions and translation between representations of different kinds (Janvier,
1987). The nature of external mathematical representations with which
students learn concepts influences the nature of internal mathematical
representations of the concept (Kaput, 1989, 1998). At the same time,
according to Presmeg (2006), visual imagery (internal representation) under-
lies the creation of a drawing or spatial arrangement (external representation).

In a theory of representation, terms “to mean” or “to signify” are central
“as they are used to express the link existing between external representation
(signifier) and internal representation (signified)” (Janvier et al., 1993; p. 81).
The relationship between internal representations of mathematical ideas that
produce networks of knowledge (Hiebert & Carpenter, 1992) corresponding
to a mathematical idea is understood only if it is connected to existing
networks of previously learned concepts. Thus, mathematics educators agree
that the use of different types of representations of mathematical objects in
the learning process positively influences development of students’
conceptual understanding, their mathematical reasoning, problem solving
skills, and mathematical communications (Goldin & Steingold, 2001;
Hiebert & Carpenter, 1992; Janvier, 1987; Kaput, 1989; NCTM, 1989,
2000; Pape & Tchoshanov, 2001; Sfard, 1991).

ER and Split Attention Effect

During the learning process, learners need to search for and match different
parts of information which are mutually connected. Such parts of information
may be a geometric drawing and an associated formula, or a graph of function
and its corresponding equation. While different sources of information are
crucial for understanding a concept, learners often have to split their attention
between different sources of information and then mentally merge them when
learning the concept. This mental process is called split attention effect
(Sweller et al., 1998; Sweller, Ayres & Kalyuga, 2011).

There are two types of split attention effect. The first is the spatial
contiguity effect (Moreno & Mayer, 1999; Sweller et al., 1998; Tarmizi &
Sweller, 1988) where the different sources of information are spatially
separated. The second is the temporal contiguity effect (Mayer, 2009;
Mayer & Anderson, 1991, 1992) where the different sources of
information are separated in time. This physical separation (spatial or
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temporal) can hurt the performance of different types of instructional
material due to the necessity of switching from one source of information
to another in order to analyze and integrate the material (Bobis, Sweller &
Cooper, 1993; Mayer & Anderson, 1991).

On the one hand, it is commonly hypothesized that ERs support
working memory and therefore improve people’s performance on
complex cognitive tasks (Cox, 1999; Zhang & Norman, 1994). However,
on the other hand, the presence of several ERs of objects that require
switching and connecting them increases cognitive load (Sweller, 1994;
Sweller et al., 1998) and thus can impede problem solving performance.

In this study, we explore the influence of the presence of ERs of
mathematical objects on students’ performance on mathematical tasks by
measuring RT and the accuracy of the responses. We assume that a longer
RT with a similar accuracy of responses is an indication of higher
cognitive load. At the same time, if the presence of ERs increases
accuracy of responses, this means that ERs reduce split attention effect.

Reaction Time Methodology

It has been frequently assumed that mental processes are manifested through
certain behavioral measures such as a subject’s RT and response accuracy
(Pachella, 1974; Posner & McCleod, 1982). The subject’s RT is measured as
the interval between the onset of the presentation of a stimulus to a subject
and initiation of the subject’s response (Pachella, 1974; p.44).

In the past two decades, a considerable body of research in cognitive
psychology has used the RT paradigm in several domains, such as learning
disabilities, intelligence, language, reasoning, problem solving, decision
making, and movement control (Ashcraft, 1982; Babai, Brecher, Stavy &
Tirosh, 2006a; Babai, Levyadun, Stavy & Tirosh, 2006b; Groen & Parkman,
1972; Jensen, 2006; Luce, 1986; Miller & Poll, 2009; Sternberg, 1969).

Sternberg (1969) developed the Stage Model in order to obtain and
analyze a subject’s RT in the performance of simple perception tasks.
According to this model, performance on a task can be divided into a
sequence of time-consuming processes such as perception of a stimulus,
retrieval of stored information from memory, making decisions based on
this information, and preparing a suitable response.

Jensen (2006) analyzes RT on a particular type of task among
participants with different 1Q levels. These experiments reveal high
correlation between IQ and RT; thus, Jensen implies that chronometric
tasks can be used as measures of IQ. Some studies in mathematics
education analyze students’ mathematical thinking using the RT



THE PRESENCE OF EXTERNAL REPRESENTATIONS 1053

paradigm. For example, the studies by Stavy, Babai, and their colleagues
have suggested that the response to tasks with intuitive rules is immediate
(Babai et al., 2006a, b; Stavy & Babai, 2008).

In this study, we used RT as a quantitative indicator of cognitive
processes associated with solving short double-choice mathematical
problems. We supposed that longer RTs indicate a more complex mental
process and wondered whether the presence of ERs at the solution stage
affects the degree of complexity and, if so, in what way. In particular, we
were interested in examining whether ERs of mathematical objects
accelerate, decelerate, or have a neutral effect on mental processing.

Neurocognitive Aspects of Representation

A significant number of studies in neuroscience which focus on
representations of information in the nervous system emphasize visual,
motor, memory, and prefrontal cortical functions of the brain (Funahashi,
2007). In particular, studies that relate to mathematics address the
representation of a number in the brain (Nieder & Dehaene, 2009; Cohen
Kadosh & Walsh, 2009). The meaning of representation in these studies
is somehow different from the meaning of representation in our research.
While neurocognitive studies analyze topology and processing of external
information in the brain, our study analyzes the role of the presence of
ERs in mathematical problem solving. To the best of our knowledge, this
topic has not been studied, neither in mathematics education nor in
cognitive psychology. In addition, our literature review did not identify
any systematic study focusing on the differences between students’
reasoning in algebra vs. geometry.

RESEARCH GOALS AND QQUESTIONS

The goal of the current study was to resolve the inconsistency found in the
literature review with respect to the role of ERs in thinking and learning
processes. We aimed to examine problem solving performance on short
mathematical tasks presented to students, either with or without ERs at the
solution stage, by measuring RT and accuracy of the responses.

To achieve the study goal, we asked the following questions:

1. What are the differences (if they exist) in the accuracy of problem
solving performance on the items that differ in the presence of ER (a)
in algebra, (b) in geometry?
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2. What are the differences (if they exist) in the RT of problem solving
performance on the items that differ in the presence of ER (a) in
algebra, (b) in geometry?

3. Are findings in question 1 and 2 related to the level of mathematics
that the students study in school?

Additionally, the study presented in this paper was aimed at the
validation of items for neurocognitive investigation.

METHODOLOGY

Study Participants

Thirty students from a high school in the north of Israel (16—17 years old)
participated in this study. Twenty seven of the 30 students completed all the
tests; thus, we report results related to these 27 students only. Fourteen
participants who study at the highest level of mathematical instruction (HL)
and 13 who study at the regular level (RL) completed all the assignments. All
participants were randomly assigned to one of two groups (group 1 and group
2) with 13 and 14 participants, respectively: group 1 (G1) had six HL and
seven RL participants, group 2 (G2) had eight HL and six RL participants. All
participants were familiar with the topics included in the experiment’s tasks.

Note that mathematics is a compulsory subject in Israeli high schools, and
the students can be placed in one of three levels of mathematics: high,
regular, and low. The level of instruction is determined by students’
mathematical achievements in earlier grades. The differences in instruction
at HL differ from that at RL in terms of the depth of the learning material and
the complexity of the mathematical problem solving involved. The items we
use in our study are basic items for both RL and HL curricula and are learned
identically by the students in HL and RL groups. All the students in the study
shared a similar socioeconomic background.

Tools and Data Collection

There were four tests: two tests (T1 and T2) in geometry and two tests (T3 and
T4) in algebra. Each test contained 60 tasks. All tasks were presented visually
at the center of the computer screen, displayed in black characters on a white
background. Task presentation and response collection were conducted using
the E-Prime software package (Schneider et al., 2002). Each task in each test
was presented in two windows with different stimuli (S1—task condition and
S2—suggested answer) that appeared consecutively (Fig. 1).
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Figure 1. Sequence of events

Each trial started with the fixation cross. The cross was replaced by the
problem description (S1) after 500 ms. The problem description was visible
for 3,000 ms and separated from the answer (with or without external
representation) by a blank time period (ISI) of 1,000 ms. The answer remained
visible until the participant responded or for a maximum of 8,000 ms. Time
periods were determined by a pretest performed by three participants.

For each task, an answer was presented, and the students were asked to
decide whether or not the answer was correct (Fig. 2). In each test, 30 of
the 60 tasks depicted a correct answer, while the other 30 tasks depicted
an incorrect answer for the task given. We call the task “double choice”
since the students had to press “3” (=correct) or “l1” (=incorrect)
according to their decision. The tasks were presented to participants in
random order. The sequence of events is presented in Fig. 1.

Participants were tested individually in a quiet room, seated in front of
a computer. They were told that they would be presented with a series of
mathematical problems in algebra and geometry from the school
curriculum and that they had to make a judgment about the correctness
of the result displayed at the end of each problem. Participants were
instructed to press one of two keys on the computer keyboard as quickly
as possible when the displayed result was correct and the other key when
the result was incorrect.

Test T1: Geometry (“Theorems”). Participants received a geometric
drawing with the angles marked by Greek letters o and . The drawing
was followed by a statement with o and  referring to this drawing. The
participants had to determine the correctness of the statement.

Test T2: Geometry (“Areas”). Participants received a drawing of a
geometric object. Part of this drawing was shaded. The participants had to
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Figure 2. Examples of items in the test

determine what area of the drawing was shaded or what the area of the
geometric object was in reference to the shaded part.

Test T3: Algebra (“From Formula to Graph”). Participants received a
graph of a mathematical function followed by an equation. They had to
determine whether the graph and the equation represented the same
function.

Test T4.: Algebra (“From Graph to Formula”). Participants received an
equation of a mathematical function followed by a graph. The participants had
to determine whether the equation and the graph represented the same function.

For each test, two modes were designed. In ER mode, a drawing of a
given mathematical object presented in stimuli 1 (S1—window 1—
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givens) remained presented in stimuli 2 (S2—window 2—suggested
answer). In IR, a mode drawing of a given mathematical object
presented in stimuli 1 (S1—window 1—givens) disappeared (was not
presented) in stimuli 2 (S2—window 2—suggested answer). Presenta-
tion of a suggested answer without presence of the given object
(without ER) required activation of a mental image of the given object
(activation of IR) in order to examine the answer. Figure 2 presents
the task in both modes. Students were asked to cope with four tests
(T1, T2, T3, and T4), each one presented in two modes: ER/IR (see
Table 1).

Reliability of the Instrument

Internal consistency of each test was evaluated with Cronbach’s alpha for
accuracy. Table 2 presents the reliability of the instrument for the four
tests in ER and IR, respectively (overall, eight tests). Cronbach’s alpha
was found to be high enough for the implementation of the test.

Data Analysis

Accuracy for each participant was determined by calculating the
percentage of correct responses. RT was determined as the mean RT for
the answers in all trials of the particular test.

A four-way repeated-measures MANOVA was conducted to investi-
gate the impact on the RT and accuracy of four factors: group (G1, G2),
type of representation (ER, IR), mathematics subject (algebra, geometry),
and level of mathematical instruction (HL, RL) as well as interactions
between the factors. An additional repeated-measures MANOVA was

TABLE 1

Distribution of the participants between the different tests and modes of representation

Geometry Algebra

T3 (graph T4 (formula
HL RL Total T1 (theorems) T2 (areas) to formula) to graph)

Gl 6 7 13 ER IR ER IR
G2 8 6 14 IR ER IR ER

ER external representation, /R internal representation, AL high level of mathematical instruction, RL
regular level of mathematical instruction, G/ groupl, G2 group 2
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TABLE 2
Cronbach’s alpha for the tests in the study

ER mode IR mode

Test Tl 72 T3 T4 Tl 72 73 T4

Cronbach’s o 0.662 0.696 0.784 0.719 0.816 0.718 0.809 0.627

conducted to investigate the fests’ impact on RT and accuracy in an
interaction with representation and level of mathematical instruction. RT
and accuracy are two interdependent measures (Pachella, 1974; Jensen,
2006) and therefore were examined as two measures in the same
MANOVA. The type of representation and the mathematics subject were
within-subject factors, whereas the group and the level of mathematical
instruction were between-subject factors.

RESULTS

Differences in Accuracy and in Reaction Time

First, we ascertained that the distribution of students among the groups
did not affect the study results. Indeed, MANOVA revealed neither a
significant main effect of group nor a significant interaction between
group and mathematical topic (algebra vs. geometry); findings were
similar for the interaction between groups and level of mathematical
instruction (HL vs. RL). This suggests that both groups performed
similarly in terms of mathematical topics and levels of mathematical
instruction.

Figure 3 demonstrates accuracy (in percent) and RT (in millisecond)
revealed in the study for each of the tests in IR and ER modes for HL and
RL students.

Table 3 shows that HL participants were more accurate than RL
participants on all tests in the two representational modes. On T4,
accuracy was lowest for RL and HL participants, and we deduce that
among all the tasks used in our research experiment, translation of a
formula to a graph was the most difficult. RT was longer for the ER mode
than for the IR mode on all tests for both RL and HL participants (with
the exception of T3—ER—HL). The accuracy for both modes (ER and IR)
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Figure 3. Students’ results (mean values) on the tests

was similar in both levels of mathematical instruction. Repeated-measures
MANOVA revealed three significant main effects (see Table 3).

Data analysis demonstrated a main effect of representation (F (2, 22) =
13.264, p < 0.001). RT for the IR mode was lower than for the ER mode
(1,935.04 vs. 2,503.2, respectively). Accuracy was similar in two
representational modes (74.2 vs. 74.2 for IR and ER, respectively).
Subsequent ANOVA demonstrated the effect to be significant for RT
(F (1, 23) = 27.674, p < 0.001), but not for accuracy (¥ (1, 23) =
0.000, p > 0.05).

MANOVA revealed a main effect of level of mathematical instruction
was found (F' (2, 22) = 5.855, p < 0.01). The follow-up ANOVA analysis
revealed a significant difference in accuracy between HL and RL
participants (£ (1, 23) = 10.017, p < 0.01). HL participants were more
accurate than RL participants (78.4 vs. 70.9, respectively). There was no
significant difference in RT (£ (1, 23) = 0.549, p > 0.05, 2303 vs. 2134.5,
for RL and HL, respectively).

We found a main effect of mathematics subject (F (2, 22) = 12.526,
p < 0.001) with significant difference in accuracy between tests in
geometry and algebra (£ (1, 23) = 26.012, p < 0.001). The participants
performed more accurately on geometric tests than on algebraic tests
(78.2 vs. 70.2, respectively). There was no significant difference in RT
between tests in algebra and geometry (F (1, 23) = 1.853, p > 0.05,
2,299.2 vs. 2,139.1 for algebra and geometry, respectively).

MANOVA also revealed no significant interactions among the
following factors: representation, level of mathematical instruction, and
mathematics subject. There was no significant interaction between
representation, test, and level of mathematical instruction (p > 0.05; see
Table 3). However, subsequent ANOVA found significant interaction
between representation and mathematics subject with respect to the
accuracy of the participants’ performance (F (1, 23) = 4.638, p < 0.05).
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TABLE 3

Differences and interactions between the factors’ effects

Accuracy in %

Reaction time in ms

Mean (SD) Mean (SD)
HL RL HL RL
Means and SD
Geometry TI ER  85.6 (6.7) 82.6 (8.3) 2,289.9 (774.7) 3,014.0 (1039.6)
IR 89.4 (5.3) 77.8 (11.0) 1,997.3 (291.5) 2,071.9 (619.4)
T2 ER 75(8.4) 66.1 (8.9) 2,221.1 (309.7)  2,236.6 (915.7)
IR 75.3 (11.3) 74 (7.8) 1,459.6 (532.6) 1,822.2 (365.8)
Algebra T3 ER 82 (5.5) 75.7 (13.3) 1,931.4 (596.6) 2,592.7 (912.1)
IR 85.2 (7.7) 73.9 (12.0) 2,126.2 (611.6) 2,063.3 (755.9)
T4 ER  69.6 (9.3) 57.2 (8.7) 3,099.6 (889.8) 2,640.1 (1,420.1)
IR 65 (9.0) 53.3 (6.6) 1,950.7 (543.1) 1,989.2 (560.4)
Main effects
Overall 78.4 (6.8) 70.1 (6.8) 2,134.5 (595.2) 2,303.8 (590.9)

Effect of LMI
F(2,22)=5855"
Wilks” 4 = 0.653

ER—total mean
IR—total mean

Effect of R
F(2,22)=13264""
Wilks® 4 = 0.453

Geometry—total mean
Algebra—total mean

Effect of MS
F(2,22)=12.526""
Wilks® 4 = 0.468

Interactions
ER
IR
R x LMI
F(2,22)=0277
Wilks® 4 = 0.975
Geometry
Algebra
MS x LMI
F(2,22)=1.728
Wilks” 4 = 0.864

F(1,23)=10.017"

742 (7.1)
742 (8.3)

F (1, 23) = 0.000

782 (7.4)
702 (8.4)

F(1,23)=26.012"

78 (7.1) 70.4 (7.1)
78.7 (8.3) 69.8 (8.3)
F(1,23)= 0229

81.3 (7.4) 75.1 (7.4)
75.4 (8.4) 65 (8.4)

F(1,23) = 1.827

F (1, 23) = 0.549

2,503.2 (800)
1,935 (471)

F(1,23)=27.674""

2,139.1 (579.2)
2,299.2 (745.2)

F(1,23) = 1.853

2,385.5 (802.4)
1,883.5 (472.4)

F(1,23)=0375

1,992 (581)
2,277 (747.5)

F(1,23)=1.129

2,620.9 (796.5)
1,986.6 (469)

2,286.2 (576.8)
2,321.3 (742)
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TABLE 3
(continued)
Accuracy in % Reaction time in ms
Mean (SD) Mean (SD)
HL RL HL RL
ER Geometry  77.3 (10.6) 2,445.4 (818.6)
Algebra 71.2 (12.8) 2,606.5 (1,020.6)
IR Geometry  79.7 (10.6) 1,849 (485.3)
Algebra 70 (15) 2,037.7 (587.1)
R < MS F (1, 23) = 4.638" F (1, 23) = 0.262
F(2,22)=2.288
Wilks” 4 = 0.828
ER Geometry  79.5 (9.2) 75 (11.8) 2,250.6 (532.6) 2,655.2 (1,026)
Algebra 74.8 (10) 67.1 (14.5) 2,598.9 (960.8) 2,614.6 (1,121)
IR Geometry  83.3 (10.8) 75.8 (9.2) 1,766.8 (480.7) 1,937.4 (493.5)
Algebra 76.5 (13) 62.8 (14) 2,051 (568.3)  2,023.4 (629.7)
R x MS x LMI F (1, 23)=0.264 F (1, 23)=10.020
F(2,22)=0.129
Wilks” 4 = 0.988
R x test x LMI F (3, 69) = 0.463 F (3,69)=0.175

F(2,22)= 0374
Wilks” 4 = 0.899

ER external representation, /R internal representation, MS mathematics subject, LMI level of math
instruction, R representation

“p <0.05; "p <0.01; "p<0.001

Discussion

The present study examined the impact of the ER of a mathematical
object (drawing, graph, and formula) on participants’ performance in four
different mathematical tests. The study aimed to examine the effect
produced by the presence of ER of the mathematical object, at the
decision making stage of double-choice tasks, on task performance.

The results showed that, in general, students who study mathematics at
HL were more accurate on all the tests and performed more quickly than
RL students (with the exception of T3 in IR mode). In most cases, RT
decreases when students perform tasks in IR mode as compared to their
performance in ER mode. Surprisingly, compared to our expectations,
students performed more accurate geometry tests than algebra tests.

Research in cognitive science indicates that diagrams used as part of
ER can improve decision making or problem solving as compared to texts
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or tables (e.g. Larkin & Simon, 1987). Larkin & Simon (1987) argued
that “the diagrammatic representation preserves explicitly the information
about the topological and geometric relations among the components of
the problem” (Larkin & Simon, 1987; p. 66). Therefore, diagram use
seems to reduce the speed of search and recognition. In addition, external
representation is also thought to provide a memory aid and can
significantly ease many cognitive tasks (Zhang & Norman, 1994).

Our findings demonstrate that the presence of ER enhances the RT of
students’ problem solving performance, but it does not improve accuracy.
We explain these findings by the split attention effect that accompanies
solving processes with the presence of both the ER of the mathematical
object and the corresponding formula. We suggest that split attention
effect led to an increase in cognitive load and was not helpful in solving
the tasks. However, more careful investigation has to be performed.

The multiple sources of information in our experiment were separated
temporally in both modes (since different pieces of information were
presented in S1 and S2) and spatially in ER mode (when different pieces of
information were displayed simultaneously in S2). The temporal separation
occurred in two experimental modes; therefore, we suppose that the
differences between RT in the two experimental modes are due to spatial
separation. We assume that ER induces extraneous cognitive load by
requiring the splitting of attention among several types of information:
geometrical object and its property written symbolically or function graph
and its formula. This cognitive load requires mental integration of multiple
sources of information (Mayer, 2009; Sweller et al., 1998, 2011).
Consequently, we assume that maintaining a mental image (IR) of the given
mathematical object reduces cognitive load and decreases RT. Moreover,
this effect was true for both levels of mathematical instruction. The RT for
the ER condition was longer than for the IR condition (except in T3—"“graph
to formula” for HL students): this extraneous load did not affect the accuracy
of responses.

RTs are generally used to determine differences in times of information
processing with respect to experiment tasks or experiment conditions: the
longer the RT, the more complex the cognitive process (Luce, 1986;
Pachella, 1974; Sternberg, 1969). We speculate here that the main effect of
the mathematics subject (especially its effect on the accuracy of mathemat-
ical performance) and the interaction between representation mode and
mathematics subject revealed in this study are associated with different
cognitive processes related to geometry and algebra tasks used in our
research. We plan to carefully examine the hypotheses raised in this study
from both the cognitive and neurocognitive perspectives. We currently
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conduct a multidimensional examination of mathematical giftedness that
examines a population of 200 students with respect to basic cognitive skills
and brain activity with ERP methodology (e.g. Waisman, Shaul, Leikin &
Leikin, 2012; Shaul, Leikin, Waisman & Leikin, 2012).

We assume that results of this study as well as of the neurocognitive
study will contribute to our understanding of underlying principles for
design of mathematical tasks with respect to the use of ER or IR. Better
explanation of the performance differences associated with ER vs. IR and
with algebra vs. geometry tasks (as within-subjects differences) and of the
effects of level of mathematical instruction and gender (as between-
subjects differences) can be given, and it will inform mathematics
educators about the place and the role of ER in instructional design.

Some limitations of our study can be seen in the scope of the research
population of the experiment described in this paper. Additionally, we
have to note that definitions of ER and IR used in our study were of
operational nature for experimental purposes. We are aware that in real
mathematics education settings, students may use different ERs and IRs
other than those used in this study. For example, in our experiment, we
did not address distinctions between static and dynamic ER of
mathematical objects (cf., Hegarty, 2004).

NCTM (2000) stressed that “The ways in which mathematical ideas are
represented is fundamental to how people can understand and use those
ideas” (ibid, p. 67). Based on our findings, we speculate that whereas HL
mathematics students can successfully operate with mathematical concepts
and solve mathematical problems based on IR, the role of ER becomes
especially important in teaching mathematics to students who do not excel in
mathematics. We assume that ER of mathematical objects can support
learning and solving processes in students who study mathematics at RL and
is essential for low achievers in mathematics. Since the former hypothesis
was not explored in our study, it opens an interesting direction for future
research in mathematics education. Additional direction for future research
can be seen in exploring the role of IR and ER in solving more advanced
tasks than those that were used in our study.
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