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ABSTRACT. Based on the Trends in International Mathematics and Science Study 2007
study and a follow-up national survey, data for 3,901 Taiwanese grade 8 students were
analyzed using structural equation modeling to confirm a social-relation-based affection-
driven model (SRAM). SRAM hypothesized relationships among students’ perceived
social relationships in science class and affective and cognitive learning outcomes to be
examined. Furthermore, the path coefficients of SRAM for high- and low-achieving
subgroups were compared. Given the 2-stage stratified clustering design for sampling,
jackknife replications were conducted to estimate the sampling errors for all coefficients in
SRAM. Results suggested that both perceived teacher–student relationships (PTSR) and
perceived peer relationships (PPR) exert significant positive effects on students’ self-
confidence in learning science (SCS) and on their positive attitude toward science (PATS).
These affective learning outcomes (SCS and PATS) were found to play a significant role
in mediating the perceived social relationships (PTSR and PPR) and science achievement.
Further results regarding the differences in SRAM model fit between high- and low-
achieving students are discussed, as are the educational and methodological implications
of this study.

KEY WORDS: complex sampling, large-scale survey, learning motivation, science
achievement, self-determination theory, social relationships, structural equation modeling,
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INTRODUCTION

Contemporary science education reforms emphasize interactive and con-
structive learning in which learners learn from the interaction among prior
knowledge, concurrent experiences, and human interactions within socio-
cultural contexts (United States National Research Council, 2007). However,
how learners’ perceived social environment and attributes influence learning
outcomes is complex and not well documented. Large international
assessment data sets provide the basis for important secondary analyses that
have implications regarding student, school, and cultural attributes far
beyond the league tables about who’s in first place flowing from these
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surveys (Yore, Anderson & Chiu, 2010). The current study benefits from the
comprehensive data set of large-scale surveys to confirm the proposed
social-relation-based affection-driven model (SRAM), illustrating the
relations among learners’ perceived social environment, attributes, and
academic achievement and further to differentiate mechanisms of motivation
in learning science between low and high achievers. In addition, an
important methodological technique of using complex sampling of large-
scale surveys is demonstrated to advise researchers of future studies.

Education Context in Taiwan

Asian countries value highly the benefits brought by education and
academic degrees. Cultural and family expectations reflect the Confucian
philosophy in which children work hard in school and respect the
authority of their teachers so as to achieve high academic grades and
access to higher education. The Joint Public Senior High School Entrance
Examination had been the only way for junior high school students to
continue their senior high school education and, therefore, caused much
psychological distress on students preparing for the examination.
However, in 2002, the Multi-route Promotion Program was implemented
to provide various ways and opportunities for entrance to senior high
school, but examination pressure still continues among students and their
families. Most junior high school students spend significant time studying
and even attending cram schools to prepare for the Basic Competency
Test, which is an important performance consideration for senior high
school entrance. Under this content-oriented test circumstance, most junior
high science teachers pay more attention to students’ cognitive achieve-
ment than to their affective learning outcomes (Tsai & Kuo, 2008). Even
though the national curriculum guidelines set the goal of enhancing
students’ science attitudes and confidence in science learning, Taiwanese
grade 8 students were ranked second-worst in confidence and positive
attitude toward science learning among countries participating in the 2007
Trends in International Mathematics and Science Study (TIMSS), while
performing well above the international average in science knowledge. In
addition, the percentages of Taiwanese grade 8 students with high positive
attitudes toward science, high values for science, and high self-confidence
in learning science decreased from TIMSS 1999 to 2007. The government
in Taiwan has funded many research projects to enhance students’ self-
confidence in learning science and positive attitude toward science. Some
of these projects have focused on innovations in school science teaching
while others aimed to improve students’ motivation to learn science.
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Learning Motivation and Classroom Culture

The potential relationships among students’ attitudes, beliefs, interest,
motivation, and achievement seem reasonable, but the actual mechanisms
that connect student traits and achievement are not transparent. Perceived
social supports are related to enhancing students’ academic self-
confidence and attitude (e.g. Nelson & DeBacker, 2008; Wolf & Fraser,
2008). According to the self-determination theory, there are three basic
psychological needs essential to intrinsic motivation—relatedness, com-
petence, and autonomy (Ryan & Deci, 2000b). Relatedness is the need to
experience supportive social relationships with and connected to others.
Competence is the need of being confident in the efficacy of one’s
abilities. Autonomy is the need to feel autonomous rather than feel
compelled in one’s actions. Intrinsic motivation, rather than extrinsic
demands, enhances one’s self-concept and engagement leading to higher
achievement. That is, the self-determination theory proposes that beliefs
about self play a mediator role/function between the psychological needs
and achievement behavior. However, the self-concept differs across
cultures (Markus & Kitayama, 2003), and the relationship among the
three basic psychological needs is also culture-dependent (Keller, 2012).
For example, people from collectivistic Asian cultures could internalize
extrinsic demands through fulfilling the need for relatedness because they
endorse interdependent self-construal (Bao & Lam, 2008; Ryan & Deci,
2000a). Therefore, for collectivistic cultures, enhancement of learners’
positive social relationships should play an essential role in the needs of
autonomy and competence and, in turn, improve learning achievement.

Other studies have suggested that students at high- or low-achieving
levels differed in their engagement in learning activities. For example,
Cosmovici, Idsoe, Bru & Munthe (2009) observed that improvement in
the perceptions of learning environment, including perceived emotional
and academic supports from teachers or peers, exerts different effects on
learning motivation for students at different achievement levels. Ng,
Kenney-Benson & Pomerantz (2004) indicated that the effects of a
supportive parent–child relationship on children’s performance are
different between low and high achievers.

Research Problem Context

Given Taiwan’s sociocultural context (collectivistic but competitive) and
the desire to enhance students’ self-confidence in learning science and
positive attitude toward science, the current study aimed to illustrate how
Taiwanese students’ perceived social relationship (PSR) in science class
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influences their affective and cognitive learning outcomes and to
differentiate the mechanisms of learning motivation for students at
different achievement levels. The specific research questions that guided
this study were:

1. To what extent can perceived social relationships in science class
predict students’ affective learning outcomes?

2. To what extent can students’ affective learning outcomes predict their
cognitive learning outcomes?

3. To what extent can perceived social relationships in science class
predict students’ cognitive learning outcomes through the mediation of
students’ affective learning outcomes?

So as to agree with the data sets of TIMSS 2007 and its follow-up
national survey of Taiwan, the PSR that corresponded to relatedness in
the self-determination theory were further separated into perceived
teacher–student relationship (PTSR) and perceived peer relationship
(PPR) in science class. PTSR refers to students’ respect, personal regard,
and interpersonal connection for/with their science teacher and perceived
support from their science teacher (Hardre, Chen, Huang, Chiang, Jen &
Warden, 2006); PPR refers to perceived mutual acceptance and
cohesiveness within peer groups in science class (Wolf & Fraser, 2008).
Affective learning outcomes include competence and autonomy reflected
by students’ self-confidence in learning science (SCS) and positive
attitude toward science (PATS; Martin & Preuschoff, 2008). SCS
indicates a student’s self-evaluation of his/her ability in solving science
problems or working on scientific activities; PATS indicates the eagerness
to engage in activities related to science and learning science. Finally,
cognitive learning outcome refers to students’ science achievement (SA)
in TIMSS 2007. The hypothetical model was formulated on the basis of
these variables as below.

Social Relationship and Affective Learning Outcome. The fulfillment of
relatedness plays a pivotal role on feeling competent and autonomous not
only for people of collectivistic cultures but abundant studies also suggest
a relationship among them for other cultures. For example, perceived
teacher support correlated positively with academic self-confidence for
Australian secondary school students (Dorman, 2001), and perceived peer
support and belongingness had a positive impact on the academic self-
confidence of American grades 6, 7, and 9 students (Nelson & DeBacker,
2008). Based on data from Taiwanese senior high school students, Hardre
et al. (2006) observed that both perceived teacher and peer support
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correlated with academic self-confidence and that the relationship
between perceived peer support and academic self-confidence was
stronger than the one between perceived teacher support and academic
self-confidence. Other studies indicate the effects of a supportive teacher–
student relationship and a cohesive peer relationship on positive attitudes.
In Wolf & Fraser’s (2008) study, both teachers’ support and students’
cohesiveness correlated with students’ positive attitude toward science,
and teachers’ support had a greater effect than students’ cohesiveness on
students’ positive attitude toward science.

Affective Learning Outcome and Academic Achievement. Students’
affective attributes are important indices of educational effectiveness;
therefore, affective attributes are included as items in large-scale
educational evaluation studies [e.g. TIMSS and Programme for
International Student Assessment (PISA)]. In TIMSS, the affective
attributes are reflected directly by SCS and PATS. Since Bandura
(1977) proposed the theory of belief-in-self in a specific task domain,
academic self-confidence has been recognized as the most important
affective factor in student achievement. In their meta-analysis of 36
studies, Multon, Brown & Lent (1991) concluded that academic self-
confidence is a significant predictor of academic performance. The
relationship between students’ science attitude and their learning
achievement has been a concern in science education research;
however, the strength of that relationship is controversial. For
example, Weinburgh’s (1995) meta-analysis supported the positive
relationship between the two factors, whereas in Shrigley’s (1990)
review, attitude toward science correlated with learning achievement
only when the measurement of attitude was refined.

Hypothetical Model and Expected Results

According to self-determination theory (Ryan & Deci, 2000b) and the
previously reported empirical studies, various correlations among
students’ perceived social support, affective learning outcome, and
cognitive learning outcome exist; however, most of the studies merely
explored the relationships among some of these variables. The current
study proposes a SRAM (Figure 1) to (a) comprehensively consider
all relations among these variables and (b) enact the planned
secondary analysis procedures. We assume that PTSR and PPR exert
direct effects on both affective learning outcome (SCS and PATS)
and, in turn, that SCS and PATS influence the cognitive learning
outcome (SA). That the PSR do not have direct effect on the
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cognitive learning outcome in the SRAM are supported by other
studies (Erlauer, 2003; Taylor & Lonsdale, 2010).

SRAM can be represented mathematically by a series of simultaneous
regression equations as follows:

ηSA ¼ bPATS!SA � ηPATS þ bSCS!SA � ηSCS þ zSA
ηPATS ¼ gPTSR!PATS � xPTSR þ gPPR!PATS � xPPR þ zPATS

ηSCS ¼ gPTSR!SCS � xPTSR þ gPPR!SCS � xPPR þ zSCS

The η and ξ indicate the measures of endogenous latent construct and
exogenous latent construct, respectively. The residual is denoted as ζ. Their
subscripts are the names of the latent constructs. β is the regression
coefficient for the endogenous variable whereas γ is for the endogenous
variable, and their subscripts specify the direction from the predictor to
the predicted variable. In addition, fPTSR$PPR (Figure 1) refers to the
correlation between the two exogenous latent constructs. SRAM was used
to interpret both the total data set and the separate data of high- and low-
achieving students.

Therefore, based on our proposed framework and other research
results, all the path coefficients in SRAM are expected to be positive,
reflecting that the students’ perceived social relationships (PTSR and
PPR) in science class positively predict their affective learning outcomes
(PATS and SCS) and their affective learning outcomes positively predict
their cognitive learning outcomes (SA). In addition, students’ affective
outcomes are expected to mediate the effect of their perceived social
relationships in science class on SA. However, these effects might be
different between high- and low-achieving students.

Figure 1. The social-relation-based affection-driven model
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METHOD

Structural equation modeling (SEM) was adopted for the secondary analysis
on the TIMSS 2007 data set and its follow-up national survey to confirm the
proposed SRAM. SEM technique is beneficial for a secondary analysis to
“allow measurement error, multiple indicators and test for confounding
variables” (Bollen, 1989, p. 73), whereas the traditional regression technique
assumes that all variables are measured without error. Traditional multiple
regression or path analysis techniques use raw or standardized scores without
considering the measurement errors of variables to estimate the regression
coefficients; therefore, the regression weight of a predictor is attenuated even
though a good reliability of the instrument is reported (McCoach, Black &
O’Connell, 2007). From this viewpoint, SEM estimates the effect sizes more
accurately than the traditional path analysis method does.

There are two main advantages for using the database of large-scale
surveys for a secondary analysis: The scrupulous sampling design assures
the sample is representative of the whole population, and the quality of
the instrument is confirmed by pilot studies and by content and
methodology experts. However, some limitations of the instruments and
the sampling method need to be considered. First, items of an instrument
are defined and developed to meet the specific purpose of a large-scale
survey; therefore, only those items in agreement with the constructs
defined for a secondary analysis can be used. This requirement drastically
reduces the number of items, but fortunately, enough items can still be
identified due to the large item pool. Also, if a secondary analysis aims to
examine the relationships among variables at a population level, only a
reasonable number of items are needed to produce sensitive and reliable
results due to the large sample size. Second, because most large-scale
surveys adopt a two-stage stratified cluster sampling, the procedure of
variance estimations becomes extremely sophisticated and daunting as
compared to a simple random selection at the individual level. In the
current study, we used jackknife replications as the standard procedure to
estimate the parameter variances (Foy, Galia & Li, 2008).

Finally, we recognize the debate whether a cross-sectional survey can
be used to obtain a causal model because it only provides correlations
among variables. Although not sufficient, correlation is a necessary
condition of causality. The current study adopted a hypothesis–deduction–
confirmation approach to confirm, rather than to verify, the theoretical
model: SRAM is specified at first and then, based on the causal relations
embedded in SRAM, the specific patterns of correlations among variables
are confirmed.
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Data Source

The data of 4,046 Taiwanese grade 8 students were originally identified
as being part of TIMSS 2007 and its concurrent follow-up national
survey. Given the unequal probability of a student to be sampled, the
4,046 students’ SAs were separated into high-achieving and low-
achieving groups according to the weighted median. A listwise deletion
of 145 students with missing data resulted in a total final sample of 3,901
participants, including the high-achieving subgroup (HAG; nHAG = 1,956)
and the low-achieving subgroup (LAG; nLAG = 1,945), was retained to
validate the SRAM and examine the research questions.

Instruments

Both the student background questionnaire and the released science test
scores (plausible values) of TIMSS 2007 and the concurrent follow-up
survey were adopted for secondary analysis. The questionnaire included
information about attitude toward science and mathematics, self-confidence
in learning science and mathematics, perceived classroom activities, and
home background (Martin & Preuschoff, 2008). The survey collected
information of local interests, such as PSR in the classroom, frequency of
attending cram school, and family income. Three panelists (two experts in
science education and one expert in psychology) were recruited to screen the
item pools according to the definitions of the four constructs (PTSR, PPR,
SCS, PATS) and to elaborate the measurement model. They identified 13
items from the pool of 52 items that did meet the agreement criteria. Only
consensus items were retained for the confirmatory factor analyses and the
following SEMs. All items and their corresponding constructs are provided
in Table 1.

The two independent variables, PTSR and PPR, contained three items
each measured in the follow-up survey. One of the mediators, SCS, was
assessed by four items and the other mediator, PATS, by three items from
the questionnaire. All items for the four constructs used a four-point
Likert scale ranging from “agree a lot” to “disagree a lot.”

The dependent variable, SA, refers to the plausible value (PV)
provided in the TIMSS 2007 database. Each item in the TIMSS science
test (N = 210) has two dimensions. The content dimension specifies the
subject matter within science (i.e. physics, chemistry, biology, and earth
science), and the cognitive dimension specifies the thinking process (i.e.
knowing, applying, reasoning). The 210 items were distributed into 14
booklets of about 30 items each. Item response theory (IRT) was used to
equate the scales across the booklets based on the common items between
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pairs of the 14 booklets (Foy et al., 2008) and to provide SA scores.
Through the multiple imputation method of IRT (Mislevy, 1991), five
PVs were obtained for each student. The average of the five PVs indicates
the SA expectation value, and the standard deviation of the five PVs
refers to the standard error of measurement. In the current study, each
participant’s five PVs were used to estimate the path coefficients and their
measurement errors caused by the measurement of SA in the SRAM. The
average reliability coefficient of the science test for Taiwanese grade
8 students was about 0.86.

Data Analysis

A two-step approach (Anderson & Gerbing, 1988) was adopted to process
the model testing and fitting, with LISREL version 8.70 (Jöreskog &

TABLE 1

Indicators and variable types in SRAM

Construct Items (item code)
Variable
type

PTSR I like my science teacher. (PTSR1)a Ordinal
My science teacher does care about me. (PTSR2)a Ordinal
When I encounter difficulties, my science teacher will assist me
in solving them. (PTSR3)a

Ordinal

PPR I think my peers like to be in a group with me when group
activities are conducted. (PPR1)a

Ordinal

I can express my opinions in science class comfortably and need
not to worry that my peers will laugh at my ideas. (PPR2)a

Ordinal

I have good communication with my peers in science class.
(PPR3)a

Ordinal

SCS How much do you agree with these statements about learning science?
I usually do well in science. (SCS1)a Ordinal
Science is harder for me than for many of my classmates. (SCS2) Ordinal
Science is not one of my strengths. (SCS3) Ordinal
I learn things quickly in science. (SCS4)a Ordinal

PATS How much do you agree with these statements about learning science?
I enjoy learning science. (PATS1)a Ordinal
Science is boring. (PATS2) Ordinal
I like science. (PATS3)a Ordinal

SA Five plausible values for each student. Continuous

PTSR perceived teacher–student relationship, PPR perceived peer relationship, SCS self-confidence in
learning science, PATS positive attitude toward science
aFor these items, student responses were coded in reverse
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Sorbom, 2004). Confirmatory factor analysis (CFA) was used to validate
the measurement model, and then the feasible measurement model was
used in the SEM to test SRAM.

Ordinal Data. Because the indicators of the four latent constructs
(PTSR, PPR, SCS, PATS) belong to ordinal scale and the PVs of SA to
interval scale, the asymptotic covariance matrices of all indicators needed
to be generated first. Then the weighted least squares estimator, in
LISREL referred to as the asymptotically distribution-free estimator, was
used to estimate the parameters involved in the measurement model and
in SRAM.

Weighting. Weighting is important to the statistical analysis in order to
generalize the results of large-scale surveys. The weight of a given case is
inversely proportional to the probability of selecting that case from the
population. The TIMSS database provides various weightings dependent
on the research purpose. Among these, the house weight is recommended
for hypothesis testing.

Fit Statistics. Various fit statistics were adopted to evaluate the
measurement models and structural models. If a model adequately fits
the data, the goodness of fit index should be greater than 0.90, the root
mean square error of approximation should be less than 0.08, the
comparative fit index should be greater than 0.90, and the non-normed fit
index should be greater than 0.90 (Kline, 2010). Because the chi-square
test is sensitive to sample size and appropriate only for moderate sample
sizes (N = 200 – 500), the chi-square index is improper to test model
fitting for samples in large-scale surveys. However, we still provided the
critical-N (CN) for reference, which is the estimated sample size required
to make the chi-square test significant at the 0.05 level. The model is
acceptable if CN is greater than 200 (Hoelter, 1983).

Parameters and Standard Error Estimation. The SA measurement errors
are important considerations in structural modeling. Therefore, all the
path coefficients were estimated by averaging the coefficients estimated
through five replications of the same modeling process; each replication
used one of the five sets of PVs as the indicator of SA (Mislevy, 1991).
Because TIMSS did not adopt a simple random selection method at the
individual level, Foy et al. (2008) recommended a two-stage jackknife
replication technique to estimate the standard errors of statistics for a
secondary analysis. The current study conducted 80 replications of SEM
for each sample group to estimate the path coefficients and their standard
errors. Details of the procedure to estimate the coefficients and their
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standard errors and the rationale of jackknife replication technique are
provided in “Appendix 1.”

RESULTS AND DISCUSSION

The correlation matrices, means, and standard deviations of all the
indicators in the SRAM for the three samples (total sample, HAG,
and LAG) are provided in “Appendix 2.” The results of this study
are organized and reported according to procedural issues and the
ordered research questions. Discussion is provided for each result as
reported.

Procedural Issue 1: Measurement Model

CFA needs to be conducted before the model fitting for the SRAM.
The main purpose of CFA is to validate the indicators of the
constructs adopted in the current model. Figure 2 presents the CFA
results for the total sample. Because only one indicator corresponds
to SA, the factor loading is set at 1.00. Other factor loadings between
the items and their corresponding constructs are 0.57 – 0.96;

Figure 2. Parameter estimations of confirmatory factor analysis for total sample
(nALL = 3,901)
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therefore, the overall item quality ranges from good (90.55) to
excellent (90.71) according to the criteria proposed by Tabachnick &
Fidell (2007). The composite reliabilities (ρc; Fornell & Larcker,
1981) for PTSR, PPR, SCS, and PATS are 0.94, 0.81, 0.97, and
0.99, respectively, suggesting good internal consistency of items for
their construct. CFAs were conducted separately for high- and low-
achieving subgroups and showed similar results. Tables 2 and 3 list
the fit statistics and composite reliabilities for the total sample and
two subgroups. In general, the CFA results confirmed the reliability
of the measurement model and its construct validity.

Procedural Issue 2: Structural Model

All the fit indices suggest adequate fit of structural model except for
the chi-square tests (Table 4). However, the significance of the chi-
square test came from the large sample size effect; it can be remedied
by setting the sample size to the CN. These results suggest that
SRAM could be used to explain the relationships among the PSR, the

TABLE 2

Goodness-of-fit indices of the measurement model

Group n df χ2 CN GFI RMSEA CFI NNFI

High-achieving subgroup 1,956 68 320.17* 606 0.99 0.04 0.99 0.98
Low-achieving subgroup 1,945 68 420.20* 459 0.99 0.05 0.96 0.95
Total sample 3,901 68 624.51* 613 0.99 0.05 0.98 0.97

CN critical number, GFI goodness of fit, RMSEA root mean square error of approximation, CFI
comparative fit index, NNFI non-normed fit index
*p G 0.001

TABLE 3

Composite reliabilities of the four constructs

Group n

Composite reliability

PTSR PPR SCS PATS

High-achieving subgroup 1,956 0.95 0.80 0.98 0.99
Low-achieving subgroup 1,945 0.92 0.81 0.92 0.98
Total sample 3,901 0.94 0.81 0.97 0.99

PTSR perceived teacher–student relationships, PPR perceived peer relationships, SCS self-confidence
in learning science, PATS positive attitude toward science
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affective learning outcomes in science learning, and SA for the total
sample and two subgroups.

The path coefficients and their corresponding standard errors for the
total sample and subgroups are shown in Figure 3. The path coefficients
indicate the effect of the PSR on the affective learning outcomes, the
effect of the affective learning outcomes on SA, and the mediating effect
of affective learning outcomes between PSR and SA.

TABLE 4

Goodness-of-fit indices of the structural model

Group n df χ2 CN GFI RMSEA CFI NNFI

High-achieving subgroup 1,956 70 334.78* 452.78 0.99 0.04 0.99 0.98
Low-achieving subgroup 1,945 70 436.80* 593.45 0.99 0.05 0.96 0.95
Total sample 3,901 70 648.30* 605.14 0.99 0.05 0.98 0.97

CN critical number, GFI goodness of fit, RMSEA root mean square error of approximation, CFI
comparative fit index, NNFI non-normed fit index
*p G 0.001

Figure 3. Estimation of standardized path coefficients and standard errors (in
parentheses) and related items and PVs for total sample group (ALL), high-achieving
group (HAG), and low-achieving group (LAG)
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Research Question #1: Effects of Perceived Social Relationships
on Affective Learning Outcomes

Both types of the perceived social relationships (PTSR and PPR) in
science classes for the total sample have positive effects on the
students’ affective learning outcomes (SCS and PATS). PTSR has a
greater effect on PATS (γPTSR→PATS = 0.40, p G 0.001) than on SCS
(γPTSR→SCS = 0.13, p G 0.01). Conversely, PPR has a greater effect on
SCS (γPPR→SCS = 0.47, p G 0.001) than on PATS (γPPR→PATS = 0.26,
p G 0.001). The combination of PTSR and PPR accounts for 31.2 %
of the variance in SCS and 36.1 % of the variance in PATS.
Therefore, PSR accounts for a considerable portion of the variances in
students’ affective learning outcomes, consistent with other studies
(e.g. Hardre et al., 2006; Nelson & DeBacker, 2008).

PSR effects on the affective learning outcomes are further examined
separately for low- and high-achieving subgroups. PTSR for HAG exerts
a positive effect on PATS (γPTSR→PATS = 0.38, p G 0.001) and no effect
on SCS (γPTSR→SCS = 0.09, p 9 0.05) while PPR has positive effects on
both SCS (γPPR→SCS = 0.48, p G 0.001) and PATS (γPTSR→PATS = 0.31,
p G 0.05). PTSR and PPR together account for 38.9 % of the variance in
PATS and 29.3 % of the variance in SCS for the HAG. PTSR for LAG
exerts a positive effect on PATS (γPTSR→PATS = 0.43, p G 0.001) whereas
no effect on SCS (γPTSR→SCS = 0.15, p 9 0.05). Again, PPR exerts a
positive effect on SCS (γPPR→SCS = 0.39, p G 0.001) but not on PATS
(γPTSR→PATS = 0.16, p 9 0.05). PTSR and PPR together account for
24.8 % of the variance in SCS and 29.7 % of the variance in PATS
for the LAG. Taken as a whole, PTSR rather than PPR exerts a
greater effect on students’ PATS, and PPR rather than PTSR has a
greater effect on students’ SCS across the total sample and the two
achieving subgroups.

Research Question #2: Effects of Affective Learning Outcomes
on Cognitive Learning Outcome

The results of modeling the total sample’s data revealed a medium effect
of SCS on SA (βSCS→SA = 0.28, p G 0.001) and a small effect of PATS on
SA (βPATS→SA = 0.15, p G 0.01). SCS and PATS together account for
17.0 % of the variance in SA. Similarly, Chien, Jen & Chang (2008)
observed that students’ science self-concept predicts their TIMSS SA
(γ = 0.24, p G 0.001). Marsh (1990) also found that Australian senior
high school students’ academic achievement was predicted by their
self-concept measured in the previous year (γ = 0.20 – 0.22,
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p G 0.001). In Armitage & Conner’s (2001) study, attitude predicted
an individual’s desires and in turn influenced behavior, such as
engagement in learning activities. This is consistent with the small
direct effect of attitude on academic achievement in the current
findings.

The two affective learning outcomes influenced SA of the high- and
low-achieving subgroups differently. SCS was a better predictor of SA for
HAG (βSCS→SA = 0.30, p G 0.001) than for LAG (βSCS→SA = 0.06,
p 9 0.05). A possible explanation is that low-achieving students’ self-
evaluation ability was less well developed and less reflective of actual
performance than high-achieving students. Low-achieving students often
overestimated their academic abilities (Langendyk, 2006). In contrast,
PATS is a better predictor of SA for low-achieving students
(βPATS→SA = 0.20, p G 0.05) than for high-achieving students
(βPATS→SA = 0.12, p 9 0.05). Ma & Xu (2004) observed that for
high-achieving students, the effect of attitude on achievement is not
significant. These high performers may engage in learning activities
because of other motivations, such as the preparation for the senior
high school examination.

Research Question #3: Mediating Effects of Affective Learning Outcomes
in SRAM

Table 5 presents the effects of PSR on SA when the two affective learning
outcomes (SCS and PATS) are taken as mediators. These outcomes for
the total sample significantly mediate the effects of the perceived social
relationships (PTSR and PPR) on SA (for PTSR→SCS→SA, γPTSR→SCS

βSCS→SA = 0.04, Z = 2.78, p G 0.01; for PTSR→PATS→SA, γPTSR→PATS

βPATS→SA = 0.06, Z = 2.79, p G 0.01; for PPR→SCS→SA, γPPR→SCS

βSCS→SA = 0.13, Z = 5.07, p G 0.001; for PPR→PATS→SA, γPPR→PATS

βPATS→SA = 0.04, Z = 2.57, p G 0.01). The two PSR accounted for
5.8 % of the variance in SA. When a full model assuming two direct
effects of PTSR and PPR on SA was used to fit the data, PTSR and
PPR together accounted for 8.3 % of the variance in SA (the same
percentage of accountability can be obtained by using the correlations
provided in the measurement model in Figure 2). Therefore, 70 % of
the total combined effect of PTSR and PPR on SA was explained by
the mediating effects, suggesting that SCS and PATS are two
important mediators.

Similar analysis and results for the high-achieving subgroup revealed
that only SCS significantly mediated the effect of PPR on SA (for
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PPR→SCS→SA, γPPR→SCS βSCS→SA = 0.143, Z = 2.39, p G 0.05).
However, for the low-achieving subgroup, only PATS significantly
mediated the effect of PTSR on SA (for PTSR→PATS→SA, γPTSR→PATS

βPATS→SA = 0.086, Z = 2.32, p G 0.05). These results imply that for high-
achieving students, peer relationship in science class influences their
science achievement through their self-confidence in learning science,
whereas for low-achieving students, positive teacher–student relationship
improves science achievement through enhancing their attitude toward
(learning) science.

CONCLUSION AND IMPLICATIONS

Based on self-determination theory and the emphasis on social relation-
ships in collectivistic cultures (e.g. Asian cultures), a social-relation-based
affection-driven model was proposed to examine and explain how
Taiwanese grade 8 students at low- or high-achieving levels were
influenced by their perceived social relationships in science class through
affective learning outcomes. Given the results of previous studies, the
items that could be obtained from the TIMSS 2007 data set and its
concurrent national survey were accessed according to the necessary
constructs, and the directions among these constructs were set a priori
before conducting a structure equation modeling.

TABLE 5

Mediating effects of affective learning outcome between perceived social relationships
and science achievement (standard errors)

Group n
Independent
variable

Mediating effects on science
achievementa

Through SCS Through PATS

High-achieving subgroup 1,956 PTSR 0.03 (0.02) 0.05 (0.05)
PPR 0.14* (0.06) 0.04 (0.04)

Low-achieving subgroup 1,945 PTSR −0.01 (0.02) 0.09* (0.04)
PPR −0.02 (0.04) 0.03 (0.03)

Total sample 3,901 PTSR 0.04** (0.01) 0.06** (0.02)
PPR 0.13*** (0.03) 0.04** (0.02)

PTSR perceived teacher–student relationship, PPR perceived peer relationship, SCS self-confidence in
learning science, PATS positive attitude toward science
*p G 0.05; **p G 0.01; ***p G 0.001
aTests of mediating effect are based on the Aroian test equation
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SEM results confirmed the SRAM in that various perceived social
relationships in class influenced science achievement differently, mediat-
ed by different affective learning outcomes. SEM on the total sample
showed that both the perceived teacher–student and peer relationships
predicted students’ self-confidence in learning science and their positive
attitude toward science as well. However, the PTSR had a greater effect
on PATS than on SCS whereas the PPR influenced SCS more than
PATS. In addition, both SCS and PATS exerted effects on SA, with SCS
a better predictor of SA. Finally, the two affective learning outcomes
(SCS and PATS) mediated the effects of the two social relationships
(PTSR and PPR) on SA. These SEM results on the total sample suggest
that, as being combined SRAM with self-determination theory (Ryan &
Deci, 2000b), the fulfillment of the need of relatedness in science class,
such as the perception of teacher support and cohesive peer relationships,
improved students’ self-confidence in learning science and caused a more
positive attitude toward science. Therefore, for students from collectivistic
cultures, the need of relatedness is so important that the needs of
competence and autonomy are influenced, as are their academic perform-
ances subsequently.

Another important finding of the current study comes from the
mechanisms of learning motivation between high and low achievers.
For high achievers, a good PPR exerts an effect on SA through enhancing
their self-confidence, whereas for low-achievers, a good PTSR influences
SA through having a PATS. PATS also explains more variance in SA
than SCS does for low-achievers. These results appear to suggest that low
achievers rely more directly on established relationships with their
teachers to enhance their learning while high achievers are more likely
to have equally high-achieving peers relying on them to enhance their
learning.

Educational Implications

Historically, students’ self-confidence and attitude toward science had
been underemphasized in the secondary school science curriculum in
Taiwan. Recently, government institutes have begun to promote some
research projects and innovative curricula based on constructivist-oriented
science learning and teaching approaches. These educational reforms
encourage student-directed inquiries and social interactions that require
confidence and collaboration in co-constructing understanding. Therefore,
our findings about roles of perceived social relationships in science class
in improving students’ affective learning outcomes, how to create more
friendly learning environments so that students can receive both affective
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and academic supports from their teachers and have cohesive relation-
ships with their peers, is an important consideration for education policy
and decision makers.

The results of comparisons between high- and low-achieving groups
imply that a good relationship among peers is important to establish high-
achieving students’ self-confidence in learning science and, thus,
indirectly enhance their science achievement. On the other hand, for
low-achieving students, building a good relationship with their science
teacher is a good way to enhance a positive attitude toward science, which
in turn leads to gradual improvement in science achievement and
probably more reliance on positive peer relationships. Therefore, science
teachers should use different classroom management strategies to improve
the high and low achievers’ motivation in learning science.

Methodological Implications

Another aim of the current study was to demonstrate a standard procedure
to estimate the standard errors of path coefficients when dealing with data
obtained by a complex sampling design. In “Appendix 3,” Table 9
presents the path coefficients and their corresponding standard errors in
the SRAM for the total sample and the two subgroups. As compared to
the standard errors estimated from simple random selection (i.e.
unadjusted standard error), the adjusted standard errors (i.e. adjusted
standard error) by considering the measurement errors and the complex
sampling design were larger, indicating that both the assumption of simple
random selection and the ignorance of measurement errors led to an
underestimate of standard error. When the standard error is underestimated,
the risk of capitalization on chance (type I error) increases as does the
inadequate decision about null hypotheses. Therefore, for large-scale survey
studies using complex sampling design such as TIMSS and PISA, the
procedure of variance estimation proposed in the current study is
recommended when conducting a secondary analysis.

Suggestions for Future Studies

The current study adopted a confirmatory rather than verification
approach, in that constructs and the directions among constructs are
specified a priori before conducting model fitting. Because cross-sectional
data provide correlations among variables in nature, prospective longitu-
dinal studies or microgenetic observations are expected to provide the
changes in time sequence so that causality among variables in the SRAM
can be further assured. In addition, due to the constraints of the TIMSS
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2007 data set and its concurrent national survey, the current study adopted
only the construct of the social supports in science class. Future studies
might explore the support from family members as the relatedness in
autonomous engagement, especially under the consideration of collectiv-
istic cultures.

A path whose sampling error estimated by jackknife replication
technique (i.e. the fifth column in Table 9 of “Appendix 3”) that
differs considerably from the error based on the assumption of simple
random selection (i.e. the fourth column in Table 9 of “Appendix 3”)
implies an effect of factors at school level or class level on this path.
For example, the magnitudes of the standard error adjustments for the
total sample group after jackknife replications for the effects of
perceived social relationships on affective learning outcomes
(γPTSR→PATS, γPTSR→SCS, γPPR→PATS, γPPR→SCS) were much larger
than those of the two affective learning outcomes on science
achievement (βPATS→SA, βSCS→SA). Therefore, the considerable dif-
ference indicated that the coefficients were influenced by factors at
school level or class level so much that the coefficients would differ
if another science class replaced the current class in the stratum of
school sampling. When this happens, studies using a multilevel
analysis or a hierarchical linear model technique are recommended to
explore factor at school level or class level. Similar consideration is
applicable for high-achieving and low-achieving subgroups in SRAM
(e.g. βPATS→SA, γPTSR→PATS, γPPR→SCS, γPPR→PATS for HAG and
γPTSR→SCS, γPPR→SCS for LAG).
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APPENDIX 1

The path coefficients in SRAMwere estimated by averaging the coefficients
already estimated through the same modeling process by using different sets
of plausible values as the indicator of science achievement (see Eq. 1), and
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the standard error of each coefficient was the combination of measurement
error and sampling error according to the following steps:

bμ ¼ 1

M

XM
i¼1

bμi ð1Þ

Step 1: Estimation of the measurement error

Based on the five sets of coefficients estimated through corresponding
sets of students’ plausible values, the measurement errors were aggregat-
ed according to Eq. 2 (Mislevy, 1991; Foy et al., 2008).

bσ2PVð Þ ¼
1

M � 1

XM
i¼1

bμi � bμð Þ2 ð2Þ

In Eqs. 1 and 2, bμ can be any statistic (e.g. mean, correlation, or path
coefficients), andM is the number of sets of PVs, which is equal to five here.

Step 2: Estimation of the sampling error

In addition to measurement error, the other source of the variability for
path coefficients comes from the sampling error. TIMSS 2007 used a
two-stage stratified cluster sampling design. In the first stage, 150 schools
were selected according to some variables of interest, such as school type
or location. In the second stage, one or two classes in the sampled school
were selected at random and all the students in the selected classes were
surveyed. Because students in the same class will have the same
contextual variables at the class and school levels, the effective sample
size could be much less than for the same number of students selected by
simple random selection. If we treat the sampled students as though they
were sampled through simple random selection, we may underestimate
the standard errors of all the coefficients. The two-stage jackknife (JK)
replication technique can be utilized to estimate the standard errors caused
by the sampling design. In order to conduct the JK replications,
theoretically an additional 75 replications should be processed for each
set of PVs and the results of 375 replications in total should be aggregated
through Eqs. 3 and 4 (Foy et al., 2008).

ð3Þ
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Step 3: Standard error estimation

To estimate the standard errors for all the statistics, the last step is to
combine the sampling error and the measurement error portions according
to Eq. 5 (Foy et al., 2008).

bσ bμPVð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibσ2bμð Þ þ 1þ 1

M

� �
� bσ2

PVð Þ

s
ð5Þ

Due to the fact that the same distribution constraints hold for the five sets
of student PVs, in this study only an additional 75 replications for the first
set of PVs were conducted in order to estimate the sampling errors for all
the coefficients. In other words, is utilized instead of in Eq. 5.

APPENDIX 2

(4)

TABLE 6

Correlation matrix, means, and standard deviations of the indicators for total sample
(n = 3,901)

Item
number

Item
code

Item number

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 PTSR1 1.00
2 PTSR2 0.63 1.00
3 PTSR3 0.48 0.46 1.00
4 PPR1 0.27 0.28 0.24 1.00
5 PPR2 0.33 0.40 0.25 0.38 1.00
6 PPR3 0.26 0.28 0.29 0.36 0.38 1.00
7 SCS1 0.28 0.26 0.19 0.18 0.29 0.32 1.00
8 SCS2 0.13 0.10 0.02 0.06 0.17 0.14 0.43 1.00
9 SCS3 0.18 0.17 0.06 0.11 0.19 0.21 0.53 0.59 1.00
10 SCS4 0.28 0.24 0.18 0.18 0.25 0.33 0.67 0.44 0.50 1.00
11 PATS1 0.40 0.32 0.24 0.16 0.26 0.30 0.62 0.38 0.47 0.66 1.00
12 PATS2 0.37 0.28 0.21 0.10 0.20 0.20 0.45 0.44 0.50 0.48 0.62 1.00
13 PATS3 0.42 0.32 0.25 0.16 0.27 0.31 0.62 0.39 0.47 0.67 0.83 0.66 1.00
14 PV1 0.26 0.20 0.27 0.15 0.18 0.23 0.38 0.20 0.26 0.37 0.37 0.30 0.38 1.00
M 2.68 2.72 3.44 2.75 2.46 2.67 2.50 2.36 2.22 2.25 2.47 2.67 2.47 5.63
SD 0.98 0.85 0.79 0.85 0.91 0.86 0.85 0.94 1.01 0.85 0.93 0.97 0.96 0.88
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TABLE 7

Correlation matrix, means, and standard deviations of the indicators for HAG
(nHAG = 1,956)

Item
number

Item
code

Item number

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 PTSR1 1.00
2 PTSR2 0.62 1.00
3 PTSR3 0.48 0.43 1.00
4 PPR1 0.25 0.25 0.18 1.00
5 PPR2 0.28 0.37 0.20 0.35 1.00
6 PPR3 0.20 0.24 0.18 0.32 0.37 1.00
7 SCS1 0.20 0.22 0.09 0.17 0.29 0.32 1.00
8 SCS2 0.18 0.16 0.06 0.13 0.22 0.23 0.60 1.00
9 SCS3 0.20 0.20 0.07 0.15 0.24 0.26 0.68 0.70 1.00
10 SCS4 0.21 0.21 0.09 0.16 0.23 0.32 0.66 0.60 0.65 1.00
11 PATS1 0.36 0.28 0.17 0.15 0.25 0.28 0.58 0.50 0.58 0.63 1.00
12 PATS2 0.37 0.27 0.19 0.11 0.21 0.20 0.46 0.48 0.53 0.50 0.67 1.00
13 PATS3 0.38 0.29 0.19 0.16 0.25 0.31 0.57 0.50 0.58 0.64 0.84 0.71 1.00
14 PV1 0.14 0.15 0.11 0.08 0.15 0.19 0.33 0.29 0.32 0.31 0.29 0.22 0.28 1.00
M 2.88 2.84 3.59 2.84 2.59 2.82 2.79 2.55 2.49 2.54 2.79 2.95 2.79 6.31
SD 0.91 0.79 0.65 0.78 0.87 0.79 0.79 0.93 0.98 0.81 0.87 0.88 0.88 0.46

TABLE 8

Correlation matrix, means, and standard deviations of the indicators for LAG
(nLAG = 1,945)

Item
number

Item
code

Item number

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 PTSR1 1.00
2 PTSR2 0.62 1.00
3 PTSR3 0.44 0.45 1.00
4 PPR1 0.27 0.28 0.26 1.00
5 PPR2 0.33 0.40 0.25 0.39 1.00
6 PPR3 0.27 0.28 0.33 0.37 0.36 1.00
7 SCS1 0.25 0.23 0.16 0.15 0.23 0.25 1.00
8 SCS2 0.03 0.00 -0.07 -0.03 0.07 0.01 0.20 1.00
9 SCS3 0.07 0.08 -0.03 0.03 0.08 0.10 0.30 0.44 1.00
10 SCS4 0.24 0.21 0.15 0.15 0.21 0.26 0.60 0.21 0.25 1.00
11 PATS1 0.36 0.31 0.20 0.11 0.21 0.24 0.57 0.19 0.28 0.60 1.00
12 PATS2 0.30 0.24 0.15 0.05 0.12 0.13 0.33 0.35 0.40 0.36 0.51 1.00
13 PATS3 0.38 0.30 0.21 0.10 0.22 0.25 0.57 0.21 0.27 0.62 0.78 0.55 1.00
14 PV1 0.19 0.12 0.23 0.13 0.09 0.14 0.10 -0.05 -0.05 0.12 0.13 0.08 0.15 1.00
M 2.48 2.59 3.29 2.66 2.32 2.53 2.20 2.18 1.96 1.97 2.17 2.39 2.15 4.96
SD 1.00 0.89 0.88 0.91 0.93 0.90 0.80 0.92 0.97 0.79 0.90 0.98 0.92 0.67
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