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ABSTRACT. The recent development of powerful new technologies such as dynamic
geometry software (DGS) with drag capability has made possible the continuous varia-
tion of geometric configurations and allows one to quickly and easily investigate whether
particular conjectures are true or not. Because of the inductive nature of the DGS, the
experimental-theoretical gap that exists in the acquisition and justification of geometrical
knowledge becomes an important pedagogical concern. In this article we discuss the im-
plications of the development of this new software for the teaching of proof and making
proof meaningful to students. We describe how three prospective primary school teachers
explored problems in geometry and how their constructions and conjectures led them “see”
proofs in DGS.
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The increasing use of computers in mathematics education is mostly re-
flected in the use of DGS. The fact that DGS has revitalized the teaching
of geometry in many countries implies a radical change in the teaching
of proof (De Villiers, 1996; Hanna, 1998). One of the most important
facilities of dynamic geometry is its potential to encourage students’ “re-
search” in geometry (Luthuli, 1996). In such a research-type approach,
students are inducted into theorem acquisition and deductive proof. In par-
ticular, students can experiment through dragging on geometrical objects
they construct, and consequently infer properties, generalities, or theo-
rems. However, these facilities have led some educators to believe that
deductive proof in geometry should be abandoned in favor of an experi-
mental approach to mathematical justification (Mason, 1993), indicating
the theoretical gap that exists between the acquisition (inductive nature
of DGS) and justification (proof) of geometrical knowledge. In this paper,
we assert that DGS is complementary to the deductive nature of geometry,
and discuss the pedagogical aspects of introducing DGS into the teach-
ing of geometrical proofs. The main purpose of the present paper is to
provide some indications of how DGS can be used to offer insight and
understanding of proofs through investigation and experimentation.
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In the theoretical framework that follows, we deal with some of the
functions that proof performs in mathematical practice, in order to provide
the background to the case studies, which have been conducted mainly
to bridge the gap between deduction and experimentation. Through these
case studies, we provide examples of how the DGS can contribute to the
need for analytical proof and help students to distinguish between proof
and exploration. We also highlight the importance of the interplay between
actions and dependent properties (Laborde, 2000) provided by the DGS
environment.

THEORETICAL FRAMEWORK AND PURPOSE OF THE STUDY

The Gap between Proof and Exploration

The exploration of a problem is by its nature empirical, and, at first glance,
it seems that it does not fit into the deductive character of geometrical
proofs. When the empirical and inductive dimension is to be added to the
pedagogical structure that is traditionally rooted in deductive logic, one
has to combine these two seemingly opposite perspectives. The problem of
combining inductive exploration with the deductive structure of geometri-
cal proofs has been the subject of a number of research studies (Hanna,
1998, 2000; Jones, 2000; Mariotti, 2000).

The traditional teaching emphasizing that a mathematical statement is
true if it can be proved, leads students to distinguish proof from exploratory
activities. However, De Villiers (1996) and Hanna (2000) indicated that in
actual mathematical research, mathematicians have first to convince them-
selves that a mathematical statement is true and then move to a formal
proof. It is the conviction that something is true that drives us to seek a
proof. In DGS, students can easily be convinced of the general validity of
a conjecture by seeing its truth displayed on the screen while geometrical
objects undergo continuous transformations (De Villiers, 1993, 2003).

A number of researchers showed that the passage from “exploratory”
geometry to the deductive geometry is neither simple nor spontaneous.
Hoyles and Healy (1999) indicated that exploration of geometrical con-
cepts in a DGS environment could motivate students to explain their empir-
ical conjectures using formal proof. They found that DGS helped students
to define and identify geometrical properties and the dependencies be-
tween them, but when students worked on proofs, they abandoned the
computer constructions. The latter point leads to the argument that DGS
may be useful only in helping students understand problems in geometry
but it does not contribute to the development of their abilities in proofs,
reinforcing the idea that there exists a gap between dynamic geometry
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and proof. In a more recent research, Pandiscio (2002) also showed that
preservice teachers believe that after using dynamic software high school
students may not see the need for proofs. This kind of belief might also be
the reason that some educators and researchers expressed their concerns
and worries that DGS could lead to the “further dilution of the role of
proof in the high school geometry” (Chazan, 1993, p. 359). However, the
main discussion of recent research, and the main purpose of the present
study were to find ways of effectively utilizing DGS to introduce proof as a
meaningful activity to students. This can be achieved by reconceptualizing
the functions of proofs.

The Functions of Proof

Proof performs a wide range of functions in mathematical practice, which
are reflected to some extent in the mathematics curricula. The NCTM Stan-
dards (2000) emphasized in a special section the importance of students
developing reasoning and proving abilities, forming conjectures, the eval-
uation of arguments and the use of various methods of proofs. Within the
NCTM’s document it appears that proof is not only understood in the tra-
ditional rigid and absolute way, but it also embraces many other functions.
Hanna (2000), based on recent research on proof, provided a list of the
functions of proof and proving: verification, explanation, systematization,
discovery, communication, construction, exploration, and incorporation.
She also considered verification and explanation as the fundamental func-
tions of proofs, because they comprise the product of the long historical
development of mathematical thought. Verification refers to the truth of
a statement while explanation provides insight into why this statement is
true.

Traditionally, the function of proof has been seen almost exclusively
in terms of the verification of the correctness of mathematical statements.
Hanna (1995) and Hersh (1993) characterized this kind of proof as “proofs
that convince”, based on the idea that proof is used mainly to remove ei-
ther personal doubt and/or those of others; an idea which has one-sidedly
dominated teaching practice and most of the research in the teaching of
proof. Hanna and Hersh both argued that “proofs that convince” are often
not appropriate for the mathematics classroom and therefore they advo-
cated using the “proofs that explain.” Based on the same idea, De Villiers
(2003) proposed other important functions such as explanation, discovery,
intellectual challenge and systematization, which in some situations are
of greater importance to mathematicians than that of mere verification. In
addition to these functions of proof, researchers identified various other
roles that proof plays in mathematics such as to communicate mathemati-
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cal knowledge, and to systematize statement into an axiomatic system (see
Knuth, 2002).

Edwards (1997) defined the term “conceptual territory before proof”
by indicating that conjecturing, verification, exploration and explanation
constitute the necessary elements that precede formal proofs. The concep-
tual territory provides the arena for the construction of intuitive ideas that
may subsequently be tested and confirmed through formal methods, and
it is the basis of a richer understanding of a proof. This approach reflects
the “quasi-empirical” view of mathematics in which understanding pro-
ceeds from students’ own conjectures and verifications to formal proofs
(Chazan, 1993). Simpson (1995) differentiated between “proof through
logic”, which emphasized the deductive nature of proof, and “proof through
reasoning”, which involved most of the functions of proofs as were listed
by Hanna (2000). Proof through reasoning is accessible to a greater pro-
portion of students, because it is closer to students’ learning style, it makes
mathematics more useful and enjoyable, and it reflects the quasi-empirical
view of mathematics and the process adopted by mathematicians when
they invent mathematics (Simpson, 1995).

The Functions of Proofs and DGS

The availability in the classroom of DGS gave a new impetus to the teach-
ing of geometry based on students’ investigations and explorations. This
does not mean that proof is replaced by exploration. On the contrary, ex-
ploration is not inconsistent with the view of mathematics as an analytic
science or with the central role of proof. DGS has the potential to en-
courage both exploration and proof, because it makes easy to pose and
test conjectures (Hanna, 2000). Polya (1957) emphasized the connection
between deductive reasoning with exploration. He pointed out that solv-
ing a problem amounts to finding the connection between the data and
the unknown, and to do it, one must use a kind of reasoning based on
deduction.

In the DGS environment students acquire understanding through verify-
ing their conjectures and in turn this understanding solicits further curiosity
to explain “why” a particular result is true. However, students working in
the DGS environment are able to produce numerous configurations easily
and rapidly, and thereby they may have no need for further conviction
/verification (Hölzl, 2001). Although students may exhibit no further need
for conviction in such situations, it is important for teachers to challenge
them by asking why they think a particular result is true (De Villiers, 1996,
2003). Students quickly admit that inductive verification merely confirms
but the why questions urge them to view deductive arguments as an attempt



PROOFS IN DYNAMIC GEOMETRY 343

for explanation, rather than verification (Hölzl, 2001). Thus, the challenge
of educators is to convey clearly to the students the interplay of deduction
and experimentation (Hanna, 2000).

THE STUDY

This article presents an account of the thinking exhibited by three prospec-
tive primary school teachers while attempting to answer proof problems.
All three student teachers had completed high school geometry and algebra
courses and one semester of university-level calculus.

It is conjectured that DGS provides an appropriate context where the
significance of proof may be un-forcefully recognized. To this end, the
development of “appropriate” tasks was necessary. By “appropriate” we
mean tasks where proof may be providing insight-illumination into why
a result, which can be seen on the screen, is true. Open-ended problems
seemed more “appropriate” for two main reasons: (a) statements are short
and do not suggest any particular solution methods, and (b) questions
are different from traditional closed expressions such as “prove that . . .”,
which present students with an already established result (Jones, 2000).
Open-ended problems give students the opportunity to engage in a process,
which utilizes a whole range of proof functions: exploring a situation,
making conjectures, validating conjectures and proving them. The implicit
assumption is that during this process students will not have to prove some-
thing that they are presented with and do not understand, but something
that they have discovered, validated and which is meaningful to them.

Two main hypotheses were examined in this study. First, whether
the use of DGS could help the students identify conjectures based on their
constructions, and second whether the use of DGS could help the students
search for mathematical arguments to support their conjectures and thus
providing reasonable explanations. To this end, the participants were asked
to work on the following open-ended problem suggested by De Villiers
(1996):

Problem: Construct a kite and connect the midpoints of the adjacent
sides to form an inscribed quadrilateral. What do you observe in regard to
this inscribed quadrilateral? Write down your conjecture. Can you explain
why your conjecture is true? Change your kite into a concave kite. Does
your conjecture still hold?

After the exploration of this problem, the students were engaged in
proving similar geometrical theorems. The aim of these additional prob-
lems was for them to utilize the proving process in systematizing and
generalizing their results.
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Students’ Proofs

Three prospective primary school teachers with prior experience in dy-
namic geometry participated in this study. These students teachers had
attended a course on the integration of computers into elementary school
mathematics, and thus they had a basic understanding of Sketchpad’s draw-
ings, menus, and construction features. All three participated on a vol-
untary basis and were interviewed while working on the problem. The
interviews were conducted in the mathematics laboratory equipped with
computers loaded with the Greek version of the Geometer’s Sketchpad.
The setting was informal with the students being able to analyze and build
geometric constructions that they thought would help them solve the prob-
lems without any time constrains being set.

In the following, we analyze the students’ strategies and try to underline
the different aspects and functions of proof. The discussion of the students’
solutions to the problem is organized around three phases: (a) the phase
before proof, (b) the proof phase, and (c) the phase of intellectual challenge
of extending proof to similar problems.

The Phase before Proof

In this phase the students explored the problem through constructing the
kite and rearranging the constructed figure by dragging it in different di-
rections. This exploration led them to form their own conjectures about the
solution of the problem by visualizing the transformations that resulted by
the dragging facilities of the software. Figure 1 shows the way in which
students constructed the kite and consequently the inscribed quadrilateral.
Two of the students (Student 1 and Student 2) constructed the kite using
the property of perpendicularity of its diagonals (see Figure 1(a)), while
the third one (Student 3) used the property of equal adjacent sides by
firstly constructing a triangle and then reflecting it on one of its sides (see
Figure 1(b)). All students managed to find the midpoints of the adjacent
sides and connected them with line segments using the appropriate tools
provided by the software.

The students conjectured that the inscribed quadrilateral (see Figure 2)
might be a rectangle and confirmed their conjecture by dragging the ver-
tices of the kite to new positions. The students also realized that their
conjectures also hold in the case of the concave kites. All the students
evaluated their mathematical conjectures not only visually but also numer-
ically by measuring the sides and angles of the inscribed quadrilateral,
confirming that it was a rectangle, and thus verified their conjecture. It
is also important to note that these students used the measuring tools for
slope to show that the opposite sides of the inscribed shape were parallel.
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(a) (b)

Figure 1. Students’ constructions of kite.

Furthermore, they noticed that the diagonals of the kite were also parallel
to the sides of the inscribed shape.

The Proof Phase

The exploration of the problem as it was done in the “phase before proof”
led students to the conviction about the validity of their conjecture. This
conviction was achieved solely by the use of the dynamic geometry en-
vironment. During the “proof phase” the role of proof is not to convince
or remove individual or social doubt about a proposition but primarily to
find ways to explain why a result that can be seen on the screen is true
(Jones, 2000). One of the students (Student 3) in this study showed no
further need for conviction that the inscribed quadrilateral was a rectangle,
while the other two students (Students 1 and 2) felt the need to explain
why they thought this particular result was true. These two students ad-
mitted that the inductive verification they provided for the mathematical
statement was not satisfactory in the sense that the inductive process was
not a consequence of other familiar results. Furthermore, they proceeded
to view a deductive argument as an attempt for explanation, rather than for
verification.

In this phase, the DGS enabled students to pass from “exploratory”
geometry to deductive geometry, bridging in this way the gap between
dynamic geometry and proof. Specifically, the two students, who success-
fully solved the problem, based on the measurements they made earlier
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Figure 2. The proof that the inscribed quadrilateral is a rectangle.

on in the exploration phase (the pre-proof phase), defined and identified
the geometrical properties and the dependencies between them, and pro-
vided a deductive proof of the problem. In fact, they realized from their
measurements that EF, and HG are equal to 1/2 AC (see Figure 2). This
directed them to what they needed to look for in their geometry books,
where they found the respective theorem. Based on this property they
showed that EF is equal and parallel to HG as well as EH is equal and
parallel to FG, and therefore EFGH is a parallelogram. The next step was
to prove that the parallelogram was a rectangle, i.e., at least one of the
angles of the parallelogram was a right angle. Based on the property of the
perpendicularity of the diagonals of the kite, students observed that since
BD ⊥ AC, then EF ⊥ EH (since BD is // to EH and AC is // to EF), which
implies that EFGH is a rectangle (the dragging facility of the software
enabled students to conceive that their explanations hold even in the case
of concave kite).

The phase of intellectual challenge of extending proof to similar problems

In this phase we discussed two categories of problems: (a) problems that
have a similar context to the kite problem, and (b) problems that require the
same type of reasoning. The purpose of the problems in the first category
was to help students generalize the results they had reached in the kite
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problem to quadrilaterals of various types. To this end, the three students
tried to systematize their experimentations by investigating first the more
familiar quadrilaterals such as parallelograms, rectangles, rhombi, squares,
rectangles and then they proved, using the same explanations as they did
in the kite problem, that in any quadrilateral the shape resulting from the
midpoints of its sides is always a rectangle.

The purpose of the problems assigned in the second category was to
ensure that students could easily transfer the proofing process to prob-
lems with different structure. Thus, the following problem was assigned
to students: “What figure is formed by the angle bisectors of the interior
angles of a parallelogram?” This problem is a common geometrical prob-
lem found in most geometry textbooks. In this problem it was expected
that students would follow the same procedures for verification and proof
as they did in the previous problem.

The software facilitated the students construction of the parallelogram
as well as the bisectors of the interior angles. Figure 3(a) shows the con-
struction of the angle bisectors of the interior angles of a parallelogram
as it was built by two students (Students 1 and 3). These students ob-
served that the figure they formed seems to be a rectangle. Of course,
this construction could be done without the computer, and the students
could also prove this conjecture. However, without the use of the dynamic
software they would not be able to add experimental evidence to this con-
jecture as they did by dragging any of the flexible points of the parallel-
ogram and noticed, as previously conjectured, that the figure might be a
rectangle. What is most important was the fact that by dragging one of
the flexible points of the parallelogram until it becomes a rhombus, they
observed that the figure formed is not still a rectangle but a point (see
Figure 3(b)). This shows that their first conjecture does not always hold.
This led them to consider a point as a degenerate rectangle! Again, it was
evident that the dragging capabilities of DGS allow students to consider
extreme cases of a geometric configuration, cases that textbook authors
fail to consider.

A special case of the problem was to start with a rectangle instead
of a parallelogram, as Student 2 did. Student 2 suggested that the fig-
ure formed by the angle bisectors of the interior angles of a rectangle is
possibly a square (see Figure 4). The discussion that followed students’
investigations led them to consider several conjectures that could be ex-
plained only by proving. At that point, we asked the students to prove their
conjectures using paper and pencil. They were allowed 15 minutes without
reaching a reasonable solution. Then, we allowed them to use the software.
They all proceeded to measure the angles formed by the bisectors and the
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(a) (b)

Figure 3. The figure formed by the bisectors of a parallelogram and a rhombus.

Figure 4. The figure formed by the bisectors of a rectangle.

parallel lines of the parallelogram (or the rectangle) as well as the slopes
of the bisectors. In the following we describe their proof in the case of
parallelograms, noting that the same procedures were used for the cases of
rectangles, rhombi and squares.
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Figure 5. The figure formed by the bisectors of a parallelogram.

The measurements (see Figure 5) led Students 1 and 2 to realize that
angles A1 = I1 (from parallelogram ABCD) and that C1 = I1 (C1 = A1
as angles of parallelograms), which implies that EH is parallel to FG. In
the same way they explained that EF//HG (since B1 = D1, D1 = K1,
then B1 = K1), and thus they proved that EHGF is a parallelogram. They
also realized that they needed to show that at least one of the angles of the
parallelogram should be a right angle in order to explain that EHGF is a
rectangle. This created a lot of difficulties for Student 2, while the other
one (Student 1) was motivated by the observation that angle E1, which
is equal to E2 (as vertically opposite angles), is a right angle. In order to
explain why E1 is a right angle, Student 2 moved back to the computer
program just to confirm that the bisectors of two adjacent angles of a
parallelogram always form a right angle triangle. Student 2 constructed
a new parallelogram to validate this new conjecture.

Student 3 provided a different solution. She noticed from the cons-
tructed shape that ADI (see Figure 5) is an isosceles triangle, since A1 = I1
(from parallel lines), A1 = A2 (AE is bisector of angle A), and therefore
A2 = I2. She also found that BCL is an isosceles triangle using the same
reasoning and that the bisectors DE and BG are simultaneously altitudes
on bases AI and LC, respectively. The latter leads to the conclusion that
angles E and G of quadrilateral EFGH are right angles. Then she ex-
plained that angle H is a right angle, since A1 = I1, M1 = B1 = D1,
and D1 + A1 = 90. In this way she reached the conclusion that the
quadrilateral EFGH is a rectangle (all its angles are right angles).
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DISCUSSION

In this paper we tried to show some of the ways in which DGS can provide
not only data to confirm or reject a conjecture, but also ideas that lead to a
proof. To this end, the results of the study were presented in three phases:
the phase preceding proof, the proof phase, and the phase of intellectual
challenge of extending proof to similar problems.

In the phase preceding proof it is quite necessary for students to un-
derstand the problem based on their own intellectual efforts. In the kite
problem the students encompassed their informal reasoning and argumen-
tation that came into play when they worked from their own investigations
(Edwards, 1997). To construct the kite, which was a challenge by itself,
they first investigated its properties and then tried to apply them on the
computer screen. The graphing and validating capabilities of DGS enabled
the students to explore the problem and make mathematical conjectures.
In turn, they checked specific cases of kites, using the dragging facility
of the software, to see if their conjecture held, i.e., the shape formed by
connecting the midpoints of adjacent sides of a kite is always a rectangle.
In other words, the phase preceding proof helped the students to build up
empirical evidence for the plausibility of their conjectures. Thus, in this
phase, DGS offered the students the possibility of constructing the appro-
priate shape and exploring properties of the changes of distinct geometric
configurations.

A number of research studies indicated that engaging students in the
phase preceding proof did not necessarily lead them to an awareness of
the need for proof (Chazan, 1993; Edwards, 1997). On the contrary, in
the present study, we found that DGS and appropriate questions prompted
and/or motivated the students to seek justifications for their conjectures.
During the proof phase, two of the three students in this study justified
their conjectures for the kite problem based on the screen outputs. For this
purpose, the measurement facilities of the software provided the means
of finding explanations and the means for gathering information for justi-
fying their results. The relations between the measurements in conjunc-
tion with the invariant properties of the shapes functioned as students’
hints towards explaining their conjectures. Measurements also provided
the students with specific examples that formed the basis of further con-
jectures and generalizations. It is in this area that the computer contributed
to students’ attempts toward proof and bridged the gap between inductive
explorations and deductive reasoning.

Specifically, measurements in the proof phase helped the students see
the dependencies between properties (Laborde, 2000). For example, in the
kite problem, measurements helped the students observe that the opposite
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sides of the interior shape were equal and thus they tried to explain this
property by finding and studying the relevant theorem. Measurements led
the students to move from empirical to formal justifications and illumi-
nated how proof is not separated from action. Action is expressed by the
construction of shapes and measurements, while proof is expressed by
dependencies between properties. Action seemed to push the students to
look for explanations, while explanations were based on or initiated by
construction and measurements (Laborde, 2000; Mariotti, 2000). This be-
came more apparent during the phase of intellectual challenge of extending
proof to similar problems. During the last phase, the students felt a strong
desire to explain their conjectures and understand how one conclusion is
a consequence of other familiar ideas, results or theorems. The students
found it quite satisfactory to view a deductive argument as an attempt for
explanation rather than for verification (De Villiers, 2003).

CONCLUSIONS

The main purpose of this study was to identify the functions of DGS, which
may enable students to move from the empirical exploration of a problem
to proof. We presented a set of observations that illustrate mathematical
relationships that emerged from students’ interactions with the provided
tasks. In the pre-proof phase, we showed how routine tasks that appear
in traditional geometry could be approached with the use of technology as
open problems. In this phase, the software enabled the students to construct
the appropriate figures and then act on them using the dragging facilities of
DGS in order to identify conjectures that are not easy to observe in advance
(Laborde, 2000). These actions were important for the students during the
proof phase and the phase of intellectual challenge, because they enabled
them to search for mathematical arguments to support their conjectures.
The interplay between action (constructions and measurements) and de-
pendent properties provided students the motive and the context to explain
their conjectures and reached proof through reasoning (Hanna, 2000).
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