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Abstract
We discuss a possibility of achieving population inversion and the associated gen-
eration of stimulated terahertz radiation employing transitions between the quantum
confinement energy levels of electrons in GaAs/AlGaAs quantum wells under inter-
band photoexcitation. The population inversion occurs between two bottom levels
in the conduction band according to a four-level scheme under nonstationary condi-
tions during excitation of electrons from valence band to the top electron state and
rapid population of the lower energy level due to processes with the emission of LO-
phonons. The time of the depletion of this level due to relatively slow downward
energy transitions with the emission of acoustic phonons determines the time interval
for the existence of the population inversion, which can amount up to several hun-
dred picoseconds. During this time, the generation of stimulated terahertz radiation
is possible at transitions between the two bottom energy levels of electrons in the
quantum well.
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1 Introduction

Electromagnetic waves of the terahertz spectral range (with frequencies from 0.1
to 10 THz) have been intensively studied for the past three decades. The interest
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in terahertz (THz) radiation stems from the prospects for its application for solving
numerous diagnostic tasks in various fields of science and technology. One of the
most vexed problems in the use of THz technologies remains the problem of radi-
ation sources. Therefore, studies aimed at creating THz emitters of various types
continue to remain extremely relevant [1]. At the beginning of the 2000s, the first
electrically pumped THz quantum cascade lasers (QCLs) [2, 3] were demonstrated,
the generation of radiation in which arises during intersubband optical transitions of
nonequilibrium carriers in structures with multiple quantum wells. Currently, QCLs
have been created that can operate at many frequencies of the THz spectral range and
have a sufficiently high radiation power [4, 5]. However, THz QCL structures require
an extremely complex technology of epitaxial growth and processing, and so far only
a few laboratories in the world have mastered this technology. Simpler THz radiation
sources are also required for numerous practical applications. An interesting principle
of generation of mid-IR laser radiation (with wavelengths of 14–15 μm) due to inter-
subband transitions of two-dimensional electrons in modulated doped, asymmetric
tunnel-coupled GaAs/AlGaAs quantum wells with intraband photoexcitation using a
CO2-laser was demonstrated in Ref. [6, 7] (quantum fountain laser (QFL) based on
intersubband transitions [7]). In such QFL structures, a three-level lasing scheme was
used with a rapid depletion of the lower laser level due to the emission of polar optical
phonons by electrons. Unfortunately, these works [6, 7] did not receive a continua-
tion in the THz spectral region and were only an episode against the background of
intensive studies of quantum cascade structures with electrical excitation. Neverthe-
less, the possibilities of achieving THz lasing on intersubband transitions in quantum
wells (QWs) under conditions of optical excitation and in a situation of effective
depletion or population of certain laser levels due to processes with the emission of
optical phonons are far from being exhausted and are of undoubted practical interest.

In this work, we show that in the most ordinary undoped QWs obtained, for exam-
ple, in a system of AlGaAs materials, in which the energy gap between the third and
second levels of electron quantum confinement (QC) coincides with the LO-phonon
energy (36 meV for GaAs), and the gap between the second and first levels is smaller
and corresponds to the middle of the THz energy range; under conditions of interband
photoexcitation of electrons from the valence band to the third quantum confinement
level in the conduction band, population inversion and, accordingly, THz lasing can
be achieved.

The paper is organized as follows. Section 2 discusses the details of a model struc-
ture with GaAs/AlGaAs quantum wells, in which the energy arrangement of the QC
electron subbands corresponds to that mentioned above. The scheme of excitation of
electrons to the bottom of the third QC subband from states in the valence band is also
discussed here. Section 3 considers the conditions for the formation of a population
inversion between the second and first QC energy levels at interband photoexcita-
tion of a QW under the stationary and nonstationary cases. It is shown that, under
nonstationary conditions, there should be a population inversion between the second
and first QC levels in the QW. Section 4 summarizes the results of the paper. Appen-
dices present results of quantum-mechanical calculations of the characteristic energy
relaxation times (relaxation frequencies) of electrons between the QC levels in the
QW, the values of which are used as parameters in the basic formulas of Sections 3.
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2 Model Structure with GaAs/AlGaAs QuantumWells

The structures with QWs were selected in such a way as to provide the required
energy arrangement of the electron levels in the conduction band and interband
photoexcitation using available semiconductor lasers. A structure with undoped
GaAs/Al0.16Ga0.84As QWs 23.5 nm wide, with potential well depths at T = 0 K
for electrons and holes equal to 150 and 73.5 meV, respectively, is suitable for such
a task (the values of the band gap of the solid alloy and the conduction and valence
band discontinuities for the GaAs/AlGaAs heterojunction were chosen in accordance
with the published data [8, 9]). The widths of the barriers in such a structure were
assumed to be equal to the widths of the quantum wells (i.e., without tunneling cou-
pling between the wells). The calculations of the energy levels of electrons and holes,
as well as their wave functions, in this QW, were carried out using the technique
described in Ref. [10]. The quantum well has 4 electronic levels with energies mea-
sured from the bottom of the GaAs conduction band, equal to 7.5, 29.6, 65.6, and
113 meV, respectively (Fig. 1). As can be seen, the gap between the second and third
quantum confinement levels is 36 meV and corresponds to the LO-phonon energy in
GaAs [8]. The three lower energy levels of electrons in the QW are designated as e0,

Fig. 1 GaAs/Al0.16Ga0.84As quantum well with a width of 23.5 nm under conditions of excitation of
electrons to the third QC level in the conduction band. The states |Init.〉, |0〉, |1〉 and |2〉 form a four-level
THz lasing scheme discussed in this paper. By state |Init.〉 we mean the initial state in the hh2 → e2
optical transition
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e1, and e2 in the diagram shown in Fig. 1. This numbering of the states of electrons is
due to the convenience of their parity classification, used in microscopic calculations
(see Appendixes (A–E). This QW has 7 quantum confinement levels for heavy holes
with energies measured from the top of the GaAs valence band equal to 1.5, 5.9, 13.3,
24.6, 36.6, 52.0 and 68.6 meV, respectively. Taking this into account, the energy of
the interband pumping quantum required for the excitation of electrons to the third
QC level, e2, from the states of heavy holes, hh2, in the valence band (see Fig. 1)
should be 1.5983 eV at helium temperatures (the corresponding emission wavelength
is 775.6 nm).

3 Population Inversion Between Electron Energy Levels
in a QuantumWell During Interband Photoexcitation

Let us consider the rate equations for electron populations of quantum confine-
ment levels in a quantum well. We introduce the Fermi electron distribution function
fn(k, t) in the QC subband with number n and the wave vector k at the moment of
time t . Due to the invariance of the system with respect to rotations in the QW plane,
we choose k = (k, 0), where k is the absolute value of the wave vector. We denote by
the symbol g(k, t) the function of generating electrons at the third QC level (n = 2).
Taking into account the Pauli exclusion principle for transitions between electronic
states, the following equations can be written:

∂f2(k, t)

∂t
= g(k, t) − f2(k, t)

{
[1 − f1(k, t)] γ PO

21 + (1)

+ [
1 − f0(

√
2m∗(E2 − E0 − ��) + k2, t)

]
γ PO
20

}

∂f1(k, t)

∂t
= f2(k, t) [1 − f1(k, t)] γ PO

21 − f1(k, t)

{
�IS × (2)

× [
1 − f0(k, t)

]+
∫∫

dk′ [1 − f0(k
′, t)

]
γDA
10 (k,k′)

}

∂f0(k, t)

∂t
= −f0(k)fhh0(k

′, t)�IB + [1 − f0(k, t)]

{
γ PO
20 ×

×
∫∫

f2(k
′, t)δ

(
E2 + k′2

2m∗ − E0 − k2

2m∗ − ��

)
dk′ +

+
∫∫

f1(k
′, t)γDA

10 (k,k′)dk′ + f1(k, t)�IS +

+
∫∫

f0(k
′, t)γDA

00 (k,k′)dk′
}

− (3)

− f0(k)

∫∫ [
1 − f0(k

′, t)
]
γDA
00 (k,k′)dk′

here � is the optical phonon frequency, m∗ is the effective mass of an electron,
E2, E1, E0 are the energies of three QC levels in the QW. Two negative terms
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in Eq. (1) describe transitions between subbands with emission of polar optical
phonon, and γ PO

21 , γ PO
20 are the frequencies (probabilities per unit time) of transi-

tions between subbands e2 and e1, e2 and e0, respectively (see Appendix A). The
QW parameters are selected in such a way that the e2 → e1 transition with the
emission of optical phonon is vertical, that is, without changing the electron wave
vectors. Equation (2) includes a positive term associated with vertical transitions
from the e2 subband, and a negative term associated with transitions from the e1
subband with the emission of acoustic phonons; the probability of such transitions
is taken into account by the parameter γDA

10 (see Appendix B). In addition, Eq. (2)
also includes a negative term associated with optical transitions between subbands
e1 and e0, with probability �IS (see Appendix E). The first term in Eq. (3) corre-
sponds to interband radiative recombination and, accordingly, contains the factors
fhh0(k, t) = 1 − f VB

e (k, t) (we neglect the contribution of processes involving light
holes to the interband recombination) and the recombination probability �IB (see
Appendix D). The second, third and forth terms in this equation describe the influx
of electrons from the e2 and e1 subbands due to the emission of phonons and inter-
subband e1 → e0 optical transitions, and the fifth and sixth terms correspond to
electron energy relaxation in the lower subband e0 (the parameter γDA

00 corresponds
to the probability of such processes). In Eqs. (3) and (2), we neglect the interband
recombination of electrons from the e2 and e1 subbands because the probability
of such a recombination (see Appendix D) is small compared to the probability of
intersubband relaxation. We also neglect electron-electron scattering everywhere. It
was shown in [11] for the similar system that, for an electron concentration not
exceeding 2 × 1011cm−2, electron-electron scattering can be neglected. In our lin-
ear theory, the total carrier concentration is naturally proportional to the pumping
intensity and this restricts the applicability of our model in the high pump intensity
regime.

We consider the system at low temperatures (close to zero temperatures). The
applicability of this approximation is not obvious even for temperatures close to the
temperature of liquid helium, since optical excitation leads to heating of the electron
subsystem. However, since electron-hole pairs are created by interband pumping with
an energy close to the threshold energy �ω ≈ EG + E2 + Ehh2, the heating of
electrons in the e2 subband can be considered insignificant, and it can be assumed
that f1(k, t) = �(kFn −|k|), where � is the Heaviside function, kFn is rather small the
wave vector corresponding to the quasi Fermi level. The parameters of the quantum
well are chosen in such a way that Ee2 − Ee1 = ��, and, therefore, the transitions
from the e2 subband to the e1 subband proceed almost exclusively without changing
the longitudinal momentum of the electron. Therefore, the distribution function f1 is
similar to f2.

For the e0 subband, the heating of electrons cannot be considered small, but such
electrons can be conditionally divided into a group of hot and cold.

Let us integrate (1)–(2) over the wave vector in the QW plane. Integration of the
distribution function gives the electron concentration. For the e2 and e1 subbands,
all electrons are concentrated in the region of small wave vectors. Consequently, it
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is possible to introduce the electron concentrations in the subbands, n2(t) and n1(t),
respectively. For the terms associated with vertical transitions, we get:

1

4π2

∫∫
f2(k, t) [1 − f1(k, t)] dk

= 1

π

∫ ∞

0
�(kF2 − |k|)

[
1 − �(kF1 − |k|)

]
k dk = n2 − n1, (4)

This equation reflects the fact that the transitions from the bottom of the e2 sub-
band to the bottom of the e1 subband are forbidden by the Pauli principle and only
electrons located in the phase space in the kF2 > k > kF1 ring make the main contri-
bution to the transitions. Integration of the term responsible for interband radiative
recombination gives:

1

4π2

∫∫
dkf0(k, t)fhh0(k, t)

= 1

π

∫ ∞

0
�(kF0 − |k|)�(kFhh0 − |k|)k dk = min(n0, p0) = n0(t) (5)

here, the high rate of intraband energy relaxation of heavy holes and the property
of electroneutrality are taken into account: p0 = n2 + n1 + n0 + ñ0, where ñ0
is the concentration of hot electrons, and n0 is the concentration of cold electrons,
that is, those located at the bottom of the subband e0 and participating in interband
recombination.

As a result of performing this integration, from Eqs. (1)–(3), one can go to the
following system of balance equations for the electron concentrations in the subbands
of the quantum well:

∂n2(t)

∂t
= G(t) − [n2(t) − n1(t)]�(n2(t) − n1(t)) γ PO

21 − n2(t)γ
PO
20 (6)

∂n1(t)

∂t
= [n2(t) − n1(t)]�(n2(t) − n1(t)) γ PO

21 − (7)

− n1(t)γ
DA
10 − �IS [n1(t) − n0(t)]�(n1(t) − n0(t))

∂n0(t)

∂t
= n2(t − T )γ PO

20 + n1(t − T )γDA
10 − �IBn0(t) +

+ �IS [n1(t) − n0(t)] (8)

ñ0(t) =
∫ t

t−T

[
n2(t)γ

PO
21 + n1(t)γ

DA
10

]
dt (9)

where G(t) is the rate of generation of electrons by light. Despite the fact that
f0(k, t) � 1 for k > kF0 , ñ0(t) is obtained by integration over a significant vol-
ume of the phase space and, generally speaking, will not be small. As discussed in
Appendixes B and C, upon transitions from the e1 subband to the e0 subband, the
transfer of a small wave vector to acoustic phonon in the QW plane (q‖) is unlikely.
The main transitions in such an energy relaxation occur when the electron energy
changes in small portions with the transfer of sizeable wave vectors to the phonons.
Figure 2 schematically shows the process of energy relaxation into the e0 subband
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Fig. 2 Scheme of electron transitions in the process of energy relaxation to the quantum confinement
subband e0. Solid arrows correspond to transitions with emission of optical phonons. Dash-dotted arrows
correspond to transitions with emission of acoustic phonons during relaxation between the subbands e1
and e0
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with the emission of phonons. Strictly speaking, f0(k, t) should be obtained by solv-
ing the Boltzmann kinetic equation for electrons. However, instead of this we use the
average rate of energy loss (see Appendix C) in order to take into account the finite
relaxation time of electrons on acoustic phonons in the lowest subband through the
“delay” time:

T =
∫ E1−E0

Emin

(
dE

dt

)−1

dE. (10)

where Emin is the characteristic kinetic energy of motion in the QW plane, separating
the region of hot (energy-relaxing) and cold electrons (calculations show that Emin ≈
�
2

2m∗
(
1
a

)2 ≈ 1meV). Calculating the time T according to Eq. (10) gives a value of

the order of 6 × 10−10 s. Equations (8)–(9) in the system of balance equations are
written taking into account such “delay” time.

We will assume that the photoexcitation in time has the shape of a step, that is
G(t) = G�(t). The solutions of the system of Eqs. (6)–(9) for the electron concen-
tration in the QC subbands as a function of time with zero initial conditions in this
case will have the following form:

n2(t) = G

γ+γ−

{
γ PO
21 + γDA

10 − γDA
10 γ2 + γ̃ 2 − γ PO

21 γ−
2γ2

e−γ+t

− γDA
10 γ2 − γ̃ 2 + γ PO

21 γ+
2γ2

e−γ−t

}
(11)

n1(t) = Gγ PO
21

γ+γ−

{
1 − γ+

2γ2
e−γ−t + γ−

2γ2
e−γ+t

}
(12)

n0(t) = G
γ PO
21 �IS

γ+γ−

[
t − γ+

2γ2γ−
(
1 − e−γ−t

)
(13)

+ γ−
2γ2γ+

(
1 − e−γ+t

)]
at 0 ≤ t < T

n0(t) = G

{
1 − e−(t−T )γ+

�IB + γ+ − γ PO
20

γ−
e−(t−T )γ−+ (14)

+γ PO
20 − γ−

γ+
e−(t−T )γ+

}
at t > T

ñ0(t) = G

{
t + 2γ PO

21 + γDA
10

γ+γ−
+ γ PO

20 − γ−
2γ2γ−

e−γ+t+ (15)

+γ+ − γ PO
20

2γ2γ+
e−γ−t

}
at 0 ≤ t < T

ñ0(t) = GT at t > T (16)
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here γ± = γ PO
21 + γ PO

20 +γDA
10

2 ± γ2, γ2 =
√
(
γ PO
21

)2 +
(
γ PO
20

)2−γDA
10

(
2γ PO

20 −γDA
10

)
4 ,

γ̃ =
√

γ PO
21 γ PO

20 + γDA
10
2

(
γ PO
20 − γDA

10

)
. The numerical values of the characteristic

frequencies γ PO
21 , γ PO

20 , γDA
10 , �IS and �IB for the system under consideration are cal-

culated in Appendixes A–E and are 7.3× 1011, 1.2× 1011, 2.6× 1010, 1.1× 106 and
≈ 2.8 × 108 s−1, respectively. Taking this into account, the frequency values γ2, γ̃ ,
γ+ and γ− are about 7.3×1011, 3×1011, 1.5×1012 and 7.3×1010 s−1, respectively.

The results of calculations according to Eqs. (11)–(16) of the time dependence
of the electron concentrations at the QC levels, normalized to the value of GT , are
shown in Fig. 3.

As can be seen under nonstationary conditions, at times shorter than about 600 ps,
there is a population inversion between the second and first electron QC levels in
given QW. Figure 3 also shows that the strongly coupled states e1 and e2 are sepa-
rated from the ground state e0, the transitions to which are hindered. It is clear that the
time interval of inversion existence of ≈ 0-600 ps is mainly determined by the time
of slow relaxation of nonequilibrium electrons in the e0 subband with the emission
of acoustic phonons at low energy losses in individual phonon emission events.

The results of solving the system of Eqs. (11)–(16) at times significantly longer
than the time T are shown in Fig. 4. It is seen that under these conditions there is no
population inversion in the system.

Fig. 3 Time dependence of the normalized populations of the third, second and first electron QC levels in
QW (e2, e1 and e0, respectively) under interband photoexcitation
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Fig. 4 Time dependence of the normalized electron concentrations in the QW subbands at large times.

Stationary values of the electron concentration in the QC subbands can also be
obtained from Eqs. (11)–(16) in the limit of t → ∞. Considering that γ PO

21 , γ PO
20 �

γDA
10 , we get the following:

lim
t→∞ n2(t) = G

γ PO
20 + γ PO

21

γ+γ−
≈ G

(
1

γ PO
20

+ 1

γ PO
21

)
+

+GγDA
10

(
1

γ PO
20

+ 1

γ PO
21

)2

+ o

(
γDA
10

γ PO
21

)
(17)

lim
t→∞ n1(t) = G

γ PO
21

γ+γ−
≈ G

γ PO
20

{
1 −

−γDA
10

(
1

γ PO
20

+ 1

γ PO
20

)}
+ o

(
γDA
10

γ PO
21

)
(18)

lim
t→∞ n0(t) = G

�IB (19)

lim
t→∞ ñ0(t) = GT (20)

It can be seen from Eqs. (18)–(19) that the stationary population inversion,
which could potentially lead to the generation of stimulated THz radiation at the
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transitions between the second and first QC levels, would mean that the following
takes place:

�IB > γ PO
20 , (21)

that is, the probability of depletion of the e0 level due to interband recombination
(in our case, this is spontaneous interband recombination) should be higher than
the probability of intraband transitions, which cannot be achieved under normal
conditions.

It should be noted that in the case of the appearance of stimulated interband opti-
cal transitions from the state e0, the frequency �IB can significantly increase and
the inequality (21) can in principle be fulfilled. Interestingly, the idea of simulta-
neous laser generation of radiation on intraband and interband optical transitions in
quantum wells was put forward in Ref. [12].

Thus, under the conditions of nonstationary interband photoexcitation of electrons
to the third quantum confinement level, a population inversion arises between the
second and first QC levels in this QW. In such a situation, the appearance of stimu-
lated THz radiation on the e1 → e0 transitions with a quantum energy of the order of
22.1 meV is quite possible. This THz radiation should be linearly polarized along the
growth axis of the structure with QWs [10] and will propagate predominantly along
layers with QWs. A THz laser resonator in such structures can be created by simply
cleaving the crystal along the cleavage planes.

The considered scheme for creating a population inversion (Fig. 1) is somewhat
simplified. In reality, at the selected energy of the photoexcitation, along with the
“useful” photogeneration of electrons from the heavy holes states to the bottom of
the third QC subband (e2) in the conduction band, there will also be a “parasitic”
photoexcitation of electrons into the first and second QC subbands (e0 and e1, respec-
tively) to the states with large wave vectors in the QW plane. But population of the
lower subband with hot electrons due to transitions hh0 → e0 at large k will simply
lead to an increase in the number of electrons in the region of large k in the e0 sub-
band. Strictly speaking, to take into account such transitions, it is necessary to add the
corresponding terms to the balance equation. However, even in the worst scenario, if
we neglect the reverse transitions from e0 to e1, which are beneficial to us and will
only increase the effect we have proposed, we will only increase the number of hot
electrons in the main subband, while the critically important for us is the low con-
centration of cold electrons in the main subband during time T . Our estimates show
that the results will not change qualitatively. The transitions hh1 → e1 will also not
change the main results, since taking such transitions into account will lead to an
increase in the number of electrons in the e1 subband and thereby increase the effect
of population inversion between the subbands.

For the chosen energy of the photoexcitation, transitions from the subbands of
light holes will also take place. These are lh1 → e1 and lh0 → e0 transitions. Tran-
sitions of lh2 → e2 type are not possible due to the chosen pump quantum energy.
During the lh1 → e1 transitions, nonequilibrium electrons are created in the second
QC subband and, in principle, give a positive contribution to the formation of popu-
lation inversion between the levels in the quantum well according to the mechanism
considered in this paper. As a result of the lh0 → e0 transitions, electrons are also
generated in e0 subband in states with large k vectors in the QW plane, and taking
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them into account will only slightly (the square of the matrix element of the interband
transition from the heavy holes state is three times larger than from the light holes
state for light directed along the z-axis [16]) increase the number of hot electrons in
the main subband, slowly (over time of order of T ) relaxing downward in energy.
Estimates show that taking into account such additional hot electrons also does not
quantitatively change the result obtained. In addition, the probability of light absorp-
tion in transitions involving light holes is three times lower than that involving heavy
holes. Therefore, the photogeneration of electrons from the subbands of light holes
can also be neglected.

In a real situation, in structures with GaAs/AlxGa1−xAs quantum wells, there will
be fluctuations in both the widths of the quantum wells and the concentration of Al in
the barriers. The estimates show that with a fluctuation in the QW width of the order
of 1 monolayer and a fluctuation in the Al content of the order of 1% (such values
are quite real for modern setups for molecular beam epitaxy in the AlGaAs system),
the corrections to the energy gaps between the electron QC levels in the considered
QWs will be less than 1 meV. Therefore, the influence of the effects of fluctuation of
the composition of the solid alloy and the width of the QW in our problem can also
be neglected.

The generation of nonequilibrium carriers with high densities in quantum wells
will lead to a change in the position of the electron QC levels due to the Coulomb
and exchange-correlation interaction between the carriers [17, 18]. Estimations of the
influence of these effects (see Appendixes F and G) show that for the concentrations
of nonequilibrium carriers considered in our task no higher than 2 × 1011cm−2, the
corrections to the values of the energy gaps between the QC levels will be no more
than 0.6 meV. Such corrections are insignificant and cannot considerably change the
main result of our paper.

Nonequilibrium carriers will have the strongest influence on the value of the band
gap due to the effect of band gap renormalization (BGR) [17, 18]. It is estimated that
the change in the band gap width can reach tens of meV at the maximum concentra-
tions of nonequilibrium carriers of the order of 2×1011cm−2 considered in our paper.
But since the effect considered in our paper is more of a threshold than a resonant
one, the BGR will not have a significant impact on the final result.

4 Summary

In conclusion, we have discussed the possibility of achieving population inversion
between the quantum confinement energy levels in undoped GaAs/Al0.16Ga0.84As
23.5 nm wide quantum wells and, accordingly, the generation of stimulated THz
radiation under interband photoexcitation. It is shown that, under optical pumping
from the valence band to the third QC level in the conduction band, separated from
the second QC electron level by the LO-phonon energy, population inversion occurs
between the second and first QC levels in the beginning of the excitation pulse. The
LO-phonon resonance between upper QC levels provides fast population of the sec-
ond QC level, while the lowest electron state is populated much more slowly, with a
characteristic time of the order of several hundreds of picoseconds controlled by the
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energy relaxation processes with the emission of acoustic phonons. Such a system
may turn out to be convenient for the development of a new type of THz laser based
on intersubband transitions with optical excitation.

Appendix A. Intersubband transitions with emission of polar optical
phonons

The problem of intersubband scattering of electrons in a QW has been considered by many authors,
beginning with the work of B. K. Ridley [13]. A detailed presentation of the results obtained can be
found in Ref. [14]. It was shown (see [14]) that for QWs with widths larger than 10 nm, one can neglect
both the quantum confinement of phonons and the interface modes and use the approximation of bulk
phonon modes. The matrix elements of the electron-phonon interaction for such a model were presented
in Refs. [15, 16]. We are primarily interested in the relaxation of electrons from the bottom of the over-
lying subbands to the underlying subbands. In the general case, the transition occurs to the electron state
with momentum �k‖ directed in the plane of the QW. For the transition from the bottom of the subband,
the momentum conservation law establishes a connection between the wave vectors of the electron and the
phonon participating in the process: k‖ = −q‖. Using Fermi’s golden rule and summing over the phonon
modes, we obtain the following for the probability of transition from state f to state i (i and f take the
values 0, 1, 2,. . . ):

wf i = e2�

4πεc

∫ ∞

−∞
dqz

∣∣Mf i(qz)
∣∣2
∫ ∞

−∞
dq‖

q‖
q2
z + q2‖

(A.1)

×δ(Ef − Ei − �
2q2‖
2m∗ − ��) = e2�m∗

4πεc�
2

∫ ∞

−∞
dqz

∣∣Mf i(qz)
∣∣2

q2
z + q2

0

where � is the frequency of the optical phonon, m∗ is the effective mass of the electron, e is the charge of
the electron, and εc = (1/ε∞ − 1/ε0)−1, here ε∞ and ε0 are the dynamic and static dielectric permittivity
of GaAs, respectively, q0 = √

2m∗(Ef − Ei − ��)/� is the value of the longitudinal (in the QW plane)
wave vector obtained by the phonon during scattering from the bottom of the subband; it is equal to the
value of the wave vector of the electron in the final state.

A1.1 A Rectangular quantumwell of infinite depth

The explicit form of the phonon matrix element Mfi(qz) = ∫∞
−∞ ψ∗

f (z) exp(iqzz)ψi(z)dz depends on the
chosen model and will be different in the case of QWs of finite and infinite depth. So, for an infinitely
deep QW with a width a, according to Refs. [15, 16], the matrix element can be represented as:

Mfj (qz) = π2q2
z a2(σ 2 − δ2)(

q2
z a2 − π2σ 2

) (
q2
z a2 − π2δ2

)
[
e

i
2 qza + (−1)σ e− i

2 qza
]

(A.2)

σ = f + j , δ = f − j , where j and f take the values 0, 1, 2. . . . This matrix element has a resonant
character and the integral over qz in Eq. (A.1) can be calculated using the residue theorem. As a result, we
get the following:

wf i = e2m∗�a

4πεc�
2

(
ζi−f,i+f +2 + ζi+f +2,i−f

)
,where (A.3)

ζl,j =
1 − [

1 − (−1)le−q0a
] ( 4l2

(j2−l2)q0a
+ 2q0a

π2l2+q20 a2

)

π2l2 + q2
0a2

In our case, the transition between the third and second quantum confinement levels (e2 → e1) is resonant

one, that is q0 = 0, E2 − E1 = ��, � = 5�π2

2m∗a2
and from Eq. (A.3) we get: w21 = 13e2π

10�εca
. For the
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e2 → e0 transition on the other hand, q20 = √
3/a and calculations by Eq. (A.3) give the following for

the transition probability: w20 ≈ 65e2π
266�εca

. Accordingly, the ratio of probabilities w21/w20 is about 5.3.

A1.2 A rectangular quantumwell of finite depth

For a well of finite depth, the following expressions can be obtained for the squares of the phonon matrix
elements:

|M20(qz)|2 = 64κ0κ2k20k
2
2q

2
z

{[
q2
z − (κ0 + κ2)

2
]
sin qza

2 − 2qz(κ0 + κ2) cos
qza
2

}2

(2 + κ0a)(2 + κ2a)
[
(k0 + k2)2 − q2

z

]2 [
(k0 − k2)2 − q2

z

]2 [
(κ0 + κ2)2 + q2

z

]2 (A.4)

|M21(qz)|2 = 64κ1κ2k21k
2
2q

2
z

{[
q2
z − (κ1 + κ2)

2
]
cos qza

2 + 2qz(κ1 + κ2) sin
qza
2

}2

(2 + κ1a)(2 + κ2a)
[
(k1 + k2)2 − q2

z

]2 [
(k1 − k2)2 − q2

z

]2 [
(κ1 + κ2)2 + q2

z

]2 (A.5)

where kj = √
2m∗Ej/� and κj = √

2m∗(U − Ej )/�, U is the depth of the potential well. As a result of
cumbersome calculations, which we omit, we can obtain the following general expression for the transition
probability:

wf i = e2�

4Yεca

(
1 + 2

κia

)−1 (
1 + 2

κf a

)−1(
Ei + Ef + Eq +

+ �
2

2m∗a2

{
Ei(3Ef + Ei + Eq)κf a − Ef (3Ei + Ef + Eq)κia

U(Ei − Ef )
−

−8q0aEf Ei

Y

[
1 ∓ e−q0a

(
κi + κf − q0

κi + κf + q0

)2
]})

(A.6)

where Y = 4Ef (Ei − Ef − ��) + (��)2, and Eq = �
2q20
2m∗ , the sign ∓ corresponds to transitions between

states with the same or different parity. From formula (A.6), one can obtain formula (A.3) in the limit of
U → ∞. The expansion of exact formula (A.6) in a series for large U for the two transitions of interest
e2 → e1 and e2 → e0 has the following form:

w12 = 13e2π

10�εca

(
1 + �

a
√
2m∗U

+ . . .

)
(A.7)

w02 = e2π

�εca

{
65

266
− 360

√
3

17689π

[
1 − e−√

3π
]}(

1 + �

a
√
2m∗U

+ . . .

)
(A.8)

As expected, the corrections to the transition probabilities associated with taking into account the finite
depth of the potential well are inversely proportional to the QW power, a

�

√
2m∗U . Note that, as is well

known [16], corrections to the energy of deep states in the QW are also inversely proportional to the power
of the well. Calculations using Eqs. (A.7) and (A.8) give the probabilities per unit time for transitions with
emission of polar optical phonons between states e2 and e1, e2 and e0, in the considered quantum well,
equal to wPO

21 = 7.3 × 1011s−1 and wPO
20 = 1.2 × 1011s−1.

Appendix B. Energy relaxation with the emission of deformation
acoustic phonons

For the intersubband (e1 → e0) and intraband (e0 → e0) transitions with the emission of acoustic
phonons, expressions can be obtained for the squares of phonon matrix elements, which are generally
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similar in structure to those given in Eqs. (A.4)–(A.5) and which in this case will have the following
form:

|M10(qz)|2 = 64κ0κ1k20k
2
1q

2
z

{[
q2
z − (κ0 + κ1)

2
]
cos qza

2 + 2qz(κ0 + κ1) sin
qza
2

}2

(2 + κ0a)(2 + κ1a)
[
(k0 + k1)2 − q2

z

]2 [
(k0 − k1)2 − q2

z

]2 [
(κ0 + κ1)2 + q2

z

]2 (A.9)

|M00(qz)|2 = 64κ2
0 k40

{[
q2
z − 4κ2

0

]
sin qza

2 − 4qzκ0 cos
qza
2

}2

q2
z (2 + κ0a)(2 + κ2a)

(
4k20 − q2

z

)2 (
4κ2

0 + q2
z

)2 (A.10)

where also kj = √
2m∗Ej/� and κj = √

2m∗(U − Ej )/�.
Let us consider transitions from states near the bottom of the second quantum confinement subband

(subband e1). In this case, the wave vector of the electron motion in the QW plane in the initial state is
k1‖=0. It is clear from the law of conservation of momentum that in the final state (in the subband e0)
the wave vector of an electron will be equal in absolute value to the longitudinal (in the QW plane) wave
vector of the emitted phonon k0‖ = q‖. From the law of energy conservation it follows that:

E1 − E0 − �
2q2‖
2m∗ = �sl

√
q2
z + q2‖ , (A.11)

where sl is the speed of sound in the longitudinal mode. It is clear from Eq. (A.11) that at q‖ → 0 the value
of the phonon wave vector qz in the direction perpendicular to the QW plane tends to q∗

z equal to≈ E1−E2
�sl

,
and in our case q∗

z a=153. If we take into account that for large qz the square of the matrix phonon element
M2

10(qz) (see Eq. (A.9)) behaves like (1/qza)6, then we can conclude that vertical transitions (with zero q‖)
between the subbands e1 and e0 practically impossible. Transitions with the emission of acoustic phonons
occur when the electron energy changes in small portions with the transfer of sizeable wave vectors to the
phonon. The picture of such transitions is shown schematically in Fig. 2.

Unlike relaxation of the electron energy on optical phonons, here at different temperatures not
only “zero-point” relaxation (on zero-point lattice vibrations) is possible, but also “equipartition” relax-
ation [19], when the lattice temperature, expressed in energy units, is of the order of or higher than the
characteristic phonon energy. Therefore, in the general case, both processes with emission and processes
with absorption of phonons are possible. Despite the fact that the total energy of an electron increases upon
absorption of a phonon, the electron passes into another subband, the rate of intraband relaxation along
which is usually higher than for intersubband relaxation (within the framework of the same mechanism).
Therefore, the next act of emission of a phonon will be more likely within the same subband to which the
electron passed as a result of absorption of an acoustic phonon.

The general expression for the probability of intersubband relaxation of the electron energy with the
emission of acoustic phonons has the form [19]:

w = �2

4πρsl

∫ ∞

−∞
dqz

∫ ∞

0
q‖dq‖(q2

z + q2‖ )
∣∣Mf i(qz)

∣∣2 (A.12)

×

⎡
⎢⎢⎣

δ

(
�E − �

2q2‖
2m∗ − �sl

√
q2
z + q2‖

)

1 − e
− �sl

kBT

√
q2z +q2‖

+
δ

(
�E − �

2q2‖
2m∗ + �sl

√
q2
z + q2‖

)

e
�sl
kBT

√
q2z +q2‖ − 1

⎤
⎥⎥⎦

where � — deformation potential, ρ — material density, kB — Boltzmann constant. The structure of the
squares of the matrix elements M2

f i (q) is given above in expressions (A.10) and (A.9). In the case of
high temperatures (say, at T = 78 K and higher), “equipartition” relaxation becomes essential, and in this
approximation, the following expression can be obtained for the transition probability:

wEP = m∗�2kBT a

πρs2l �
3

∫ ∞

0

√
q2
z + 2m∗�E

�2

∣∣Mf i(qz)
∣∣2 dqz. (A.13)

In the case of low temperatures (say, of the order of T = 4.2 K), we can restrict ourselves to only the
“zero-point” approximation:

wZP = m∗�2a

2πρsl�2

∫ ∞

0

(
q2
z + 2m∗�E

�2

) ∣∣Mf i(qz)
∣∣2 dqz. (A.14)
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Calculations according to Eq. (A.14) of the energy relaxation times on acoustic phonons for the quantum
wells considered in this article give: wDA

10 = 2.6 × 1010s−1, wDA
21 = 5.1 × 1010s−1, and wDA

20 = 5.1 ×
1010s−1.

Appendix C. Intraband energy relaxation

The most efficient mechanism of energy relaxation on acoustic phonons is the emission of a large number
of low-energy phonons. This allows us to introduce the average rate of energy loss by electrons [20]:

〈
dE(k)

dt

〉
= �sl

∑
q

|q|w(q), (A.15)

where w(q) is the probability of emission of an acoustic phonon with a wave vector q by an electron. For
the process of energy relaxation in the e0 subband with a predominance of “zero-point” relaxation, the
following can be obtained:

〈
dE(k)

dt

〉

ZP
= m∗�2a

4πρ�

∫ ∞

0

(
q2
z + 2m∗�E

�2

)3/2

|M00(qz)|2 dqz. (A.16)

In the approximation of ka > 1, from Eq. (A.16) one can obtain the following expression for the rate
of electron energy losses:

〈
dE(k)

dt

〉

ZP
≈ 8πm∗�2

ρ�

[
k3 + 3kπ2

4a2
+ 3π4

ka4

(
1 + 2 ln

4ka

π

)]
+ o

(
1

ka

)
(A.17)

From expression (A.17) it can be seen that the relaxation rate depends on the wave vector of the elec-
tron as k3 and, accordingly, significantly decreases with decreasing k. This allows us to immediately
obtain an upper estimate for relaxation in the lower quantum confinement subband, replacing k with√
2m∗(Ee1 − Ee0)/�, we obtain 〈 dE(k)

dt
〉ZP < 1.4 × 1011meV/s.

Appendix D. Interband recombination time

The characteristic time of radiative recombination of an electron and a hole in a quantum well can be cal-
culated using an approach similar to that described in Refs. [16, 19]. The matrix element of the interband
optical interaction contains the product of the overlap integral of the envelopes of the wave functions of the
electron and the energy-split states of the heavy and light holes, I(h,l)hNM = ∫

ψ∗
(h,l)hN(z)ψeM)(z)dz ≈

δNM (the integral is small for transitions without preserving the state number), by the interband matrix
element, the absolute values of which, together with the corresponding selection rules, are given in
Ref. [16].

In order to obtain the lifetime of an electron with respect to the recombination process, it is necessary
to sum the square of the matrix element with respect to all directions of propagation of an electromagnetic
wave at two possible polarizations, taking into account the polarization selection rules. Neglecting small
corrections, we obtain two contributions in the reverse recombination time, associated with recombination
with heavy and light holes, respectively. Naturally, these contributions are proportional to the Fermi distri-
bution function of heavy and light holes. Under the conditions of the proposed experiment, recombination
with the participation of light holes can be neglected. Thus, the inverse time of radiative recombination
with respect to interband transitions for the electronic subband N in the CGS system can be represented
as follows:

τ−1
N (k) = ne2Ep

m0c3�2
[EG + EeN(k) + EhhN(k)] fhhN(k) (A.18)

where EG is the band gap, EP is the Kane matrix element, m0 is the mass of a free electron, c is the
speed of light, n is the refractive index, and fhhN(k) is the distribution function of heavy holes at the N

level. Assuming fhhN(k) ≈ 1, from Eq. (A.18) we can obtain an upper estimate for the inverse radiative
recombination time of 2.8 × 108 s−1 (the corresponding estimate for the radiative recombination time is
3.6 ns).
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Appendix E. Intersubband optical transitions

The inverse time of the optical transition between subbands f and i in a quantum well can be calculated
as follows [21]:

1/τ optf i = 4e2ωf in

c3�(m∗)2
∣∣∣(p̂z

)
f i

∣∣∣
2 =

16EiEf e2n sin2
(
1
2π(f + i)

)

c3�ωf i(m∗)2(a/2 + 1/κi)(a/2 + 1/κf )
(A.19)

where p̂f i is the matrix element of the momentum operator, �ωf i is the optical transition energy.

Calculations according to Eq. (A.19) give the value of the τ
opt
10 time of the order of 9.2 × 10−7 s.

Appendix F. Shift of levels caused by Coulomb interaction

As we pointed out above, the relaxation rate of holes in the QW is significantly higher than the relaxation
rate of electrons. We will assume that all of the holes are in the lower state of the QW. As for the electron
subsystem, some of the electrons are at QC levels 1 and 2.

We will use the infinitely deep QW model for our estimation. In this model, the module squares of the
wave functions of the electrons and holes in the ground state are the same. The charges of electrons and
holes, for the most part, compensate each other.

The electrostatic potential φ(z) of the uncompensated charge can be expressed through the Poisson
equation:

∂2φ(z)

∂z
= −4πe

ε0

2∑
i=1

ni(t)
[
|ψi(z)|2 − |ψ0(z)|2

]
. (A.20)

Strictly speaking, the wave functions ψi(z), in turn, depend on the potential, and Eq. (A.20) should be
solved self-consistently, but for our evaluation, we will neglect this dependence. In this case, the equation
is solved trivially:

φ(z) = 2ea

πε0

[
n1(t) cos

4 πz

2a
+ n2(t)

2

(
cos

πz

a
− 1

9
cos

3πz

a

)]
. (A.21)

Then the first perturbation theory correction to the difference between the energies of excited states 1 and
2 will have the following form:

δE12 = Gae2

18πε0

{
1

γ PO
21

− 5

4γ PO
21

}
(A.22)

The time dependence is missing here because we used the Eqs. (17) and (18) for a time longer than the
transient time at the leading edge of the excitation pulse.

Estimation for reasonable pumping intensities gives us a correction of scale ≈ −0.1 meV

Appendix G. Shift of energy levels caused by exchange-correlation
interaction

The exchange-correlation interaction can be taken into account in the plasmon pole approximation, as
applied to the 2DEG system, see for example [18].

We are interested in the position of the QC level at a small longitudinal wavenumber so that we put
the sample charge wavenumber at 0. This will increase the symmetry of the system and simplify the
calculations. Then the energy shift of the bottom level j in the QW can be written [18] as:

δEi(0) = − e2

ε0

2∑
j=0

∫ ∞

0
fj (q)

⎧⎨
⎩1 − �ω2

p

2ωq

[
Ei − Ej − �2q2

2me
+ �ωq

]
⎫⎬
⎭ dq. (A.23)
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Plasma frequency in 2DEF systems is: ωp =
√

2πn(t)e2q
ε0μ

=
√

2πGte2q
ε0μ

and is assumed to depend only on

the total concentration of nonequilibrium carriers,ω2
q = ω2

p

(
1 + q

κ

)+ �
2q4

16μ2 — effective plasma frequency,

μ−1 = m−1
e + m−1

hh0 — reduced electron-hole mass, κ = 2e2(me+mhh0)

ε0�
2 — 2D screening wavenumber.

The formula (A.23) contains the sum over the transmitted wave vectors and finite states: δEi = δE
(i)
i +

δE
(o)
i . Let us first consider the contribution of electrons at the same level. For excited states of 1 and 2

the transmitted wave vector is small, so we can limit ourselves to the term with j = i when the energy
difference in the denominator turns to 0. Then Eq. (A.23) can be transformed to the form:

δE
(i)
2 − δE

(i)
1 = − e2

ε0

∫ kF2

kF1

[
1 − 1

2(1 − q/κ)

]
≈ − e2

4ε0γ PO
21

√
πGγ PO

20 ≈ −0.26meV (A.24)

where the Fermi wave vector kF i = √
2πni(t), and the dependence ni(t) is given by in Eqs. (12) and (11).

For state 0 the situation is different — the electron distribution function f0(k, t) is maximal at k =√
2me(E1 − E0), at times t < T , where T is defined in the formula (10). The detailed form of the

distribution function f0(k) can be established from Eq. (14).

ñ0(t) = Gt = 2π
∫ kmax

kmin(t)

f0(k)k dk (A.25)

where kmax = √
2me(E1 − E0), kmin(t) = kmax − 〈

dE
dt

〉
met

�2kmax
, where the energy relaxation rate is given

by Eq. (A.16). For simplicity we replaced k by kmax. Since
〈
dE
dt

〉 1
k

∝ k2, then such a substitution can only
increase the area of integration and hence the magnitude of the correction.

By differentiating Eq. (A.25) over time, we can find the stationary distribution function:

f0(k) = G�
2

me

〈
dE

dt

〉−1

< 0.02 (A.26)

Then the shift between the QC levels of 1 and 2 can be written as:

δE
(o)
2 − δE

(o)
1 = − e2

2ε0

∫ kmax

kmin(t)

f0(q)�ω2
p

ωq

⎧⎨
⎩

1

E1−E0− �2q2

2me
+ �ωq

− 1

E2 − E0 − �2q2

2me
+ �ωq

⎫⎬
⎭ dq ≈

≈ e2�ωp(kmax)Gt

2ε0(E1 − E0)kmax
(A.27)

For n(t) = Gt = 2 × 1011cm−2 the exchange-correlation shift from this estimate is δE
(o)
2 − δE

(o)
1 =

0.6meV.
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