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Abstract Beam propagation at millimeter and submillimeter wavelengths is well described by
Gaussian beams and quasi-optical theory. Due to the general progress in THz technology,
receiver and other quasi-optical systems in the THz range demand increasingly larger band-
widths. In this context, this paper presents a general design methodology for frequency
independent quasi-optical systems, based on system matrix analysis. After the presentation
of the general ideas, useful design equations are derived for the most common quasi-optical
systems. Finally, the derived equations are validated by application to already deployed radio
astronomy receivers.
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1 Introduction

Quasi-optical systems [1] are those which involve the free-space propagation of electromag-
netic radiation in the form of beams with lateral size comparable with the wavelength and for
which diffraction effects are important. Electromagnetic propagation in this kind of systems
can be described well by the paraxial approximation of the wave equation. Gaussian beam
modes represent a complete basis for their solutions and are thus of great importance. The
paraxial wave equation is especially useful for highly collimated beams at millimeter and
submillimeter frequencies. It describes the optical systems of a number of applications, such as
radio astronomy [2], material characterization [3], remote sensing of the atmosphere [4], and
security [5].

The radiation patterns from corrugated feed horns can be appropriately modeled by a single
fundamental Gaussian beam with less than 2% error in power [6]. Therefore, fundamental
mode analysis is usually enough for quasi-optical systems with high-quality feed horns. In
addition, the propagation of the fundamental mode is well described by simple matrices similar
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to the ray matrices in optical design. This similarity makes it possible to use optical compo-
nents to modify the beam propagation of radiation in the THz range: mirrors, lens, free-space
filters and interferometers, etc. The propagation of fundamental Gaussian beams and their
interaction with optical components can be expressed by simple matrix multiplication, instead
of the more exact diffraction theory and radiation integrals [7]. This simplifies the design of
complex quasi-optical systems. Undesired effects due to beam truncation or distortions in
amplitude and phase can be described by the addition of a few higher-order Gaussian modes
and could be taken into account in more demanding designs.

In radio astronomy, quasi-optical systems are of great importance to match the beam
coming from the telescope large reflector into the receiver feed horns [8] or to transmit the
local oscillator signal necessary for heterodyne reception between the place it is generated and
the mixer in the receiver [9]. Modern day radio telescopes, such as ALMA [10], try to cover all
available millimeter and submillimeter atmospheric windows with as few receivers as possible.
In the case of ALMA, the full 35–950 GHz band was divided into 10 frequency bands for
practical implementation. Currently, some groups have started working on covering two
ALMA bands with a single receiver, which would show extremely wideband performance
approaching one octave bandwidth. From the point of view of receiver optics, these must be
carefully designed in order to achieve frequency independent performance over such large
bandwidths.

There is plenty of literature on quasi-optical systems, and many groups have reported
wideband design efforts. However, the problem of frequency independent designs has not been
fully covered. The formulas and design ideas in [11] are the most common reference for
frequency independent quasi-optical designs and are based on matching the Gaussian beams
on the two sides of a focusing element. Recently, similar results have been reported in [12]
from Fresnel diffraction integral analysis. However, to the knowledge of the author, there are
not any general references for frequency independent quasi-optical design methods. This paper
tries to cover this existing gap with an analysis based on ABCD matrices. Firstly, the
fundamentals of frequency independent design based on beam matrices will be described.
Then, these results will be applied to the most common quasi-optical systems and compared
with existing designs.

2 Theory

The basic design ideas for frequency independent quasi-optical designs in this paper have
recently been reported in [13] for a particular application. The basic equations and ideas will be
repeated here for the sake of completeness.

In quasi-optical theory [1], electromagnetic propagation is well described by Gaussian
beams. These can be described by a complex number q, the complex beam parameter, which
contains the information of the beam size w and radius of curvature R, as described in (1),
where λ is the wavelength.

1

q
¼ 1

R
− j

λ
πw2

ð1Þ

The propagation and transformations of a Gaussian beam through the quasi-optical system
are described by simple matrix multiplications, similar to ray matrices in geometrical optics.
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The relation between the input and output complex beam parameters can be expressed in terms
of four ABCD coefficients as presented in (2). These coefficients describe the propagation or
transformation of the beam at a quasi-optical component and can be conveniently grouped in a
matrix as in (3).

1

qout
¼

C þ D

qin

Aþ B

qin

ð2Þ

M ¼ A
C

B
D

� �
ð3Þ

Then, the propagation of a Gaussian beam through the optical system is described by
simple matrix multiplication. Each element in the optical system is well characterized by
simple matrices, and the total system matrix can be obtained by multiplying all the individual
beam transformations in the system.

The expression in (1)–(2) can be manipulated to obtain equations (4) and (5) for the output
beam size and radius of curvature, respectively.

wout ¼ win

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aþ B

Rin

� �2
þ B λ

πw2
in

� �2

AD−BC

vuut
ð4Þ

Rout ¼
Aþ B

Rin

� �2
þ B λ

πw2
in

� �2

Aþ B

Rin

� �
C þ D

Rin

� �
þ BD λ

πw2
in

� �2
ð5Þ

One important conclusion which is obtained from (4) and (5) is that if B equals 0, then, the
output beam characteristics are frequency independent, provided that the input beam size and
radius of curvature do not depend on frequency. This is usually the case for the beams radiated
by a horn at the horn aperture plane. In the case that B=0, these equations can be simplified as
done in (6) and (7).

wout ¼ win

ffiffiffiffi
A

D

r
ð6Þ

1

Rout
¼ C

A
þ D

A

1

Rin
ð7Þ

3 Application to System Design

The condition that the system ABCD matrix has a term B equal to 0, together with
equations (6) and (7) can be used to obtain design equations for any quasi-optical
system. In general, quasi-optical systems will have a feed horn that radiates (or
receives) the initial Gaussian beam, some focusing elements to control the beam
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divergence along the optical path and, possibly, some other components which modify
the beam characteristics.

In the case of radio astronomy, quasi-optical systems are used to match the beam coming
from the large reflector antenna to the beam corresponding to the receiver feed horn. In this
case, the beam is just focused and propagated along the quasi-optical system. In addition,
systems are usually simple with one or, at most, two focusing mirrors. The same matrix
describing the matching between two beams can also be applied to the transmission of power,
e.g., LO signal, between two horns bymeans of a quasi-optical waveguide. Since these systems
are the most common in quasi-optics, they will be described thoroughly in the next section.

The study of frequency independent conditions for a system with a thick lens, another
interesting case which has not been reported in the literature, will be presented next.

3.1 Quasi-optical System with One Focusing Element

A schematic of a quasi-optical system with one focusing element is presented in Fig. 1. The
focusing element can be a mirror or a thin lens. A frequency independent beam with beam size
win and radius of curvature Rin is transformed into a beam with size wout and radius of
curvature Rout by means of a focusing element with focal length f. The distances from the
focusing element to the input and output planes are d1 and d2, respectively.

The system matrix can be readily calculated from individual matrices and its ABCD
coefficients are given in (8–11):

A ¼ 1−
d2
f

ð8Þ

B ¼ d1d2
1

d1
þ 1

d2
−
1

f

� �
ð9Þ

C ¼ −
1

f
ð10Þ

D ¼ 1−
d1
f

ð11Þ

Direct application of the condition B=0 yields the design equation (12), whereas (13)–(14)
can be easily derived from (6)–(7).

1

f
¼ 1

d1
þ 1

d2
ð12Þ
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Fig. 1 Schematic of a quasi-
optical system with one focusing
element
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wout ¼ d2
d1
win ð13Þ

1

Rout
¼ 1

d2
1þ d1

d2
1þ d1

Rin

� �� �
ð14Þ

These design equations are the same which were derived in [11] using beam matching
considerations or in [12] using radiation integrals. With the use of simple quasi-optical
principles, the same set of equations can be derived quickly without involved mathematics.
These equations have been used extensively in the literature as the base for frequency
independent designs.

3.2 Quasi-optical System with Two Focusing Elements

A schematic of a quasi-optical system with two focusing elements is presented in Fig. 2. The
focusing elements can be mirrors or thin lenses or a combination of both. The different
variables are defined in Fig. 2.

The system matrix can be readily calculated from individual matrices and its ABCD
coefficients are given in (15–18):

A ¼ 1−
d2
f 1

−
d3
f 1

−
d3
f 2

þ d2d3
f 1 f 2

ð15Þ

B ¼ d1 þ d2−
d1d2
f 1

−
d1d3
f 2

þ d3 1−
d1
f 1

� �
1−

d2
f 2

� �
ð16Þ

C ¼ −
1

f 1
−

1

f 2
þ d2

f 1 f 2
ð17Þ

D ¼ 1−
d1
f 1

� �
1−

d2
f 2

� �
−
d1
f 2

ð18Þ
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Fig. 2 Schematic of a quasi-
optical system with two focusing
elements
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Under the condition B=0, A and D can be rewritten as in (19)–(20).

A ¼ −
d2d3
d1

1

d2
þ 1

d3
−

1

f 2

� �
ð19Þ

D ¼ −
d1d2
d3

1

d1
þ 1

d2
−

1

f 1

� �
ð20Þ

The coefficient B can be factored in a more convenient way after some algebra, as
indicated in (21).

B ¼ d1d2d3
1

d1
þ 1

d2
−

1

f 1

� �
1

d2
þ 1

d3
−

1

f 2

� �
−

1

d22

" #
ð21Þ

The condition B=0 is stated in (22). It can be separated into two conditions, for f1 and f2, by
using the parameter k, with 0<|k|≤1, as shown in (23)–(24). The sign of k will depend on the
sign of the output radius of curvature Rout.

1

d1
þ 1

d2
−

1

f 1

� �
1

d2
þ 1

d3
−

1

f 2

� �
¼ 1

d22
ð22Þ

1

f 1
¼ 1

d1
þ 1þ k

d2
ð23Þ

1

f 2
¼ 1

d3
þ 1þ 1=k

d2
ð24Þ

Under these conditions, the ACD terms simplify greatly, as presented in (25)–(26):

A ¼ 1

D
¼ d3

kd1
ð25Þ

C ¼ 1

d1d3
kd1 þ d2 þ d3

k

� �
ð26Þ

From equations (6)–(7), two design equations (27)–(28) can be derived, using the parameter k:

wout ¼ 1

kj j
d3
d1
win ð27Þ

1

Rout
¼ 1

d3
1þ k

d3
d2 þ kd1 1þ d1

Rin

� �� �� �
ð28Þ

The value of k can be defined in terms of other system parameters. Different
expressions for k are provided in (29)–(31). Each expression can be useful for a
particular design case.

k ¼ −d2
1

d1
þ 1

d2
−

1

f 1

� �
ð29Þ
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k ¼ d3
d1

1−
d3
f 2

1−
d1
f 1

win

wout

� �2

ð30Þ

k ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

d1
þ 1

d2
−

1

f 1
1

d2
þ 1

d3
−

1

f 2

vuuuuut ð31Þ

The design of a frequency independent quasi-optical system with two focusing elements
could be directly done using equations (23), (24), (27), and (28) and some mechanical and
electrical restrictions. For example, the value of d1 will be determined from truncation and
amplitude distortion considerations apart from mechanical restrictions. Ideally, a long d1
translates into a larger radius of curvature of the focusing element at the input, which reduces
amplitude distortion. However, longer d1 also means higher beam truncation for a given size of
focusing element, which is set by mechanical restrictions and cost. Similar reasoning could be
applied to d2 and d3. Therefore, when we face the design of a two-focusing-element system,
the values of some of the distances, normally d1 and d3, will be bounded or even fixed.

The first step in the design would be to use equation (32) for the determination of |k| for
certain values of d1 and d3. Then, equation (33), derived from (28), will be applied to
determine d2. The sign of k must be the same of the target Rout. In other words, k must be
positive for a frequency independent beam after the final waist and negative for a frequency
independent beam before the final waist of the output beam. The values of focal lengths f1 and
f2 can then be directly calculated from (23)–(24).

kj j ¼ d3
d1

win

wout
ð32Þ

d2 ¼ d3
k

d3
Rout

− 1

� �
− kd1 1þ d1

Rin

� �
ð33Þ

In the case d2 is fixed by mechanical restrictions, equation (33) should not be applied. In
this case, the output radius of curvature would not be decided by the designer.

3.3 Quasi-optical System with N Focusing Elements

The generalization of the method presented in this paper for the case of N focusing elements is
straightforward but difficult, due to the fact that the size of ABCD matrix elements increases
with N and it becomes increasingly difficult to handle. However, some interesting results can
be derived from the analysis of the case with N elements.

When a new focusing element is added into the system, this multiplies the matrix
MN−1 of the system with N−1 elements with a matrix for the focusing element with
focal length fN and the additional propagation to the new target plane by a distance
dN+1. The matrix for N focusing elements is shown in (34). The ABDC elements of
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MN-1 will be noted with the sub-index N−1 to distinguish them from the terms of the
matrix MN, with sub-index N.

MN ¼
1−

dNþ1

f N
dNþ1

−
1

f N
1

0
BB@

1
CCAMN−1 ð34Þ

The ABDC terms of matrix MN in terms of those of MN−1 are shown in (35)–(38):

AN ¼ AN−1 1−
dNþ1

f N

� �
þ CN−1dNþ1 ð35Þ

BN ¼ BN−1 1−
dNþ1

f N

� �
þ DN−1dNþ1 ð36Þ

CN ¼ CN− 1−
AN−1

f N
ð37Þ

DN ¼ DN−1−
BN−1

f N
ð38Þ

The matrixMN is created fromM0, withM0=[1 d1; 1 0], and successive multiplication as in
(34). The determinant ofM0 is always 1 as can be seen by simple inspection. By the properties
of determinants, the determinant of a product of matrices equals the products of determinants
[14], which is 1 in this case. Therefore, the determinant ofMN, and of any intermediateMi, will
always be 1.

In the case ofMN, BN=0 for frequency independence means that the product ANDN is 1 for
any value of N. This is stated in (39) for clarity.

AN ¼ 1

DN
ð39Þ

From the condition BN=0 and (38), DN and DN−1 can be expressed in terms of BN−1 as in
(40)–(41):

DN−1 ¼ −
1

dNþ1
−

1

f N

� �
BN−1 ð40Þ

DN ¼ −
BN−1

dNþ1
ð41Þ

The terms CN and CN−1 can be expressed in terms of AN−1 and BN−1 as in (42)–(43),
considering (37) and the fact that the determinant of MN−1 equals 1.

CN−1 ¼ −
1

dNþ1
−

1

f N

� �
AN−1−

1

BN−1
ð42Þ
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CN ¼ −
AN−1

dNþ1
−

1

BN−1
ð43Þ

The results in (39)–(43) can be put together in three design equations (44)–(46):

1

f N
¼ 1

dNþ1
þ DN−1

BN−1
ð44Þ

wout ¼ dNþ1

BN−1j jwin ð45Þ

1

Rout
¼ 1

dNþ1
1þ BN−1

dNþ1
AN−1 þ BN−1

Rin

� �� �
ð46Þ

Equations (44)–(46) indicate that design equations with N elements can be expressed in
terms of the matrix of the system with N−1 elements. In other words, equations (22), (27), and
(28) can be derived frommatrix elements (8)–(11) for one focusing element. This can be useful
to avoid extra work for the design of systems with more elements.

From the condition of frequency independence, three equations are derived, whereas the
number of design variables can be much higher. In conclusion, complex systems with N
mirrors allow more flexibility in the design, which can be used to satisfy mechanical
restrictions or to impose other conditions to improve the system performance (distortion,
cross-polarization, etc.).

Since the complexity of the ABCD matrix increases with the number of elements, the
designer may be tempted to concatenate several one or two element designs to achieve an N
element design. In fact, in section 3.1, it was shown that a focusing element with a frequency
independent beam at distance d1 from the input will generate a frequency independent beam at
distance d2 given by (12) with the characteristics given by (13)–(14). Then, if we apply the
same equations once and again, we will have a frequency independent design in the end.
However, it is easy to see that for a given total design length L, all design targets can only be
satisfied for the solutions of the N element matrix with B=0. For example, in the case of two
elements, a first element design f1 can be done using equations (12)–(14), which will yield a
beam with radius waux and radius of curvature Raux at the frequency independent plane, located
at d2 from the focusing element. Then, for our restriction of a given total optical path length,
the distance from that plane to the target plane is L (L=total distance−d1−d2). For the second
focusing element, the input distance to the lens will be L−d3 and the output distance will be d3.
Therefore, for the second element design, we will have three design equations and only two
variables d3 and f2. Therefore, either wout or Rout will differ from our target if the resulting
design is frequency independent. All conditions can only be met simultaneously with the
dimensions derived from the presented design methodology.

3.4 Quasi-optical System with One Thick Lens

A special case of a focusing element which requires a special treatment is the thick lens. In this
case, the thickness is comparable to the other dimensions of the optical design and must be
considered. There is no literature about frequency independent quasi-optical designs with a
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thick lens to the knowledge of the author. Applying the approach in this paper, it is straight-
forward to get the design equations which apply for this particular focusing element.

In the case of a thick lens, the ABCD matrix depends explicitly on the lens thickness t, the
refraction index n, and the input and output radii of curvature Rin and Rout, through the input
and output focal lengths, f1 and f2, as stated in (47)–(50). In the usual sign convention, Rin<0
and Rout>0 for a usual focusing lens. Therefore, f1 and f2 are both positive. Notice that M
simplifies to the thin lens matrix when t=0.

1

f 1
¼ −

n−1
Rin

ð47Þ

1

f 2
¼ n−1

Rout
ð48Þ

1

f
¼ 1

f 1
þ 1

f 2
ð49Þ

Mthick lens ¼
1−

t

n f 1

t

n

−
1

f
þ t

n f 1 f 2
1−

t

n f 2

0
BB@

1
CCA ð50Þ

The ABCD terms of a quasi-optical system matrix for a thick lens and a distance d1 before
it, and d2 after it, are given in (51)–(54). The terms depending on the lens thickness have been
grouped together to appreciate its effect clearly. The term t/n will be replaced hereon by t′ to
simplify notation.

A ¼ 1−
d2
f
−

t0

f 1
1−

d2
f 2

� �
ð51Þ

B ¼ d1d2
1

d1
þ 1

d2
−
1

f

� �
þ t0

1

d1
−

1

f 1

� �
1

d2
−

1

f 2

� �� �
ð52Þ

C ¼ −
1

f
þ t0

f 1 f 2
ð53Þ

D ¼ 1−
d1
f
−
t0

f 2
1−

d1
f 1

� �
ð54Þ

Next, B=0 is applied for frequency independence. As done for the case of two focusing
elements, f1 and f2 can be separated by the use of a dummy variable k, with 0<k<1. This is
obvious after expressing B=0 as in (55).

1
1

f 1
−

1

d1

þ 1
1

f 2
−

1

d2

¼ kt0 þ 1−kð Þt0 ð55Þ
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After some algebra, some conditions (56)–(58) can be derived from B=0,

1

f 1
¼ 1

d1
þ 1

kt0
ð56Þ

1

f 2
¼ 1

d2
þ 1

1−kð Þt0 ð57Þ

1

f
¼ 1

d1
þ 1

d2
þ 1

k 1−kð Þt0 ð58Þ

This allows to establish the design equations in (59)–(60):

wout ¼ k

1−k
d2
d1
win ð59Þ

1

Rout
¼ 1

k
−1

� �
d1
d2

−
1

d1
−

1

d2
þ 1

d1d2
t0 þ d1

k
þ d2

1−k

� �� �
þ 1

k
−1

� �2 d1
d2

� �2 1

Rin
ð60Þ

In a design, there will be four variables to be determined: d1, d2, f1, and f2. Again, we only
have three equations for the design, which means that we have one degree of freedom. This
can be used in the case that there are some mechanical restrictions on the distances d1 or d2. If
not, if can be used to impose some condition on the lens. For example, f1 and f2 can be forced
to be equal in order to have a symmetrical lens, which simplifies fabrication.

One special case not considered in the derivation above is when f1=d1 and d2=f2. In this
case, B=0 too, and the design is frequency independent. Design equations (12) and (13) are
valid and do not depend on the lens thickness and (14) changes into (61):

1

Rout
¼ 1

d2
1−

t0

d2
þ d1

d2
1þ d1

Rin

� �� �
ð61Þ

Notice that in the case that t′≪d2, frequency independent designs are the same for thin and
thick lens, for f1=d1 and f2=d2.

Another interesting particular case is that of a flat lens surface at input or output. In this
case, f1→∞ or f2→∞, respectively. In this case, f equals the value of f1 or f2 which is finite and
all equations simplify. Actually, there is no need to use variable k, and the equations are simple.
Resulting equations are the same as for a thin lens, (12)–(14), but with a change in d1 or d2. If
f1→∞, d1+t′ must be used instead of d1. If f2→∞, d2+t′ must be used instead of d2.

4 Application

The formulas and designmethodologies with one and two focusing elements will be applied in this
section to two receivers for radio astronomy:ALMAband 4 (125-163GHz) and 10 (787-950GHz)
receivers.

In the case of the ALMA band 4 receiver, described in [15], the optics are composed of a
corrugated horn with fields at the aperture modeled by a beam size of 7.722 mm and a radius
of curvature of 100.717 mm. A single ellipsoidal mirror is used to match this beam to the beam
required for the illumination of the secondary mirror of the ALMA 12-m antenna. The target
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parameters are wout=319 mm and Rout=6000 mm. A relationship between d1 and d2 can be
easily obtained through (13). If this is substituted in (14), a value of d2=6367.439 mm can be
readily obtained. Using (13), d1 equals 154.116 mm. The focal length of the mirror f is
calculated with (12) and is 150.474 mm in this case. These values are the same as those
reported in Table I in [15].

In the case of ALMA band 10 [16], the quasi-optical system is based on two focusing
mirrors and it is located completely within the 4K stage of the ALMA cryostat, which imposes
strong mechanical restrictions in terms of distances and mirror sizes. The target illumination of
the secondary mirror of the ALMA antenna is the same as for band 4. The horn in this case can
be modeled by a beam size of 1.931 mm and a radius of curvature of 15.723 mm. In the case of
ALMA band 10, the maximum possible d3 is too short to achieve a radius of curvature of 6 m
at the secondary mirror. Therefore, (28) could not be used in this design. Instead, all distances
were decided based on mechanical restrictions and only the mirror focal lengths were decided
upon frequency independence. The values of distances are d1=45 mm, d2=80.044 mm, and
d3=6088 mm. With these restrictions, the value of k is 0.819 from (27). The mirror focal
lengths, f1 and f2, are 22.25 and 35.821 mm, respectively, from (23) and (24). These values are
in good agreement with those presented in [16], which were further refined using physical
optics optimization.

5 Conclusions

There are many designs in the literature which are based on frequency independence ideas.
Most designs are based on the theory of Gaussian beam matching presented in [11]. With that
methodology, one-element equations are applied in the successive sections of a beam wave-
guide. The beam parameters at the intermediate frequency independent positions are used to
connect the equations for connecting sections and equations are solved.

This paper presents a new approach which uses ABCD matrices to find the conditions for
frequency independence and is therefore more general, in the sense that it can be applied to any
kind of components and beam transformations.

Design equations have been obtained for the cases with one and two focusing elements and
for the case of a system with a thick lens. Some interesting results have been derived from the
study of the general situation with N focusing elements. Finally, the design equations in this
paper have been used to reproduce the results of the quasi-optical designs for the ALMA band
4 and 10 receivers.

It is interesting to point out that some of the formulas in this paper are the same as in [11],
notably the case with one or two elements, but they have been derived by applying more
general quasi-optical concepts. For example, a quasi-optical system with a thick lens, as
analyzed in this paper, cannot be designed directly using the equations in [11].
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