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Abstract
Computational thinking (CT) is an important 21st-century skill. This paper aims at more 
useful CT assessment. Available evaluation instruments are reviewed; two generally 
accepted CT evaluation tools are selected for a comprehensive CT assessment: the CTt, a 
performance test, and the CTS, a self-assessment instrument. The sample comprises 202 
high school students from German-speaking Switzerland. Concerning the CTt, Rasch-
scalability is demonstrated. Utilizing the approach of the PISA studies, proficiency levels 
are formed that comprise tasks with specific characteristics that students are systematically 
able to master. This could help teachers to offer individual support to their students. In 
terms of the CTS, the original version is refined using confirmatory factor and measure-
ment-invariance analysis. A latent profile analysis yielded four profiles, two of which are 
of particular interest. One profile comprises students with, on the one hand, moderate to 
high creative thinking ability, cooperativity, and critical thinking skills and, on the other 
hand, low algorithmic thinking ability. The second remarkable profile consists of students 
with particularly low cooperativity. Based on these strength and weakness profiles, teach-
ers could offer support tailored to student needs.

Keywords Computational thinking · Performance test · Item response theory · Latent 
profile analysis · Person-centered assessment · Proficiency level model
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CT  Computational thinking
CTS  Computational Thinking Scale
CTt  Computational Thinking Test
DIF  Differential item functioning
EAP/PV  Expected a posteriori / plausible values
ICILS  International Computer and Information Literacy Study
LPA  Latent profile analysis
LRT  Andersen’s likelihood ratio test
MANOVA  Multivariate analysis of variance
MLR  Maximum likelihood with robust standard errors
PISA  Programme for International Student Assessment
R2  Coefficient of determination
RMSEA  Root mean square error of approximation
RQ  Research question
SRMR  Standardized root mean square residual
TLI  Tucker-Lewis Index
WLE  Weighted likelihood estimate
WLSMV  Diagonally weighted least squares
wMNSQ  Weighted mean square
YB-χ2  Yuan-Bentler corrected χ2

α  Cronbach’s alpha
ω  Revell’s omega total

1 Introduction

Tremendous technological changes are shaping our society and ways of working (Harteis 
et al., 2020; Ifenthaler et al., 2021; Kirschner & Stoyanov, 2020). In this context, compu-
tational thinking (CT) is regarded as a key 21st-century skill (Voogt et  al., 2015; Wing, 
2006; Yadav et al., 2016). The significance of CT in the twenty-first century may be evi-
dent (Barr et al., 2011; Buitrago Flórez et al., 2017; Wing, 2008): computing and computer 
technology pervade every field of study and workplace. CT aims at enabling humans to use 
these resources for solving problems.

In her seminal paper, Wing conceptualizes CT as “solving problems, designing systems, 
and understanding human behavior, by drawing on the concepts fundamental to computer 
science” (Wing, 2006, p. 33). As the theoretical basis for CT, the framework of Brennan 
and Resnick (2012) is often utilized. It comprises three dimensions (Brennan & Resnick, 
2012, pp. 3–11). Computational concepts are common in many programming languages, 
but not restricted to them: sequences, loops, events, parallelism, conditionals, operators, 
and data. Computational practices are the processes in which students engage: imaging 
and building, testing and debugging, reusing and remixing, abstracting, and modularizing. 
Computational perspectives are shifts in points of view, relationships to others, and the 
digital world around: expressing, connecting, and questioning.

In CT research, the relationship between CT and programming is often thematized. 
Israel et  al. (2015) regard the use of computers to model ideas and programming as an 
integral part of CT. Buitrago Flórez et al. (2017), as well as Lye and Koh (2014), argue that 
by means of programming, several core facets of CT can be addressed. Shute et al. (2017) 
concluded that there is a close relationship between CT and programming skills due to 
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similar underlying cognitive processes. Hsu et al. (2018), based on their review of the lit-
erature, reported that programming is widely used to teach CT. Grover et al. (2016) main-
tained that programming has a positive influence on the experience on CT. Scherer et al. 
(2019), based on a meta-analysis, concluded that CT can be taught through programming. 
However, using professional programming languages like Java can be extremely difficult 
for students due to complex syntax, and it may be preferable to use visual programming 
languages (Lye & Koh, 2014; Repenning, 2017). Scratch, developed by the Massachusetts 
Institute of Technology Media Lab (https:// scrat ch. mit. edu), is such a visual programming 
language that is heavily used as an instructional tool (Hsu et al., 2018).

The importance of CT assessment is regularly stressed (Grover & Pea, 2013; Ilic et al.,  
2018; Shute et al., 2017; Tang et al., 2020; Weintrop et al., 2021). However, it has to be 
highlighted that assessment is not an end in itself, but it should contribute to promoting 
student learning (Pellegrino et al., 2016). When assessing complex skills such as CT, the 
structure as well as the levels of the construct have to be considered (Seufert et al., 2021). 
For instance, the DigComp 2.1 framework that addresses digital competencies comprises 
five dimensions (structure), e.g., information literacy, as well as eight proficiency levels 
ranging from foundation to highly specialized (Carretero et  al., 2017). In terms of CT, 
research about proficiency levels is in its infancy. The importance of modeling proficiency 
levels for a better understanding of this construct, however, is stressed by the 2018 Inter-
national Computer and Information Literacy Study (ICILS) (Fraillon et al., 2019). Without 
proficiency levels, test results are difficult to comprehend and to communicate. Findings 
such as ‘the student belongs to the top 10% of all test takers’ or ‘the student answered 
67% of the questions correctly’ are not very helpful for the purpose of fostering student 
learning. A proficiency level model could allow for a more vivid interpretation of the test 
results by relying on items with clearly specified characteristics that students are systemati-
cally able to master (AERA et al., 2014). This also makes it possible to set operationalized 
learning goals. For example, the goal could be that all students in a class are systematically 
able to use functions. Students who do not reach the corresponding proficiency level could 
receive specific guidance and support.

Due to the multifaceted nature of CT, it is unlikely that a single instrument is sufficient 
to comprehensively capture CT (Polat et al., 2021; Román-González et al., 2019). Rather, 
a system of various assessments may be necessary. Using multidimensional approaches 
could also reveal different CT profiles. For instance, some students may perform well in the 
realm of computational concepts, but at the same time poorly in the area of computational 
perspectives. By solely focusing on a specific facet of CT, students with specific strength 
and weakness profiles may not be identified. Knowledge about CT profiles, i.e., different 
types of computational thinkers, however, could be utilized for personalized guidance and 
support (Hofmans et  al., 2020). Although such person-centered assessments are wide-
spread in other research fields (e.g., Lohr et al., 2021; Meyer & Morin, 2016; Scherer et al., 
2021; Tondeur et  al., 2019), they are not common in CT research. The benefits of such 
techniques, however, are acknowledged in CT research (Román-González et al., 2019).

https://scratch.mit.edu
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2  Theoretical Perspectives

2.1  CT Assessment Instruments

Several authors have reviewed CT assessment instruments (Kong, 2019; Román-González 
et al., 2019; Shute et al., 2017; Tang et al., 2020). Román-González et al. (2019) developed 
a useful classification of assessment instruments (Israel-Fishelson & Hershkovitz, 2022). 
Following this classification, diagnostic tools that aim at capturing students’ CT profi-
ciency could be the most suitable basis for forming proficiency levels. Diagnostic tools are 
performance tests and do not require specific prior knowledge, e.g., a specific program-
ming language. Hence, they can be used to evaluate learning gains by comparing pre- and 
post-test results, i.e., if students have reached a higher proficiency level after instruction.

A drawback of many diagnostic tools is that they are not freely available (ICILS 2018: 
Fraillon et  al., 2019; Fairy Assessment: Werner et  al., 2012; Basic Programming Abili-
ties: Mühling et  al., 2015). Furthermore, several tools focus on the pre-secondary level 
(Chen et  al., 2017; Kong & Wang, 2021; Relkin et  al., 2021; Seiter & Foreman, 2013); 
therefore, the covered proficiency spectrum is limited. From the freely available diagnostic 
tools, the Computational Thinking Test (CTt) may be especially suitable for the purpose 
of forming proficiency levels. The CTt (Román-González, 2015) is a performance test for 
secondary students using the framework of Brennan and Resnick (2012) as a theoretical 
background. It defines CT as “the ability to formulate and solve problems by relying on the 
fundamental concepts of computing, and using logic-syntax of programming languages: 
basic sequences, loops, iteration, conditionals, functions and variables” (Román-González 
et al., 2017, p. 681). Sample items can be found in Figs. 2 and 3. Due to the use of a visual 
programming language, the CTt covers a broad range of instructional settings. To perform 
the CTt no knowledge in a specific programming language, e.g., Java, is necessary, which 
makes it a very flexible instrument. The CTt comprises 28 selected response items and can 
be taken online; the target group should be able to process the test in less than 45 min. The 
CTt is claimed to be unidimensional although different cognitive operations are involved 
when performing the items. This is based on the notion of Fischer (1973) that the items 
of a unidimensional construct may be linearly decomposed into cognitive operations; this 
may also be the case for CT (Mühling et al., 2015). According to the definition of the CTt, 
cognitive operations could be sequences, loops, conditionals, functions, and variables. 
These correspond with the computational concepts dimension of the Brennan and Resnick 
(2012) framework.

Román-González et al., (2017) validated the CTt using a sample of 1,251 Spanish sec-
ondary students (5th to 10th grade) and classical test theory. The reliability of the test is 
sufficiently high (Cronbach’s alpha = 0.79). Chan et al. (2020) provided evidence for Rasch 
scalability of the CTt based on a sample of 153 upper-secondary students from Singapore. 
The CTt is increasingly used in research projects for assessing CT learning (e.g., Gugge-
mos, 2021; Brackmann et al., 2017; Hooshyar et al., 2021; Rose et al., 2019; Zhao & Shute, 
2019). In light of this, relying on the CTt may be in line with the call for using standardized 
instruments to ensure comparability across studies (Shute et al., 2017).

Despite its suitability for assessing computational concepts and, to some degree, com-
putational practices, the CTt also has disadvantages: it neglects computational perspectives 
(Román-González et al., 2017). For capturing such perspectives, perception-attitude scales 
may be suitable (Román-González et al., 2019). They capture self-efficacy beliefs by means 
of self-assessment. In general, complementing a performance test with a self-assessment 
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instrument may be beneficial to obtain a comprehensive picture of a construct (Rosman 
et  al., 2015). Again, we aim at using standardized instruments and those with a specific 
focus on CT. This excludes computer attitude scales, e.g., Denner et al. (2014), Ericson and 
McKlin (2012), and Yadav et al. (2014). For the same reason, we do not consider generic 
self-efficacy or motivation scales. A viable option to capture computational perspectives 
may be the Computational Thinking Scales (CTS) (Polat et al., 2021). They were devel-
oped by Korkmaz et al. (2017) and is a standardized self-assessment instrument for cap-
turing CT (Durak & Saritepeci, 2018; Israel-Fishelson & Hershkovitz, 2022; Shute et al., 
2017). The authors utilize the International Society for Technology in Education (ISTE, 
2015) framework of CT, namely, the five dimensions of creativity, algorithmic thinking, 
cooperativity, critical thinking, and problem solving. Descriptions of these dimensions can 
be found in Table 1.

The CTS consists of 29 self-assessment questions. It has been validated by means of 
confirmatory factor analysis using a sample of 580 Turkish undergraduate students. Fit-
values are decent (Korkmaz et al., 2017, p. 565): CFI = 0.95, RMSEA = 0.06.

Overall, the CTt and the CTS may be complementary assessment tools that can provide 
a comprehensive picture of students’ CT ability (Polat et  al., 2021). The CTt, as a uni-
dimensional performance test, seems to be suitable to form proficiency levels, especially 
because the cognitive operations are documented. The CTS, as a multidimensional self-
assessment instrument, can be used to identify CT profiles.

2.2  The Present Study

The current study aims at reaching a better understanding of CT as a construct. To this 
end, we contribute to more useful interpretations of CT assessment findings. Concerning 
performance tests, the importance of proficiency levels is stressed (Fraillon et  al., 2019; 
OECD, 2017). However, the 2018 ICILS refrained from developing a proficiency level 
model due to the small number of CT test items in the study (Fraillon et al., 2020); only 
proficiency regions were described. When forming proficiency levels, referring to the cog-
nitive operations involved when performing the items could be advantageous from a con-
struct validity point of view (Embretson & Daniel, 2008). For instance, it would not be 
meaningful to form CT proficiency levels based on the text complexity of the items. In this 
regard, we can take advantage of the fact that for the CTt, the cognitive operations neces-
sary for performing the items are documented. As the cognitive operations correspond with 
the computational practices of the Brennan and Resnick (2012) framework, this could be a 
sound theoretical basis. The paper at hand demonstrates that the cognitive operations can 
predict the difficulty of CT test items and can be utilized to form meaningful proficiency 
levels (Hartig et al., 2012). Our first research question is:

RQ1 What CT proficiency levels can be identified based on the CTt?
As already highlighted, the purpose of an assessment is to facilitate student learning. 

In the case of CT as a multifaceted construct, it is unlikely to observe only one CT pro-
file. Rather, it can be expected to identify different types of computational thinkers. For 
teachers, knowledge about CT profiles could be helpful in reducing complexity. Students 
in the same profile could benefit from similar treatment (Hofmans et al., 2020); teachers 
may design their instructional measures around the identified profiles. Despite their useful-
ness for a better understanding of CT, to our knowledge, such person-centered methods of 
assessment have not yet been used in CT research. The CTS may be suitable for identifying 
latent profiles as it comprises five dimensions. Our second research question is:
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RQ2 What CT profiles can be identified based on the CTS?
The CTt and CTS are regarded as complementary instruments that can offer a compre-

hensive picture of student CT (Polat et al., 2021; Román-González et al., 2019). Against 
this backdrop, we consider a third research question:

RQ3 How are the CTt and CTS results related to each other?
Since, recently, Polat et al. (2021) addressed the same research question, we will com-

pare their findings with those of the present study.

3  Method

3.1  Sample and Adaption of Instruments

Our sample comprises 202 upper-secondary students from German-speaking Switzerland. 
They all attended the 11th (second last) grade at a Kantonsschule (high school), which 
is the most demanding school type in Switzerland. Data were collected at the beginning 
of the school year 2018/19. The CTt, CTS, and context questions were administered 
using Unipark. Teachers supervised the students and ensured an adequate test environ-
ment, e.g., preventing copying from their neighbor. The intended test time was 90  min. 
Ninety-five percent of the students were able to finish the test within this time; teachers 
allowed every student to complete the work. On average, the students were 17.23 years old 
(SD = 0.85 years) and 56% were female. They experienced, on average, 2.89 h (SD = 1.20 h) 
of computer science instruction in the past; students reported tigerjyton (https:// www. tiger 
jython. ch/ engl/) as the most generally used learning environment. Tigerjyton addresses 
important computational concepts such as sequencing, conditionals, functions, and loops. 
Overall, 77% of the students claim to be able to program, e.g., in Java or Python. To evalu-
ate test motivation, we can draw information from two items within the context question-
naire: ‘When performing the tasks, I disengaged’ and ‘My mind was elsewhere when I was 
performing the tasks’ (Prenzel et al., 1998). Cronbach’s alpha equals 0.78. On average, the 
students disagreed concerning a lack in test motivation: M = 3.36 and SD = 1.66, based on 
a seven-point scale of rating. This is consistent with an absence of missing data; the omis-
sion of items can act as a proxy for a lack of test motivation (Ulitzsch et al., 2020). We also 
checked for multivariate outliers using Mahalanobis distances (Leys et al., 2019); no stu-
dent is classified as an outlier at the 1% (and 5%) significance level.

Since the CTt was designed for 5th to 10th grade students, we replaced the five easi-
est items by five equivalent but more difficult ones. Equivalent means comparable in the 
environmental interface (canvas vs. maze), answer style, and required task. To this end, 
we drew on the initial pool of CTt items, namely forty, as well as where experts gauged 
an item difficulty (Román-González, 2015). The replacement of very easy items may be 
advantageous as they do not have an evidentiary value (Köhler & Hartig, 2017). A pre-test 
indicated that almost all the students within the target group (11th grade) would master 
the easiest five items. Figure 4 depicts an item that was integrated within our German CTt 
version in comparison to the original version. The item numbering in this paper always 
refers to our German version; the numbering allocation of the original CTt version can be 

https://www.tigerjython.ch/engl/
https://www.tigerjython.ch/engl/


545Computational Thinking Assessment – Towards More Vivi…

1 3

found in Table 2. To adapt the CTS from English to German we applied a back-translation 
approach (Maneesriwongul & Dixon, 2004).1

3.2  RQ1: Forming Proficiency Levels

3.2.1  Psychometric Test Validation

Before forming proficiency levels, a psychometric test validation is necessary. If the CTt 
was Rasch scalable, this would imply specific objectivity: students (proficiency) and items 
(difficulty) can be located on a common Logit scale. This allows for a criterion-referenced 
test interpretation (Hartig & Frey, 2013). If the proficiency of a person equals the diffi-
culty of an item (same location on the Logit scale), the expected probability of a correct 
response will be 50%. The proficiency of students can be described by referring to items 
that they are expected to master with a specified probability.2 Specific objectivity would be 
violated, for instance, if some items were more difficult for males than for females.

For assessing Rasch scalability, we draw on the framework of Bühner (2011, p. 547). 
First, we carry out Andersen’s likelihood ratio test (LRT) (Andersen, 1973) using the 
R-package ‘eRm 1.0–1’ (Mair & Hatzinger, 2007). A significant LRT would indicate that 
the items work differently in specific subgroups, i.e., different parameter estimations for the 
difficulty of the items are obtained. In order to perform the LRT, the students in the sample 
have to be split up into subgroups. We use the median of the CTt raw score, gender (male 
vs. female), age (above and below average), computer literacy (above and below average), 
and ability to program (yes vs. no) as split criteria (Chan et  al., 2020; Guggemos et  al., 
2019). Computer literacy is captured by the dimension practical computer knowledge of 
the INCOBI-R (Richter et al., 2010), and ability to program via student self-reporting. In 
case of a significant LRT, the next step is to check which items work differently in the sub-
groups. For instance, students who are able to program may have a systematic advantage 
in answering specific items (DIF-effect). Based on DIF-analyses (‘TAM 3.5–19’ package 
in R; Robitzsch et al., 2020), we may exclude items that systematically advantage or dis-
advantage specific subgroups. Test fairness (absence of DIF) is an important characteristic 
of an assessment instrument (AERA et al., 2014). In our case, it is of specific importance 
as it is the prerequisite for locating all students on one logit scale. In line with Penfield and 
Algina (2006, pp. 307–308), a DIF of less than 0.43 Logit may be negligible, between 0.43 
and 0.64 Logit moderate, and above 0.64 Logit large.

The LRT and DIF-analyses rely on pre-specified split criteria. However, there may 
also be latent subpopulations of individuals for which the CTt works differently or who 
show deviant response behavior. Such latent subpopulations can be identified with a 
mixed Rasch analysis (‘mixRasch’ 1.1 package in R; Willse, 2011). An example of 
a latent subgroup could be students who are guessing in order to solve the selected 
response CTt items. If the mixed Rasch analysis reveals a one-class solution, this 
would be evidence for the overall fairness of the CTt. To identify the optimal num-
ber of latent classes, information criteria are used. They consider goodness of fit and 

1 The German version of the CTt and CTS are available from the authors upon request.
2 The Rasch model predicts as the probability for a correct answer: exp(proficiency–difficulty) / 
(1 + exp(proficiency–difficulty)). For instance, a person with a proficiency of 1.5 Logit is expected to solve 
an item with a difficulty of 1.0 Logit with a probability of 62.2%.
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penalize model complexity. We compare models with 1 to 6 latent classes and select 
the one with the lowest Akaike’s information criterion (AIC), as recommended by 
Bühner (2011, p. 547).

Besides person homogeneity, unidimensionality is necessary to justify the allocation of 
students and all items on a common Logit scale. The CTt is designed to be unidimensional. 
Hence, we do not have any assumptions about meaningful factors, other than CT driving 
students’ response behavior. To check for unidimensionality, we relied on confirmatory 
factor analysis (‘lavaan 0.6–7’ package in R; Rosseel, 2012). Since the data are ordinal 
(correct/incorrect), we applied a WLSMV-estimator (Li, 2016). A chi-square test acts as a 
global fit test. Furthermore, we rely on CFI, TLI, RMSEA, and SRMR as fit measures. Cut-
off values for a decent fit may be: CFI and TLI > 0.95, RMSEA < 0.08, and SRMR < 0.11 
(Bühner, 2011, pp. 425–427). Poor fit measures would indicate omitted factors that drive 
the response behavior. For example, if different answer styles were used (see Figs. 3 and 4), 
this could explain (besides CT) the answer behavior.

The linear logistic test model, as an extension of the Rasch model (Fischer, 1973), 
allows us to assess whether the cognitive operations involved in the CTt, e.g., sequenc-
ing, can explain a substantial proportion of item difficulty. This may be the prerequisite 
for forming proficiency levels based on the cognitive operations (AERA et al., 2014). 
A proportion of explained variance  (R2) of 26% might be the minimum that justifies 
the use of the cognitive operations for forming proficiency levels (Hartig et al., 2012). 
We utilize the ‘eRm 1.0–1’ package in R to estimate the linear logistic test model.

After having checked Rasch scalability, we examine if the items meet the cut-off 
values applied in the PISA studies (OECD, 2017, pp.  131–134; OECD, 2015, pp. 
148–151). The deviance from the item discrimination implied by the Rasch model is 
evaluated by means of the weighted mean square error (wMNSQ = Infit). Discrimina-
tion, along these lines, means to separate students in terms of their CT proficiency. For 
example, if all students were able to master a certain item, this item would have no 
discriminatory power. The wMNSQ should lie between 0.8 and 1.2; however, wMNSQ 
values up to 1.33 might be acceptable (Wilson, 2005, p. 129). Items above the upper 
limit have a too low discrimination, whereas items below the lower limit have a too 
high discrimination. The point-biserial correlation is a measure for item discrimination 
in classical test theory and should be above 0.30. The percentage of correct answers 
should fall between 20 and 90%. Not more than 10% of missing data should be present.

3.2.2  Building Proficiency Levels

For a criterion-referenced interpretation of the CTt results, we form proficiency levels 
utilizing the approach in the PISA studies (OECD, 2017, pp. 276–287). To this end, we 
split up the continuum of CT. We choose a width of 1.0 logits for the proficiency levels 
and a response probability of 62%. This means that students at the bottom of a profi-
ciency level are expected to solve items at the bottom of that level with a probability of 
62%, and at the top of the level with a probability of 38%. We opted for a width of 1.0 
logits for the proficiency levels, instead of 0.8 as used in the PISA studies, because the 
manifestation of the cognitive operations indicates a width of one logit, which is per-
mitted (OECD, 2017, p. 281). For every proficiency level, we provide an anchor item. 
These items are located about 0.5 Logit below the start of the respective level on the 
Wright map, corresponding with a response probability of about 62%.
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3.3  RQ2: Identifying CT Profiles

3.3.1  Psychometric Test Validation

Before identifying latent profiles, we have to evaluate the psychometric properties of the 
CTS. Since we measured the items on a seven-point scale of rating, ranging from ‘not true 
at all’ to ‘entirely true’, we utilize confirmatory factor analysis with an MLR-estimator 
(Robitzsch, 2020). To assess the overall model fit, we use CFI, TLI, RMSEA, and SRMR. 
Moreover, we check for convergent and discriminant validity relying on the average vari-
ances extracted and the heterotrait–monotrait ratio. An average variance extracted greater 
than 0.5, and a heterotrait–monotrait ratio smaller than 0.85, indicate sufficient conver-
gent and discriminant validity (Hair et al., 2019). An average variance extracted above 0.5 
implies that more than 50% of the item variance can be explained by the corresponding 
factor and less than 50% is error variance. A heterotrait–monotrait ratio below 0.85 indi-
cates that the used items capture empirically distinguishable constructs. Revell’s omega 
total (ω) acts as a measure for internal consistency reliability because it is superior to Cron-
bach’s alpha (α) (McNeish, 2018). Since α is widely used, however, we report it along with 
ω.

Analogous to the DIF-analyses for the CTt, we have to assess the measurement invari-
ance of the CTS, i.e., a similar meaning of the constructs among subgroups, e.g., among 
males and females. To control for measurement invariance we apply the approach of van de 
Schoot et al. (2012). Since our aim is to build latent classes based on manifest means, we 
have to demonstrate full uniqueness measurement invariance. We use a likelihood ratio test 
to compare the unrestricted model where all parameters are freely estimated with a model 
where loadings, intercepts, and error variances across groups are restricted to be equal. In 
line with the DIF-analyses for the CTt, we form groups based on gender, age, computer 
literacy, and ability to program.

3.3.2  Identifying Latent Profiles

We use the ‘tidyLPA 1.0.8’ R-package in combination with MPlus 8 to identify student 
CT profiles by means of a latent profile analysis (LPA) (Hallquist & Wiley, 2018; Rosen-
berg et al., 2018). We apply an MLR-estimator (Scherer et al., 2021); missing data are not 
present. In light of our rather small sample size, we have to restrict variances to be equal 
across profiles and the covariance among the variables to be zero in order to achieve con-
vergence (Meyer & Morin, 2016). The critical step in the LPA is to identify an appropriate 
number of profiles. This decision might be based on information criteria and likelihood 
ratio tests, as well as on conceptual deliberations (Scherer et al., 2021). Against this back-
drop, we first assessed different class solutions. Following Morin and Marsh (2015) and 
Hofmans et al. (2020), we report the information criteria AIC, CAIC, BIC, and aBIC, as 
well as the bootstrap likelihood ratio test (BLRT). Since these criteria may point to a dif-
ferent number of optimal profiles, we also utilize the approach of Akogul and Erisoglu 
(2017) where information criteria are weighted to determine the optimal number of latent 
profiles (from an empirical point of view). The number of constructs in the LPA could be 
a reasonable maximum for the number of latent classes (Tondeur et al., 2019), i.e., if four 
constructs are considered in the LPA, four profiles could be the maximum. The identified 
solution should have a sufficiently high precision of classification, indicated by an entropy 



548 J. Guggemos et al.

1 3

greater than 0.7. However, the entropy should not be used as a model selection criterion 
(Sarstedt et al., 2011). To demonstrate the robustness of the findings we conduct a replica-
tion of the LPA with 100 bootstrap samples of 150 students from our overall sample of 
202 students (Vanslambrouck et  al., 2019). Besides this, the profiles should be substan-
tially different from each other, which can be checked by means of a MANOVA (Tondeur 
et al., 2019). Afterwards, we evaluate if this approach yields a meaningful solution. The 
profiles should be of reasonable size and show substantial shape differences, i.e., specific 
strength and weakness profiles that not only differ in levels but also in their pattern (Morin 
& Marsh, 2015).

4  Results

4.1  RQ1: CT Proficiency Levels

4.1.1  Psychometric Validity of the CTt (German Version)

Of the 28 items, the students in the sample answered on average 18.45 items correctly 
(SD = 5.71, median = 19, min = 6, max = 28). Concerning Rasch scalability, the LRT 
yielded mixed results. We did not find significant DIF-effects in terms of gender (χ2 = 36, 
df = 27, p = 0.11), age (χ2 = 16, df = 26, p = 0.94), or computer literacy (χ2 = 30, df = 26, 
p = 0.26). However, utilizing the median of the CTt score and ability to program as a split 
criterion yielded significant DIF: χ2 = 77, df = 27, p < 0.01 and χ2 = 48, df = 25, p < 0.01, 
respectively. Four items caused this overall DIF-effect. Item 1 was far too easy for the stu-
dents in our sample (-4.80 Logits) and therefore has no discriminatory power. Item 10 may 
have caused problems due to a different response format. The provided answer ‘Options A 
and C are correct’ might have confused students: many high-achieving students selected 
Option A. Items 1 and 10 can be found in Appendix 1. For items 11 and 20, we could not 
find a reason on the content level. Moreover, the DIF-effects are only light to moderate: 
Logit = 0.58 and 0.51, respectively. Against this background and considering content valid-
ity in terms of alignment with the framework of Brennan and Resnick (2012), we decided 
to exclude items 1 and 10 from the test and retain items 11 and 20. All further analysis was 
carried out without items 1 and 10, i.e., with 26 items.

The mixed Rasch analysis revealed a one-class solution; the AIC is lower in comparison 
to any multiclass solution (e.g., AIC for one class = 4944, AIC for two classes = 4982, and 
AIC for three classes = 5024).

The assumption of unidimensionality (item homogeneity) of the CTt is justified. The CFA 
with the 26 items loading on a single factor showed a decent fit: χ2(199) = 341 (p = 0.049), 
CFI = 0.964, TLI = 0.961, RMSEA = 0.026 (90% CI [0.000, 0.039]), SRMR = 0.063.

The linear logistic test model indicated the following cognitive operations as predic-
tors of CTt item difficulty: sequencing: 1.82 Logit, 95% CI [1.46, 2.18], conditionals: 0.24 
Logit, 95% CI [0.09, 0.39], functions: 0.77 Logit, 95% CI [0.54, 0.99], and variables: 2.02 
Logit, 95% CI [1.77, 2.02]. Overall, these characteristics can explain 62.8% of the difficulty 
variance of the 26 items, which is well above the minimum acceptable value of 26%.

Concerning the cut-off values from the PISA studies, in general, all items show good 
values. The wMNSQ lies between 0.89 and 1.15 with the exception of item 18. This item 
has a wMNSQ of 1.22, which is slightly above the cut-off value of 1.2, but below 1.33. All 
point-biseral correlations are higher than 0.30. The percentage of correct answers for all 
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items lies between 90 and 25%. Every student fully processed the items; missing values are 
not present. Table 2 summarizes the item characteristics.

As the Wright map (see Fig.  1) indicates, the items are slightly too easy for the stu-
dents in our sample. Nevertheless, the EAP/PV-reliability equals 0.85, WLE-reliability 
0.81, which is sufficiently high for research purposes. However, if more difficult items were 
used, we could expect an even higher reliability.

4.1.2  Proficiency Levels

The proficiency levels are illustrated in Fig. 1. All anchor items, in bold, have negligible 
DIF-effects (< 0.41 Logit).

Level I (− 1.75 ≤ Logit <  − 0.75) and below: Level I is characterized by tasks using a 
flow structure without further elements, like conditionals or variables. Item 6 is an anchor 
item for this level (see Fig. 2). Of the students in the sample, 7.4% do not achieve level I; 
hence, they are systematically unable to perform sequencing tasks.

For younger students, it could be necessary to insert a level below level I, which con-
tains simple flow structures. Students in our sample, however, solved tasks like the 

Fig. 1  Wright Map of CTt and proficiency levels 
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Fig. 2  Item 6, containing sequencing

Fig. 3  Item 8, containing sequencing and conditionals

Table 1  CT dimensions (Korkmaz et al., 2017)

CT dimension Description

Creativity Coming up with new products; carrying out tasks in new ways, developing new 
ideas, finding new solutions, taking new viewpoints

Algorithmic thinking Formalizing the solution of a problem, using a step-by-step approach to come to 
a solution

Cooperativity Collaboration with others for a specific purpose
Critical thinking Testing the reliability of information, avoiding cognitive errors, asking questions
Problem solving Overcoming obstacles to achieve a specific goal
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excluded item 1 (see Appendix 1) in almost all cases. Of the students in the sample, 29.7% 
are on level I, i.e., they are able to systematically solve sequencing tasks.

Level II (− 0.75 ≤ Logit < 0.25): Level II comprises tasks that include conditionals and/
or functions. These are core elements of CT and important in many domains. For instance, 
they are necessary for an effective use of spreadsheet software like Microsoft Excel. Item 
8 is an anchor item for this level (see Fig. 3). In comparison to item 6, the increase in dif-
ficulty may be attributed to the use of conditionals. Of the students in the sample, 22.8% 
are on level II.

Level III (0.25 ≤ Logit): On level III, items typically include the use of variables, which 
is also a core concept of CT (and programming). Item 28 is an anchor for level III (see 
Fig. 4). Of the students in the sample, 40.1% are on level III; hence, they are systematically 
able to cope with sequencing, conditionals, functions, and variables.

We cannot set a fourth level because we do not have meaningful item characteristics that 
justify building such a level, i.e., no suitable anchor items are available.

4.2  RQ2: CT Latent Profiles

4.2.1  Psychometric Validity of the CTS (German Version)

In our sample, the fit-values of the initial version of the CTS with 29 questions indi-
cated room for improvement: YB-χ2(340) = 657 (p < 0.001), CFI = 0.881, TLI = 0.868, 
RMSEA = 0.073, SRMR = 0.095. The reasons are mainly due to cross loadings. For 
instance, the first question of algorithmic thinking also loads significantly on critical think-
ing and creativity. Discriminant validity is not ensured. Based on a content review, we 
selected three items for each of the five dimensions. This approach yielded a decent fit: 
YB-χ2 (80) = 85 (p = 0.341), CFI = 0.997, TLI = 0.996, RMSEA = 0.018 (90% CI [0.000, 
0.047]), SRMR = 0.040. Convergent and discriminant validity are fulfilled. The average 
variance extracted is greater than 0.543 for all five constructs. The heterotrait–monotrait 
ratio is smaller than 0.706 for all combination of constructs. The five dimensions are 

Fig. 4  Item 28, containing sequencing, functions, and variables.
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reliably measured (α and ω > 0.77). The characteristics of the refined version of the CTS 
can be found in Table 3; the questions can be seen in Appendix 2.

Full uniqueness measurement invariance is ensured for the four considered subgroups: 
gender: Δχ2 (105) = 121.84, p = 0.125; age:Δχ2 (105) = 116.98, p = 0.200; computer liter-
acy: Δχ2 (105) = 122.92, p = 0.112; and ability to program: Δχ2 (105) = 128.94, p = 0.056. 
Hence, it may be justified to use manifest means for the LPA.

4.2.2  Latent Profiles

The descriptive statistics in Table 3 show that, on average, the students assess their crea-
tive thinking, algorithmic thinking, cooperativity, critical thinking, and problem solving 
above the neutral scale mean (= 4). The highest latent correlation appears between creativ-
ity and critical thinking (ρ = 0.71, p < 0.001). However, there are also small and statistically 
insignificant correlations, e.g., between algorithmic thinking and cooperativity (ρ = 0.15, 
p = 0.079).

When identifying latent profiles, the dimension problem solving was problematic. The 
likely reason is the reverse coding of the corresponding items; see Appendix 2. Including 
this dimension in the LPA yielded spurious profiles, e.g., a profile with students who score 
very low in problem solving and very high in all other dimensions. Since considering this 
construct could bias the findings, we removed it from the further analysis. This may also be 
suitable from a conceptual point of view. Creativity, algorithmic thinking, critical thinking, 
and cooperativity might all be necessary during the course of problem solving; problem 
solving might be a construct of a different nature.

Table 4 depicts the information criteria, the BLRT results, and the entropies. Based on 
the information criteria AIC and aBIC, a five-profile solution would be optimal; CAIC, 
BIC, and BLRT, as well as the analytic hierarchy process of Akogul and Erisoglu (2017), 
point to four profiles. Moreover, the entropy for this solution is sufficiently high (0.763). A 
replication of the LPA with 100 bootstrap samples of 150 students lends support to a four-
class solution. In 2% of the cases, three profiles are optimal; in 30% of the cases, four pro-
files; and in 68% of the cases, five profiles. An inspection of the five-class solutions, how-
ever, revealed problematic profiles, e.g., profiles with only two students. Since four profiles 
may be the maximum from a conceptual point of view and three or less profiles seem to be 
insufficient, four latent profiles could be the appropriate number.

The MANOVA yielded significant different means among the four profiles: F (12, 
516) = 69.90, Wilk’s Λ = 0.078. p < 0.001, η2 = 0.573. In other words, 57.3% of the variance 

Table 4  Information criteria, entropies and BLRT results for one to five latent profiles

-LL -Log-likelihood, No. Par. number of estimated parameters, AIC Akaike’s information criterion, CAIC 
Consistent AIC, BIC Bayesian Information Criterion, aBIC adjusted BIC, BLRT bootstrap likelihood ratio 
test

No. profiles -LL No. Par AIC CAIC BIC aBIC Entropy p(BLRT)

1 1421 8 2859 2893 2885 2859 1.000 –
2 1360 13 2747 2803 2790 2749 0.734 0.000
3 1334 18 2704 2782 2764 2707 0.744 0.000
4 1321 23 2687 2786 2763 2690 0.763 0.000
5 1314 28 2680 2800 2772 2684 0.786 0.286
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can be explained by profile membership. These findings and Fig. 5 point to sufficiently dis-
tinct profiles.

The identified profiles may be meaningful from a conceptual point of view:

• Profile 1 (creative thinkers with a focus on collaboration): This profile comprises 77 
(38.1%) students and is the largest one. Students in this profile perceive their creative 
thinking to be well above the neutral scale mean. Moreover, they also assess their coop-
erativity and critical thinking, on average, as above the neutral scale mean. However, 
their perceived algorithmic thinking skills are rather low.

• Profile 2 (low-level computational thinkers): These 35 (17.3%) students, on average, 
self-assess all dimensions of CT as below the scale mean, i.e., they consider themselves 
as not being capable of performing sufficiently well in the four CT dimensions.

• Profile 3 (computational thinkers with low cooperativity): This profile consists of 25 
(12.4%) students, which is the smallest profile. Overall, the students self-assess their 
creative and critical thinking as very high. Their algorithmic thinking is, on average, 
slightly above the scale mean. However, these students report very low cooperativity.

• Profile 4 (high-level computational thinkers): Sixty-five (32.2%) students belong to this 
profile and report high levels across all four CT dimensions.

4.3  RQ3: Relationship Between CTt and CTS Results

The latent correlations between the CTt and the five dimensions of the CTS are with 
creativity 0.271 (p = 0.002), algorithmic thinking 0.309 (p < 0.001), cooperativity -0.003 
(p = 0.956), critical thinking 0.408 (p < 0.001), and problem solving 0.154 (p = 0.085). 
Considering all CTS dimensions as independent variables, and the CTt as a dependent var-
iable in a latent regression, only algorithmic thinking is statistically significant (b = 0.319 
Logit, p < 0.001). Figure 6 presents the relationship between the three proficiency levels 
(CTt) and the four latent profiles (CTS). The notches in the boxplots represent the 95% 
confidence intervals. As can be seen, students in profiles 1 and 2 score significantly lower 

Fig. 5  Description of the four latent profiles based on CTS (N = 202)
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in the CTt than students in profiles 3 and 4. The median proficiency in profiles 1 and 2 is 
around the threshold of proficiency level II, and in profiles 3 and 4, around the threshold of 
proficiency level III.

5  Discussion, Limitations, and Outlook

5.1  Discussion

The aim of this paper was to contribute to more vivid interpretation of CT assessment find-
ings. To this end, we relied on a performance test (CTt) and a self-assessment instrument 
(CTS). Both are freely available and internationally accepted standardized instruments 
(Shute et al., 2017).

In terms of the CTt (RQ1), the main advantage is its reliance on the well-established 
framework of Brennan and Resnick (2012). Furthermore, the CTt details the cognitive 
operations that underlie the test items. This may be the basis for a theoretically founded 
interpretation of the test results. Utilizing IRT, we were able to demonstrate Rasch scal-
ability, which implies the specific objectivity of the test. This is the basis for a criterion-
referenced test interpretation. The presented proficiency level model for CT is an additional 
step in capturing the construct of CT: it adds a model for describing item difficulty and 
cognitive demand. A proficiency level model could help to communicate the test results. A 
statement like ‘Student A is able to solve tasks that contain sequencing and conditionals’ 
is more informative than ‘Student A solved 16 out of 26 items correctly’. It could also help 
teachers to better tailor their instruction to specific student needs. For instance, a student on 
proficiency level II might not be able to correctly solve items with variables, but is able to 
do so as regards items with conditionals and functions. This insight can be utilized for scaf-
folding processes. Before designing instructional measures, it may be important to evaluate 
students’ prior knowledge (Bransford et al., 2000). The CTt can carry out this purpose as it 
does not require specific prior knowledge, such as a programming language.

Fig. 6  CTt proficiency in Logit and proficiency levels (1, 2, 3) grouped by latent profile membership (CTS). 
Notches indicate 95% confidence intervals
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Concerning the CTS (RQ2), our confirmatory factor analysis indicated, in line with 
Korkmaz et  al. (2017), that five dimensions can be identified. Due to substantial cross-
loadings, we had to exclude items from the original version, which contained 29 items. 
However, the author of this initial version also reduced the initial scale to 20 items in a 
later study (Korkmaz & Bai, 2019). By means of an LPA, we identified four profiles.

Concerning specific strengths and weaknesses, profiles 1 and 3 are of special interest. 
Students in profile 1 report a weakness in algorithmic thinking. Algorithmic thinking can 
be regarded as the link between CT and computer science (Doleck et al., 2017) and may 
be a technical skill. To foster students’ algorithmic thinking skills, it may be preferable to 
rely on visual programming languages because professional programming languages can 
be regarded as difficult or boring (Lye & Koh, 2014; Repenning, 2017). Scratch could be 
a suitable option for this purpose. Grover et al. (2015) demonstrated the effectiveness of 
Scratch in fostering algorithmic thinking. Moreover, scalable game design (Repenning, 
2018) could be a viable option to improve students’ algorithmic thinking. The advantage 
is that students start with a project instead of first being confronted with code and syntax. 
Students can bring in their creative and critical thinking skills and afterwards learn tech-
nical aspects, which keeps them in the zone of proximal flow (Repenning et  al., 2015). 
Besides this, teachers could form groups where students in profile 1 collaboratively learn 
with students from other profiles, especially students in profile 4 who have high levels of 
perceived algorithmic thinking skills. Students in profile 1 can bring in their creativity and 
critical thinking and benefit from the other students’ high algorithmic thinking skills.

Profile 3 is remarkable because these students report low cooperativity and, at the same 
time, high creative and critical thinking. Colloquially, these students might be referred to 
as nerds. For these students it could be important to increase their cooperativity, which 
is regarded as a core  21st-century skill (van Laar et al., 2017). Again, Scratch could be a 
promising approach because it relies on a social learning paradigm and allows members of 
the community to learn from each other through the opportunity to share and extend pro-
jects (Jiang et al., 2021; Repenning et al., 2015; Resnick & Rusk, 2020; Shute et al., 2017). 
Students in profile 3 could become aware of the benefits of collaboration when working 
on Scratch projects. Teachers may put a special focus on students in this profile in order to 
integrate them into the group and facilitate teamwork.

Overall, 67.8% of the students in our sample might require specific support. Students in 
CT profile 1 may need help with increasing their algorithmic thinking skills. Students in 
profile 2 score low in all four CTS dimensions. Students in profile 3 seem to have a deficit 
in cooperativity. Only students in profile 4 report high values among all four CTS dimen-
sions. Teachers could make use of these students to support fellow students with deficits in 
one or more CT dimension. In general, collaboration seems to be conducive for fostering 
CT (Denner et al., 2014).

Concerning the relationship between the CTt and CTS results (RQ3), the correlations 
found in our study are well in line with the correlations reported by Polat et  al. (2021), 
indicating that the findings might be robust across various populations. Moreover, we show 
that when considering all CTS dimensions as independent variables and the CTt as the 
dependent variable in a latent regression, only algorithmic thinking is a statistically sig-
nificant predictor. Hence, the CTt may primarily be related with algorithmic thinking of 
the ISTE framework. This can also be seen from Figs. 5 and 6. Students in profiles 3 and 4, 
with the highest reported algorithmic thinking, achieve significantly higher CTt scores than 
students in profiles 1 and 2, and reach higher proficiency levels.

Since the CTt and CTS rely on different methods, i.e., performance test and self-
assessment, it is likely that constructs of a different nature are captured. Self-assessments 
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might capture self-efficacy beliefs (Scherer et al., 2017), which play an important role 
in predicting (intended) behavior (Fishbein & Ajzen, 2010). For instance, students’ per-
ceived cooperativity may be a good predictor for their actual collaboration in CT pro-
jects. Moreover, self-assessments are very cost-efficient (Scherer et al., 2017). The CTS 
requires less than five minutes of test time. Concerning the identification of latent pro-
files, self-assessment instruments seem to be an established method (e.g., Scherer et al., 
2021). Overall, self-assessments may not be inferior to performance tests.

If the purpose is to investigate the nomological net of CT, however, performance 
tests may be more suitable than self-assessments. Polat et  al. (2021) investigated the 
relationship of CT with the external variables of mathematics and information technolo-
gies course achievement. The correlations are substantially higher when the CTt instead 
of the CTS is used. Moreover, forming proficiency levels based on self-assessments may 
not be a viable option.

Overall, the CTt and CTS may well complement each other. If we had only used the 
CTt, the remarkable CT profiles 1 and 3 would not have been detected; students in these 
profiles may need specific attention.

5.2  Limitations

Our study is not without limitations. A general limitation is that our sample is narrow 
in scope as it comprises only students from German-speaking Switzerland and from one 
type of school (high school). Concerning RQ1 and the use of the CTt, one disadvantage 
is its reliance on dichotomous constructed response items. It may not be able to capture 
higher-level computational concepts. The formed proficiency levels can be interpreted 
in a meaningful way because they are linked to previously specified characteristics, 
e.g., sequencing. However, for high-achieving students, items that cover more advanced 
computational concepts would be necessary. We will come back to this point in the out-
look section below.

Concerning RQ2 and the use of the CTS, we had to exclude items from the original 
version due to a lack of discriminant validity. On the one hand, this exclusion contributes 
to the psychometric validity of the instrument and content validity may still be achieved; 
on the other hand, however, results based on the full version of the CTS could be difficult 
to compare with our refined version. Besides this, we did not consider the CTS dimen-
sion problem solving in the LPA. The reason for this was that all the items that opera-
tionalize problem solving are reversely coded; consideration of the dimension in the LPA 
yielded spurious profiles. Moreover, due to our rather small sample size, we had to use 
a parsimonious LPA model where equal variances across the profiles and covariances of 
zero are assumed. These assumptions are restrictive (Scherer et al., 2021). Moreover, we 
used manifest means as the basis for the LPA. This may be unavoidable due to our sample 
size but it neglects measurement error (Meyer & Morin, 2016). As a robustness check, we 
also used regression factor scores instead of manifest means; it yielded similar results (see 
Appendix 3). Against the backdrop of our cross-sectional sample of high school students, 
it is doubtful whether the identified four profiles can be replicated in samples with younger 
students and be consistent across time (Meyer & Morin, 2016). Moreover, the identifica-
tion of the profiles was exploratory, which may be inherent to the LPA but not ideal from a 
theoretical point of view (Hofmans et al., 2020). Based on our simulation approach, how-
ever, we may conclude that four profiles could be a reasonable minimum.
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5.3  Outlook

The usefulness of the CTt for assessing students with a CT proficiency equal or higher 
to those in our sample could be increased. To this end, it would be necessary to set fur-
ther meaningful proficiency levels. In order to anchor these proficiency levels, items of 
greater difficulty should be constructed on a criterion basis. Such a criterion could be the 
CT concept diffusion (Repenning, 2017, pp. 18–19). Diffusion goes beyond conditionals, 
functions, and variables. It is a kind of artificial intelligence and can, for instance, be used 
to move objects dynamically. As can be seen from the tasks depicted in Figs.  2 and 3, 
instructions are required to lead Pacman to the ghost. However, if Pacman should autono-
mously find the ghost, utilizing diffusion is a viable option (see Repenning, 2006). It can 
be claimed that the ghost has a ‘scent’ that spreads in the maze. This process is modeled 
by means of diffusion equations. Pacman can then use a hill-climbing approach to find the 
ghost. It checks the scent concentration in all four neighboring fields and moves to the field 
with the highest concentration. This is an efficient approach because it takes obstacles like 
walls into account. To test students’ understanding of this concept, they could be asked 
how long it will take, depending on the speed of diffusion, to detect the ghost. They may 
also predict the path Pacman will choose to reach the ghost or implement the hill-climbing 
approach using visual code blocks. We think including diffusion into the CTt is promising 
because it is an important concept in many domains (Repenning, 2006). Examples are the 
diffusion of heat (physics) or osmosis (biology).

In future research, it could be promising to use performance tests to capture the five 
dimensions covered by the CTS and form proficiency levels. Suitable tests are available 
and could be adapted for CT: for creativity (Israel-Fishelson & Hershkovitz, 2022, Appen-
dix C), for algorithmic thinking (Román-González et  al., 2017), for cooperativity (Salas 
et al., 2017), for (complex) problem solving (Greiff et al., 2013), for collaborative problem 
solving (Stadler et al., 2020), and for critical thinking (Ennis, 1993). If a self-assessment 
instrument should be used, the computing attitudes survey (Dorn & Tew, 2015) could be a 
viable alternative to the CTS.

6  Conclusion

This paper contributes to a better understanding of computational thinking as a construct. 
Based on a proficiency level model, distinct levels of computational thinking performance 
can be described, i.e., characteristics of computational thinking tasks that students on a 
specific level are systematically able to master but which cannot be mastered by students 
on a lower level. We formed proficiency levels based on the Computational Thinking Test, 
which covers the cognitive operations (computational concepts) of sequencing, condition-
als, functions, and variables. Moreover, we identified latent profiles based on the Computa-
tional Thinking Scale. Our findings indicated that 67.8% of the students may need specific 
guidance and support. Students in the first profile (38.1%) reported deficits in algorithmic 
thinking while students in the second profile (17.3%) self-assessed themselves as low in all 
four dimensions: creative thinking, algorithmic thinking, cooperativity, and critical think-
ing. The third profile (12.4%) comprises students who were reluctant to cooperate. Knowl-
edge about the identified proficiency levels and the four distinctive computational thinking 
profiles could help teachers offer person-centered guidance and support to their students.
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Appendix 1: Excluded items due to psychometric validations

Item 1. Excluded because too easy for the test takers:

Item 10. Excluded because test takers were confused by option D:

Appendix 2: Refined version of CTS

Creativity cr_3 “I believe that I can solve most of the problems I face if I have a sufficient 
amount of time and if I show effort.”

cr_4 “I believe that I can solve possible problems that may occur when I encounter 
a new situation.”
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cr_5 “I trust that I can apply a plan, at the same time as making it, in order to solve 
a problem.”

Algorithmic thinking al_3 “I think that I am better able to learn instructions with the help of mathemati-
cal symbols and concepts.”

al_4 “I can mathematically express the solutions for the problems I face in daily 
life.”

al_5 “I can digitize a mathematical problem expressed verbally.”
Cooperativity co_1 “I like experiencing cooperative learning together in my group of friends.”

co_2 “In cooperative learning, I think that I attain/will attain more successful 
results because I am working in a group.”

co_3 “I like solving problems related to a group project together with my friends in 
cooperative learning.”

Critical thinking cr_1 “I am willing to learn challenging things.”
cr_2 “I am proud of being able to think with great precision.”
cr_3 “I make use of a systematic method while comparing the options at hand and 

while reaching a decision.”
Problem solving pr_1 “I have problems in demonstrating the solution to a problem in my mind.” (R)

pr_2 “I have difficulties regarding the issue of where and how I should use vari-
ables such as X and Y in the solution of a problem.” (R)

pr_4 “I cannot apply the solutions I plan respectively and gradually.” (R)

Selection of 15 out of 29 items (Korkmaz et al., 2017, p. 565). Measured on a 7-point rating scale ranging 
from ‘not true at all’ to ‘entirely true’. R = reverse coding

Appendix 3
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