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Abstract

The increasing prevalence of learner-centred forms of learning as well as an increase in
the number of learners actively participating on a wide range of digital platforms and
devices give rise to an ever-increasing stream of learning data. Learning analytics (LA)
can enable learners, teachers, and their institutions to better understand and predict learn-
ing and performance. However, the pedagogical perspective and matters of learning design
have been underrepresented in research thus far. In our paper, we propose a general design
framework that includes critical dimensions of LA and assists in creating LA services that
support educational practice. On the basis of a two-dimensional framework (individual vs.
social, reflection vs. prediction), we then identify four generic approaches to LA aimed at
improving learning process and learning outcomes. To demonstrate the application, four
use cases are outlined that are based on four previously elaborated generic approaches to
LA. Finally, we discuss the validation of the model and close with an outlook on relevant
future research.

Keywords Learning analytics - Social learning analytics - Digital learning support -
Learning analytics taxonomy

1 Introduction

Currently, big data and analytics are burgeoning fields of research and development
(Abdous et al. 2012; Ali et al. 2012; Dyckhoff et al. 2012). In education, several concurrent
developments are taking place that have implications for big data and analytics in the field
of learning. A wide range of promises and anxieties about the coming era of big data and
learning analytics (LA) are in debate (Cope and Kalantzis 2016; Ifenthaler 2015; Ifenthaler
et al. 2014). Overall, there is widespread consensus that the educational landscape itself is
in transition and the changes are substantial, with expository instructional methods being
replaced by more learner-centred approaches to learning. As more and more learning is
either taking place online or is supported through technology, these active learners produce
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an ever increasing stream of data—both inside learning management systems (LMS) and
outside, in other IT-based environments (Pardo and Kloos 2011).

Learning analytics refers to the use of “dynamic information about learners and learning
environments to assess, elicit, and analyze them for modeling, prediction, and optimization
of learning processes” (Mah 2016, p. 288). As Roberts et al. (2017, p. 317) states, the ped-
agogical potential to provide students “with some level of control over learning analytics
as a means to increasing self-regulated learning and academic achievement”. Visualisation
of information, social network analysis, and educational data mining techniques are at the
methodological core of this newly emerging field (Greller and Drachsler 2012). Techniques
for analyzing big data are such as machine learning and natural language processing based
on the particular characteristics of these data for learner and teacher feedback, the possibil-
ity of real-time governance, and educational research (Cope and Kalantzis 2016, p. 2).

While this field is multi- or even interdisciplinary, the pedagogical perspective appears
to be somewhat underrepresented (Greller and Drachsler 2012). Current research on big
data in education revolves largely around (1) the potential of learning analytics to increase
the efficiency and effectiveness of educational processes and (2) the ability to identify and
support students at risk and to thereby reduce drop out-rates. Accordingly, the main prob-
lem is that the core focus of research is on prediction, while the potential for supporting
reflection on processes of learning is being neglected. Therefore, the main purpose of this
paper is to map out how LA can be carried out from a pedagogical perspective and to con-
ceptualize a generic framework for the design of LA environments.

2 Research Questions and Methodology

In line with Kelly et al. (2015), the claim that we put forth in this paper is that “theory-led
design has the potential to yield innovation in the development of LA tools and, in turn,
that the development of LA tools and their use may contribute to learning theory” (p. 15).
Our paper presents a framework for the theory-led design of LA environments with par-
ticular focus on digital learner support and students’ cognition.

The key research question we pursue in this paper is the following:

How can big data and learning analytics be employed in order to improve learner guid-
ance, students’ learning processes and learning outcomes with regard to meta-cognitive
abilities for self-regulated learning?

We pursue these issues by asking a range of more detailed questions:

e What are critical dimensions/aspects when designing LA services that are integrated
in a pedagogic process? And what would a generic framework for designing such LA
services need to look like?

e What generic strategies for developing LA services currently exist? And what form
would the concept and set-up of a decision-support framework for devising LA strate-
gies need to take?

e  Which skills are required by learners in their roles as data subjects and/or data clients in
order to make competent use of LA services?

The research project we report on here was based on a methodological combination of
systematic literature analysis and model development.
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The goal of the proposed framework is to provide relevant stakeholders—in particu-
lar designers and teachers of learning environments—with decision guidelines from a
pedagogical perspective. In order to obtain an overview of existing LA research, an initial
systematic literature analysis was conducted. The focus of this analysis was on work that
addresses basic conceptualisations of LA, reference models for LA, and methods applied
in order to pursue LA. Building on the findings of this literature review, and by combining
and expanding or extrapolating existing models, the generic framework for designing LA
was created.

Our starting point was the framework provided by Greller and Drachsler (2012). This
pedagogical model contains six dimensions: competences, constraints, method, objectives
(distinguishing between reflection and prediction), data, and stakeholders. On this basis,
we have proposed a design framework for a more holistic approach to learning analytics
rooted in a pedagogical perspective and focusing on students’ cognition resulting in four
generic LA approaches we discussed and elaborated with stakeholders at our university.

For that reason, we conducted a needs analysis (e.g. in terms of relevant competences,
data issues, etc.) at our university with 12 lecturers (diverse group, large-scale and small
group lectures, different subjects, at least five years teaching experience, four lecturers with
a programme manager role; all of them have experience with LA at least in one of the
developed generic approaches).

We discussed the developed use cases and received feedback on the needs of important
implementation factors. These interviews were helpful in order to (1) provide an under-
standing of the current state of the learning analytics field and (2) assist in identifying
teachers for setting up an internal task force.

In the process, we applied cognitive mapping techniques with the programme manag-
ers and lecturers participating in the task force (Ackermann et al. 2004). We used cog-
nitive mapping as a communication tool between the analysts and the users for adapting
the initial framework. Furthermore, we used cognitive mapping to decompose the model
into finer detail by using elements of additional frameworks. We structured the use cases
according to Greller and Drachsler (2012), and emphasized the learning objectives as well
as skills required by learners as a core element for the competent use of LA applications.

3 Results
3.1 Literature Analysis

This study reviews literature selected with the primary focus on big data and learning
analytics and their implications on higher education, educational technology, and instruc-
tional design. Google Scholar was used to search and locate academic papers from jour-
nals, conference proceedings, and professional magazines with the keywords “big data”
and/or “learning analytics” and “framework” or “concept” or “model” or “applications”
or “approaches”. The search period was set from 2010 to 2017 and the papers reviewed
include both qualitative and quantitative studies from researchers in the field of learning
analytics worldwide. For the purpose of this study, the data collection process resulted in
the identification of 45 articles. Ten of the articles provided frameworks that were too nar-
row, e.g., general principles or policy frameworks for the ethical use of data. Therefore,
35 articles were further analyzed and compared. The frequency with which these arti-
cles are cited by researchers bears witness to their relevancy and to the fact that they are
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a representative sample of the literature in the field. In addition to this search for original
contributions, we conducted a literature analysis to identify current literature reviews on
Learning Analytics. Of primay importance are the reviews by Papamitsiou and Econo-
mides (2014) who identified 40 articles; Sin and Loganathan (2015) who identified 45 arti-
cles; and Leitner et al. (2017), who identified 101 papers on learning analytics.

Starting from this body of research, the selection criteria for the overview presented in
Table 1 were the following:

1. Holistic frameworks that describe or develop LA systems (e.g., static models vs.
dynamic process models);

2. Generic approaches to a partial theory of LA with a focus on LA objectives and students’
competences as this is our research focus.

The analysis of the contributions in the body of research identified resulted in four
categories: (1) research on prediction of performance; (2) research on formative indi-
vidual feedback and assessment services; (3) research on social learning analytics; and,
(4), research on competent use of LA applications.

In Table 1, below, the LA frameworks are clustered first in terms of their LA type and
then according to the identified categories as shown in Table 1.

3.2 A Design Framework for Learning Analytics

As the literature analysis reveals, there are “softer” challenges that influence the acceptance
of LA. These relate to issues of data ownership, ethical use and potential abuse of LA, and
competences required to engage in meaningful LA activities. The pedagogic frameworks
(e.g., Bakharia et al. 2016; Greller and Drachsler 2012; Gibson et al. 2014) for engaging in
LA differ from other, more process-oriented frameworks (e.g., Clow 2012; Ferguson et al.
2014; Verbert et al. 2012). Building on holistic pedagogic frameworks, we aim at a descrip-
tive framework that can later on be extended to a domain model or ontology. Depending on
the (institutional) context, basic pedagogic principles and specific objectives, the workflow
and process when engaging in LA may vary (Greller and Drachsler 2012).

The framework we propose (see Fig. 1 below) is similar to Greller and Drachsler (2012)
and essentially represents a feedback loop. This conceptualization of the overall process
as a feedback loop has been inspired by quality development frameworks (e.g., West et al.
2015) and dialogue with the multiple stakeholders involved is a key element. A particular
pedagogic theory (or theory in use) and a specific learning design represent the starting
point. From this consideration, both the particulars relating to the facilitation of learning
as well as the specifics of LA are derived. The learning outcomes represent the feedback
required in order to adjust and improve on the process and a particular pedagogic theory
(in use) or learning design.

The design framework for LA comprises four dimensions:

e LA objectives
These may relate to supporting reflection and/or prediction with regard to learning.
Likewise, the LA objectives may relate to supporting individual students in their learn-
ing or to supporting interaction among students and/or facilitators. The framework of
Greller and Drachsler (2012) distinguishes mainly between “reflection” and “predic-
tion* as LA objectives. However, “individual learning” and/ or “social learning” need
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Fig.1 Design framework for LA

to be differentiated as well. From a pedagogical perspective it is a design criterion for
LA applications whether you focus on individual learning (e.g., individualized feed-
back, assessments, tracking learning progress, etc.) or on social learning in a collective
context (e.g., social comparison activities, rewards from others as motivational factor
for student engagement, etc.).

e LA stakeholders
Stakeholders in LA activities are those that either are subjects of data analysis services
or clients of data analysis services. Students and teachers, for example, may be sub-
jects of data analyses in that data resulting from their learning activities are aggregated
and analysed. Students, teachers, and institutional representatives, for example, may be
clients of data analyses in that such analyses aim at supporting their activities and deci-
sions.

e [ A application
Learning analytics applications comprise, among other things, technologies, platforms,
data sets, and algorithms employed in carrying out analytics activities. The configura-
tion of these elements may vary depending on the specific given context.

e LA constraints
These constraints comprise rules and regulations concerning privacy and ownership of
data, ethical considerations, as well as cultural norms and values. Again, these con-
straints may depend on the context at hand, for example, whether the educational insti-
tution pursuing LA is a primary school, an institution of higher education, or a com-
mercial provider of learning and development services.

Taking this overall design framework for LA as a starting point, we propose in the follow-
ing section a systematisation of one dimension of this framework: the learning objectives.

The matrix derived later on serves as a basis for the use cases derived which focus on
learning process and students’ cognition.

3.3 A Framework for Learning Analytics Objectives

With regard to employing LA as a means to support and improve on (digital) learning, we pro-
pose a set of generic approaches based on a 2 X 2 matrix (see Table 1). This matrix includes
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Main Context and Target Group

Social

Individual

Objective for Learning Analytics

Reflection

Prediction

e.g. Social network analysis
of students discussing in a
forum (moderator tool)

lllustration:

Identify network connections
between students and
identify isolated students in
order to facilitate their
participation in the
discussion.

(see use case 1 below)

e.g. Gameful design and
data-driven rule sets for
gaining reputation in a class

lllustration:

Identify visible status for
social comparison and
engage in an online
community with data-driven
incentive system.

(see use case 2 below)

e.g. Digital formative
assessment systems

lllustration:

Evaluate learning progress
for self-reflection, visualize
learning statistics, provide
rapid feedback, and assist
learners in developing meta-
cognitive strategies.

(see use case 3 below)

e.g. Anticipatory & adaptive
learning systems

lllustration:

Analyze learner profiles for
automated decisions on
facilitation activities,
personalized learning
pathways, and adaptive
provisioning of learning
resources.

(see use case 4 below)

Fig.2 Generic approaches to learning analytics with focus on Students’ Cognition

the main pedagogical objectives to improve students’ cognition and learning processes in
either an individual or social learning context.

3.3.1 Student Cognition: Reflection and/ or Prediction

One dimension is set up via the distinction between reflecting on past learning activities ver-
sus predicting next/future learner activities. Reflection in this context refers to critical self-
evaluation on the basis of (1) own data sets created in the process of either learning (students)
or supporting learning (teachers/facilitators) and (2) data sets created by others (e.g., a teacher
reflecting on his or her own teaching style based on data sets generated by the students) (Grel-
ler and Drachsler 2012, p. 41). Prediction refers to anticipating learner activities (e.g., further
reducing investment in classwork or discontinuing with classwork altogether) and interven-
tions that aim at preventing this (Siemens et al. 2011).

3.3.2 The Context of Learning Activities: Individual LA Systems and/ or Social LA
Systems

The other dimension is set up via a distinction between individual learning activities versus
social learning activities. Much work in LA is oriented towards supporting and determin-
ing individual achievement, for example by analysing the data generated through summative
assessments. The focus on individual learners is related to the goal of personalization and
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Table 2 Exemplary detailing of use case 1

Dimension Exemplification

Pedagogic theory and learning design  Based on a socio-constructivist understanding of learning,
(1) it is hypothesised that active participants in a discussion show
better learning outcomes;
(2) social network analyses of students discussing in a forum are
conducted in order to discover effective ways of supporting
participatory online learning

Objective Reflection: Analyse student interactions in a forum discussion,
identify network connections among students, and identify
isolated students as a prerequisite for remedial action (aimed at
helping these students create links to others)

Stakeholders Data subjects: a group of learners
Data clients: Teachers, tutors, discussion moderators
LA model Partial Theory “Social Learning Analytics (social analytics only
make sense in a collective way)” (see 3) in literature review)
LA application: data Protected data set: student interactions and posts in the discussion
forum of the LMS;

Relevant indicators: posts published, post replied to;
Time frame: period of time set for a specific discussion task

LA application: instruments Technology: social network analysis (SNA), statistics provided by
SNAPP tool,
Presentation: network diagram visualisation, statistics tables

Competences required/to be developed Interpretation: Do the data clients have the necessary competences
to interpret and act upon the information available?
Critical thinking: Are data clients able to critically evaluate the
data basis (e.g., missing data) when interpreting and/or devising
a path of corrective action?

Constraints Privacy: Is the analysis in accordance with privacy arrangements
and are the students properly informed?
Ethics: What are the dangers of abuse/misguided use of the data?
Norms: Are there legal data protection or IPR issues related to this
kind of use of student data?
Time scale. Is the analysis post-hoc or just-in-time? Will students
still be able to benefit from the analytics outcome?

individualization. In order to provide pedagogically valuable feedback, assessment systems
have to become intelligent and connected with higher-order learning skills. Adaptive learning
systems (focused on individual learning and prediction) represent a distinct, quite new field of
research based on interactive machine learning.

Buckingham Shum and Ferguson (2012, p. 4) have argued that “new skills and ideas are
not solely individual achievements, but are developed, carried forward, and passed on through
interaction and collaboration”. In consequence, LA in social systems (e.g., in the context of
a classroom at a school) “must account for connected and distributed interaction activity”.
Buckingham Shum and Ferguson therefore propose social learning analytics as a domain in
its own right (2012). Similar, gamification or gameful design for learning is considered as an
on own domain using LA in social systems, for example to provide visible status and learning
progress, social comparison and reputation (e.g., based on badges). Rule-sets and game design
elements implemented in a learning environment can provide systematic support for learn-
ing and may contribute to student engagement. They may function as “nudges” that influence
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Table 3 Exemplary detailing of use case 2

Dimension Exemplification

Pedagogic theory and learning design  Based on a view of active learning as a constructive process, self-
assessments are seen as a way to enhance reflection processes
and learner engagement. Feedback is most effective when highly
related to clearly formulated learning goals

Objective Reflection: Evaluate objective and subjective assessments; identify
knowledge gaps in order to support better developed learning
strategies (e.g., preparation for an exam);

provide opportunities for active learning during/after lectures in
order to evaluate their impact on student experience

Stakeholders Data subjects: students;
Data clients: learners/students (for self-reflection), and teachers
(for scaffolding process)
LA model Partial Theory “Formative individual feedback and Assessment
Services” (see 2) in literature review)

LA application: data Protected data set based on students’ assessment results
Relevant indicators: e.g., objective and subjective assessments;
algorithm: % difference of discrepancy over a given period of
time;
Time scale: period of time defined for assessment activities and
comparison of objective/subjective assessments
LA application: instruments Technology: assessment tool and statistics (quantitative analysis);
Presentation: visual feedback, written communication (feedback)
with individual preferences

Competences required/to be developed Students: self-assessment competences; metacognitive learning
strategies
Teachers: scaffolding competences (help students to interpret the
data)

Constraints Privacy: Is anonymity (not disclosing student names) required for

effective self-assessment?

Ethics: Is the potential for misinterpreting data hindering the scaf-
folding process by teachers?

Norms: Is social comparison inducing motivation or demotivation
in students in the first semester?

Time scale: Should the analyses be carried out in class or outside
of class (trade-off with time required for teaching time)?

student behavior in a predictable manner without having to resort to prohibitions, command-
ments, or extrinsically motivating incentives (Fig. 2).

The matrix developed here elaborates one dimension of the proposed framework and
emphasizes the need to tackle LA objectives from a pedagogical perspective in order to sup-
port students’ learning skills. The matrix provides a starting point for generating use cases in
an LA systematic.

4 Use Cases
The following section illustrates how the framework comprising generic approaches

can be translated into specific use cases. Starting from the use cases provided by Grel-
ler and Drachsler (2012), we elaborate the pedagogical perspective by exemplifying the
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Table 4 Exemplary detailing of use case 3

Dimension Exemplification

Pedagogic theory and learning design  Based on ideas of behaviourism (“behavioural economics, “big
nudging”), learning design includes: the use of game elements
in learning environments and for particular types of learners in
order to achieve i) motivation for student engagement and ii)
better learning outcomes (ideally on higher levels of cognitive
processes)

LA objective Prediction: The LA application based on a data-driven rule system
and a gameful design provides an incentive system for different
types of learners in order to increase student engagement in a
social context (e.g., community or class)

Stakeholders Data subjects: community, an entire class/cohort and individual
learners;
Data clients: learners/students, learning designers implementing
rule systems (closely interacting with students)

LA model Partial Theory “Prediction of Performance to support timely inter-
vention and to prevent students from failing a course)” (see 1) in
literature review)

LA application: data Protected data set: student activities (e.g., contributions in forums,
peer rating, quizzes and points awarded, team competitions)

LA application: instruments Game design elements (e.g., visual status, badges, awards, avatars
as personal identities) and a system of rules (implemented on a
separate platform or in an LMS)

Competences required/to be developed Students: readiness for (more) autonomy in learning and for self-
regulation based on system feedback; ability to navigate gamified
environments; ability to interpret dashboard information.

Learning designers must consider ability and motivation of learn-
ers when creating a gamified learning design

Constraints Privacy: What are the data security issues when used as part of the
grading?

Ethics: What are dangers of abuse/misguided use of a data-driven
rule system?

Norms: Course gamification could be merely misused by masking
the terms; for example, by calling assignments “quests” and
scores “experience points” without contributing to the students’
learning goals

Time scale: What is the overall dramaturgy of the design and how
much time is required for different phases (e.g., onboarding, scaf-
folding, mastery)?

pedagogical theory. Additionally, we spell out relevant aspects to consider in the design of
learning activities.

4.1 Use Case 1: Social Learning Analytics for Reflection

The first use case relates to conducting a social network analysis of students discussing in
a forum, for example using the SNAPP tool developed by Dawson (2008). This implies a
shift in attention away from the summative assessment of individuals towards learning ana-
lytics of social activity (Buckingham Shum and Ferguson 2012, p. 5). In this context, it is
relevant to distinguish between social analytics sui generi (e.g., social networks analysis or
discourse analytics) and socialised analytics that are based on personal analytics while also

@ Springer



614 S. Seufert et al.

Table 5 Exemplary detailing of use case 4

Dimension Exemplification

Pedagogic theory and learning design  Based on ideas of behaviourism and cognitivism, learners are
presented—in a highly adaptive manner—with materials and
problems that enable them to develop new knowledge and
concepts and to provide immediate feedback to performance on
problem solutions

Objective Prediction based on student model/learner profiles and prescription
of next learning activities in order to facilitate comprehension
and retention

Stakeholders Data subject: learners/students;
Data client: teachers, educational institutions concerned about
student drop-out rates

LA model Partial Theory “Prediction of Performance to support timely inter-
vention and to prevent students from failing a course)” (see 1) in
literature review)

LA application: data Data from different sources;
algorithms for student modelling

LA application: instruments Adaptive learning systems, intelligent tutoring systems

Competences required/to be developed Students: basic understanding of how such systems work and
acceptance of permanent monitoring as well as suggestions by
system;

Learning designers/institutions: deep understanding of how such
systems model the domain, the students, and the tutoring process
and where they differ in order to select/configure appropriate
solutions

Constraints Privacy: What data are generated in closely monitoring students’
activities and who has access to these in what manner?
Ethics and norms: Is there a risk that students guided by such sys-
tems will develop less metacognitive ability regarding monitor-
ing and planning their own learning?

being relevant in a social learning context (e.g., analytics of user generated content, ana-

Iytics of personal dispositions, or analytics of contexts such as mobile computing and the

networking opportunities related thereto) (Buckingham Shum and Ferguson 2012, p. 10).
The following example illustrates the first type of social analytics sui generis (Table 2).

4.2 Use Case 2: Individual Analytics for Reflection

This use case is about LA with a focus on reflection at the individual level. As Evans
(2013) discovered in a thematic analysis of the research evidence on assessment feedback
in higher education (based on over 460 articles over a time span of 12 years), effective
online formative assessment can enhance learner engagement during a semester class.
Focused interventions (e.g., self-checking feedback sheets, mini writing assessments) can
make a difference to student learning outcomes as long as their value for the learning pro-
cess is made explicit to and is accepted by students and lecturers. The development of self-
assessment skills requires appropriate scaffolding on the part of the lecturer working with
the students so as to achieve co-regulation (Evans 2013) (Table 3).
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4.3 Use Case 3: Social Analytics for Prediction

The more environments for working and learning become digital, the more data is gen-
erated in the course of activities relating to working and learning: accessing web pages,
working on short knowledge tests, posting in an online forum, commenting on a forum
post, etc. (Manouselis et al. 2010). Until recently, the availability of such data for analysis
had been mostly confined to what is going on inside a particular learning management sys-
tem (LMS). With the development of the xAPI specification for transfer of interaction data,
a much wider range of data from both inside and outside an LMS can be made available for
analysis (Berking et al. 2014).

These developments help to enable gamified learning designs (Berkling and Thomas
2013). By this we refer to “the use of game design elements in non-game contexts”. Fre-
quently, this takes the form of awarding points and badges for individual learning activities
(e.g., posting in a discussion forum) and displaying top performers (or rather point gen-
erators) on leaderboards (Deterding et al. 2011; Mak 2013). While there is evidence that
gamified designs (can) lead to higher student engagement and improved learning (Dicheva
et al. 2015, p. 83), the opportunity to engage in a more systematic motivation design that
also includes choices, social integration, team assignments, as well as characters and sto-
ries is often missed (Seufert et al. 2017).

The following use case focuses on gamified learning designs as an example of behavo-
rial “nudging” (Table 4).

4.4 Use Case 4: Individual Analytics for Prediction and Prescription

More than 30 years ago, Leonard Bloom demonstrated that individual tuition leads to a
2-Sigma performance improvement in tests compared to then standard expository teaching
techniques in classrooms with about 30 learners (Bloom 1984). The idea of individualised tui-
tion for large numbers of learners is currently being pursued in the context of the research and
development of adaptive or intelligent tutorial platforms (Romero et al. 2008). The research
and development in this area is based on advances in artificial intelligence and cognitive com-
puting (Verbert et al. 2012). Adaptive learning systems aim at supporting the development of
conceptual structures in learners rather than merely supporting (repetitive) problem solving as
was the case in prior generations of so-called intelligent tutorial systems.

Adaptive learning systems closely track student activities and student performance
and provide students with adequate learning pathways and adaptive learning resources
based on machine learning algorithms and predictive models (Butz et al. 2003).

However, more substantial empirical research is needed, in particular to investigate
(Nour et al. 1995) the appropriateness of such algorithms in disciplines other than the
typical mastery learning subjects (e.g., biology, mathematics, information science) and
their effectiveness for reaching higher learning outcomes (Table 5).

5 Discussion
Learning analytics (LA) has the potential to enable learners, teachers, and their institu-
tions to better understand and predict learning and performance. However, the pedagog-

ical perspective, and in particular the focus on reflection instead of prediction, has been
neglected in research so far. Therefore, the main contribution of the paper is to provide
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a generic framework for the design of LA environments from a pedagogical perspective
and focusing on students’ cognition.

The presented framework provides a matrix with two important dimensions from a
pedagogical point of view: (1) Objective for LA: Reflection versus Prediction and (2)
Main context and target group: Individual analysis versus social (network) analysis.
Based on the proposed framework we developed use cases in order to define the overall
generic strategy in more detail. The proposed conceptual framework serves as a heu-
ristic model for identifying and structuring the research questions. A learning analytics
plan for research could be tuned depending on the pedagogic goals.

However, we want to emphasize that the proposed generic framework has its limits
as a helpful concept map for further research. The proposed two dimensions might be
too narrow to pursue the pedagogical perspective in LA environments. The second limi-
tation of our research is that the sample of teachers of our focus group was rather small
with 12 lecturers. A further limitation is that the empirical validation of our developed
framework is missing. Most important for the validation of the proposed framework
is its perceived utility by the stakeholders, in particular the course designers, lectur-
ers, as well as the students in the different use cases. In order to verify that the model
does indeed provide actionable information, a pilot within an action research design
to validate and revise the generic model and for every use case is planned with only a
few experts of the initial task force. These more experienced teachers are looking at the
model in terms of both its accuracy (does the information provided by the model align
with what they learn by talking to the student?) and its utility (does it trigger contact
with the right students and are those students then successful?). Once the pilot is com-
pleted, the utility will be evaluated and a decision will be made as to whether to imple-
ment the model into the production processes, making the results available to all teach-
ers. The model will continue to be refined even after initial implementation.

6 Conclusion and Outlook

Current research and discussion on big data in education focuses largely on (1) the poten-
tial of learning analytics to increase the efficiency and effectiveness of educational pro-
cesses, (2) the ability to identify and support students at risk, and (3) to inform efforts to
reduce drop-out rates. Accordingly, the main focus is on prediction. Therefore, we empha-
sized the research question how big data and learning analytics can be employed in order to
improve learner guidance, students’ learning processes and learning outcomes with regard
to reflection and meta-cognitive abilities for self-regulated learning.

Competency development on the part of the data clients (students, teachers/tutors, insti-
tutions) is a key requirement for progress in this area. On the basis of the survey data avail-
able, Greller and Drachsler (2012, p. 51) have pointed out that the large majority of stu-
dents currently do not have command of the competences required to interpret LA results
and to determine appropriate next activities.

In our model (cf. Figure 1), we include critical evaluation skills among the key compe-
tences for LA (similar to Greller and Drachsler 2012). A superficial understanding of data
presentation can lead to false conclusions. Furthermore, it is important to understand that
data not included in the respective LA approach may be equally if not more important than
the data set that is included. To judge a learner’s performance merely on one aspect, such
as quantitative data provided by a LMS, is like looking at a single piece taken from a larger
jigsaw puzzle. Lifelong learning takes place across a wide range of schooling, studying,
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working, and everyday life situations. In addition to competency requirements, acceptance
factors influence the application or decision making that follows an analytics process. Lack
of acceptance of analytics systems and processes can lead to blunt rejection of either the
results or the suggestions on the part of relevant constituencies (data clients).

In order to deal with these issues, future research should focus on empirical evaluation
methods of learning analytics tools (Ali et al. 2012; Scheffel et al. 2014) and on compe-
tence models for digital learning (Dawson and Siemens 2014). The conceptual framework
can be further elaborated with the application of the four different use cases by adjusting
and integrating partial theories for the competence development of students (e.g., mapping
multiliteracies to learning analytics techniques and applications (Dawson and Siemens
2014). It is planned that these cases become four real case studies in which we analyse
critically the outcomes, problems and implications of each case. This will be based on a
Student Tuning Model as a continual cycle in which students plan, monitor, and adjust
their learning activities (and their understanding of the learning activities) as they engage
with LA (Wise et al. 2016).
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