
ORIGINAL RESEARCH

Observing and Understanding an On-Line Learning
Activity: A Model-Based Approach for Activity Indicator
Engineering

Tarek Djouad1 • Alain Mille2

Published online: 26 September 2017
� Springer Science+Business Media B.V. 2017

Abstract Although learning indicators are now properly studied and published, it is still

very difficult to manage them freely within most distance learning platforms. As all

activity indicators need to collect and analyze properly traces of the learning activity, we

propose to use these traces as a starting point for a platform independent Trace Based-

Indicator Management System (TB-IMS). This approach allows learning indicators to be

created and reused in such a way that there is no need to modify the computer code of the

learning platform. This paper presents the underlying theory and how this theory is

implemented in a first TB-IMS. This TB-IMS is illustrated through an actual learning

situation based on a Moodle platform. This approach is compared with similar attempts to

manage learning indicators properly and is available for use with any other learning

platform, provided the TB-IMS can access the learning platform traces.

Keywords Technology enhanced learning system � Human learning indicator

activity � Trace based system � Modeled trace

1 Introduction

Observing and understanding learners’ behavior, performance and progress are difficult

tasks. When the learning process is supported by a Technology Enhanced Learning (TEL)

system, it is mandatory to know what to observe and how to understand and analyze it. In

order to observe learners’ behavior, learners’ interactions must be collected from the TEL

& Tarek Djouad
tarek.djouad@gmail.com

Alain Mille
Alain.mille@liris.cnrs.fr

1 Icosi laboratory, Khenchela University, El Hamma, Algeria

2 Liris Laboratory, UMR5205, Claude Bernard Lyon1 University, 69622 Lyon, France

123

Tech Know Learn (2018) 23:41–64
https://doi.org/10.1007/s10758-017-9337-9

http://orcid.org/0000-0002-3534-9291
http://crossmark.crossref.org/dialog/?doi=10.1007/s10758-017-9337-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10758-017-9337-9&domain=pdf
https://doi.org/10.1007/s10758-017-9337-9

system. Classical TEL systems use log files for this purpose, while more innovative sys-

tems try to design the observation process during the learning activity. The result of the

observation process is a trace of learner interactions1 through the learning platform. In

order to build useful knowledge from this observed interaction trace, it must be interpreted

according to some semantics, based on explicit models. The most common way to rep-

resent this knowledge is to build indicators2 (Soller et al. 2005).

This paper presents a new approach to create and reuse indicators using modeled traces.

We use a model driven engineering approach to compute indicators using a trace based

system (Settouti et al. 2009) able to manage interaction modeled traces and their inter-

pretations. Our idea is to define an indicator as a computer object directly associated with

corresponding modeled traces. The indicator is created, computed and reused through

operators on this new kind of computer composite object: the indicator formula and the

tree of modeled traces used to evaluate this formula. Consequently, we need a trace based-

management system to build and manage such indicators.

One important claim is that it should be possible for anybody needing to design and/or

to use learning indicators to do so without having to modify the computer code of the

learning platform. To guarantee this property, we consider indicators in a separate

framework able to articulate fluently with any learning platform and to provide easy-to-use

methods for creating, exploiting, visualizing and sharing indicators, which are adapted to a

learning activity but not linked to a specific learning platform. Teachers/tutors should be

able to create their own indicators without looking for programming details. Indicator

descriptions can be managed by the researcher, the activity’s designer, the trainer, the tutor

or even by the learner him/herself during a learning activity.

It is very important to understand that our research does not propose any new interesting

indicator but addresses the following research question: how to formalize the indicator

computation process from the design step to the exploitation step in order to provide

efficient tools for managing what could be called ‘‘indicator knowledge’’. We claim that

clear access to the genesis of indicator computation helps its design, computation, usage

and understanding by learners, teachers, designers, researchers and any other people

involved in the learning process.

This formalization is neither a guarantee of the validity of an indicator nor a method for

validating an indicator. However, using such formalization offers a possibility for the

various validation protocols of a new indicator. This formalization has been successfully

used in Ji et al. (2014) to validate new indicators. Moreover, when using an ‘‘on the shelf’’

indicator, the designer has to explain how he/she implements it in the learning environ-

ment. It is no easy task to demonstrate that implementation is correct and respects the

indicator’s semantics. We claim that if an ‘‘on the shelf’’ indicator could be formalized

with our proposal, then it might be easier to check the value of such or such an imple-

mentation. Moreover, while the ability to describe an indicator by a set of formal trans-

formations of observations and formal descriptions of computation guarantees discussion

of indicator validity, it is by no means a demonstration of its validity in general or in a

particular context.

1 Even if it can be considered that a ‘‘non interaction at a particular place and time’’ can be observed. In
this case, the system constructs an event as an observation of a non interaction. This is a tricky point that is
discussed in (Champalle et al. 2013).
2 Throughout the paper, we consider that the word ‘‘indicator’’ means: ‘‘a human learning indicator
activity’’.

42 T. Djouad, A. Mille

123

Consequently, what is new and radically changes the situation is the formalization of the

entire indicator knowledge engineering process from the design step to the exploitation

step.

Rather than just demonstrating the importance of formalization of indicator knowledge

engineering, we decided to illustrate concretely our approach. We developed a generic

assistant tool to cover the whole indicator life cycle, and used this tool on a real, concrete

university learning situation based on the Moodle3 environment to experiment this

approach. This provided an opportunity to conduct a full-scale test on a real university

education course. We have to emphasize that we are not using this learning situation to

conduct research on new indicators, or to check some research hypothesis requiring

observation of learning activities through indicator computations. Learning indicators can

be found right on the shelf or specifically defined by a teacher, a tutor, a designer or a

learner for their specific goals. There is no discussion of the intrinsic value of any indicator,

but we evaluate how it is possible to manage learning activities efficiently with such a TB-

IMS. The presented learning situation is used to make a proof of concept of our proposal to

create indicators using a trace model driven engineering process. In this case, this work is a

concrete contribution for the TEL community, which could consider this indicator man-

agement system to facilitate observation and management of on-line courses. Moodle4 is a

framework for designing, managing and supporting distance learning processes: it is what

is usually called a Learning Management System (LMS). It offers a large number of tools

for sharing documents (wiki), for interacting (chat), for discussing (forum), for providing

pedagogical resources, for quiz purposes, and for many other learning activities. Moodle

also offers hundreds of additional easy-to-install free extension tools, making it a very

powerful LMS. These tools all enable easier interaction between learners and teachers.

Moodle is used by millions of users in the world5 and represents what could be found in a

number of other LMS.

2 Indicators and Indicator Engineering in Technology Enhanced
Learning Systems

As our goal is to propose a generic way to manage indicators, this section recalls how

indicators are usually defined in the literature and why it is useful to formalize their design

and computation to allow their management during a computer mediated learning activity.

Indicators are widely studied in the technology enhanced human learning field. We present

in this section some works concerning indicator computations, before focusing on existing

works related to indicator engineering.

According to Dimitracopoulou et al. (2005) an indicator is a mathematical variable. The

variable can be qualitative or quantitative and can be represented by symbolic, logical or

alphanumerical values. The value can be used directly, calibrated or interpreted by

researchers. In the event of a composite indicator, a list of variables can be represented

through a graphical visualization gathering several indicators in the same frame and

providing a kind of dashboard for a specific learning activity. An indicator has a list of

attributes such as: a name, a purpose (cognitive, social or affective), a validity field (to

3 Moodle stands for: Modular Object-Oriented Dynamic Learning Environment.
4 https://moodle.org/?lang=en.
5 https://Moodle.net/stats/.

Observing and Understanding an On-Line Learning Activity… 43

123

https://moodle.org/?lang=en
https://Moodle.net/stats/

define this field, the content of the activity, the learning participants’ profile and the

intended users should be considered), dependencies (time, content, etc.), and an associated

learning environment.

According to this definition, several research works are related to indicator computation.

For example, Santos et al. (2003) offer a tool to compute the degree of involvement of each

learner in his/her course using interaction traces. This tool identifies criteria such as par-

ticipation, non- collaboration, communication, etc., and builds a corresponding indicator.

Martinez et al. (2003) compute social network density and use histograms to interpret it.

Tedesco (2003) measures agreement and disagreement between learners. Reffay et al.

(2011) compute cohesion and centrality in social networks using forums. May et al. (2011)

provide a tool to compute and visualize messages read in a forum using interaction traces

on both the client and the server side. Tools like TASCI (Laperrousaz 2007), Gismo

(Mazza and Botturi 2007), MooDog (Zhang and Almeroth 2010) compute indicators in

Moodle using its log files.

Merceron and Yacef (2004) propose a data mining approach to compute indicators from

raw databases. Reading Tutor (Mostow et al. 2005) allows indicator computation using a

specific query language applied to modeled traces. Butoianu et al. (2012) propose indicator

models and tracking frameworks based on repositories able to share indicator values. None

of these works offers an engineering approach to compute, share or reuse indicators.

Other research works tend to propose engineering and generic frameworks to design and

implement indicators. For example, EM-AGIIR, a multi-agent architecture defined in

Diagne (2009) provides a framework to compute and reuse indicators. This open archi-

tecture is structured in several agents:

• A database agent stores traces used to compute the indicator,

• A human/machine interface agent displays the indicator values,

• A query agent identifies important data used to compute the indicator values from log-

files,

• An indicator agent computes the indicator values. This agent asks the query agent to

import important data from log-files, and then asks the database agent to store these

data. Finally, it computes values using a function f.

Iksal et al. (2010) propose to reuse and improve educational scenarios using a formal

grammar to compute indicators. The representation indicator’s model is based on three

parts: defining part which describes what data are used to compute indicators, getting part

which describes how to get these data from raw data sources, and using part which

describes how to compute and use indicators.

Gendron (2010) proposes to use the indicator model with:

• Identity card to describe the indicator’s name, variables and description,

• Pattern to describe the indicator’s type, structure and computation rule,

• Interface view to describe the indicator’s visualization mode.

Gendron (2010) proposes to use four modules: definition, design, contextualization and

visualization modules. The definition module describes the identity card. The design

module describes the indicator pattern. The contextualization module defines the indica-

tor’s values. The visualization module contains all details about possible indicator

representations.

In Santos et al. (2003), Martinez et al. (2003), Tedesco (2003), May et al. (2011), Reffay

et al. (2011), Laperrousaz (2007), Mazza and Botturi (2007), Zhang and Almeroth (2010),

Butoianu et al. (2012), Merceron and Yacef (2004) and Mostow et al. (2005) indicators are

44 T. Djouad, A. Mille

123

directly programmed and coded as data structures in TEL systems or in related tools. None

of these works offers an engineering approach to create, use or share indicators. Diagne

(2009), Iksal et al. (2010) and Gendron (2010) are the approaches most similar to our own.

While these three works propose to use models to manage indicators, they still have to

code indicators in TEL systems and there is no possibility to easily reuse and share

indicators outside the context of the original TEL System. At the end of this paper we shall

compare these works to ours.

3 Building Indicators from Modeled Traces

We propose a knowledge oriented approach to manage indicators. We use a so-called trace

based system (TBS) (Settouti et al. 2009) and a model driven engineering approach (MDE)

(Laforcade et al. 2007) to manage the indicator life cycle. Before presenting our approach,

we explain in the next section what TBS is, while Sect. 3.2 describes the MDE principle

we adopt. Section 3.3 presents our indicator specification as a computer object and, finally,

Sect. 3.4 describes our contribution.

3.1 Trace Based System

The Trace Based System or TBS is proposed and implemented6 by the TWEAK7 research

group to manage interaction modeled traces (Settouti et al. 2009; Champin et al. 2013;

Cordier et al. 2013; Zarka et al. 2013; Cordier et al. 2014). A modeled trace or m-trace in

TBS is a structured object: the trace model and the corresponding trace instance in the form

of a sequence of observed elements or obsels. Each instance’s obsel part of an m-trace is

temporally situated by a time stamp and satisfies the trace model part of the m-trace.

TBS proposes explicit transformation operators to be applied to a set of m-traces

(transformation sources) in order to obtain other transformed m-traces (transformation

targets). All m-trace obsels are represented by structured information resulting from a

transformation operation using source m-trace obsels. Each m-trace is the result of some

transformation of a lower level m-trace, except for the lower level, directly built from an

observation process constructing the primary m-trace. The TBS architecture includes

(Fig. 1):

• An m-traces base (models and instances),

• A collector system that builds m-traces from raw data or tracing sources,

• A transformation system that transforms an m-trace into another m-trace.

TBS proposes three steps for using m-traces (Fig. 1):

1. Users, as teachers/tutors or learners, use learning platforms. These platforms provide

raw data as a source of observation. TBS connects to learning platforms, collects raw

data and uses these data to build a primary m-trace (model and instances). This

primary m-trace is then saved in an m-traces base,

2. TBS uses this primary m-trace and transforms it into other transformed m-traces

according to the semantics of these transformations. The transformed m-trace is saved

in the m-traces base. In turn, these transformed m-traces can be transformed again into

6 https://kernel-for-trace-based-systems.readthedocs.org/en/latest/.
7 https://liris.cnrs.fr/axes?id=71.

Observing and Understanding an On-Line Learning Activity… 45

123

https://kernel-for-trace-based-systems.readthedocs.org/en/latest/
https://liris.cnrs.fr/axes?id=71

other transformed m-traces. Starting from one primary m-trace, a transformation graph

is progressively built and saved for providing explicit explanations of any transfor-

mation, i.e. providing the semantics of any m-trace in the m-traces base.

3. Moreover, the m-traces base can be used by any assistant to manage indicators, allow

indicator computation, provide smart visualization, etc.

3.2 Model Driven Architecture

As we claim to adopt a model driven architecture, we need here to recall the notion of

model. A model in Seidwitz (2003) is defined as: A set of statements about some system

under study.

Another definition in Bézivin and Gerbé (2001) defines a model as: a simplification of a

system built with an intended goal in mind. The model should be able to answer questions

in place of the actual system.

In Laforcade et al. (2007), a model is a description or a prescription of all or part of a

system using a defined language. In the case of a description, the model is correct if its

characteristics and behavior evolve in the same way over time as the real system. However,

in the case of prescription, the system is considered valid if model characteristics do not

contradict the obtained system. Meta-models are also used to describe models: they define

languages to express models.

Model driven engineering is based on model driven architecture. It considers two

worlds: the real world or the system, and model worlds. The system is represented by its

model, and a model is conform to its meta-model.

Model driven engineering in TEL systems is inspired from software engineering and

focuses on model changes rather than system coding. This considerably reduces the efforts

of designers, teachers, researchers, etc., where all efforts are focused on model definition

and transformation rather than on system coding.

For this reason, we consider that our approach is directly related to model driven

engineering. The indicator description method we propose requires m-traces and a

Fig. 1 Trace based system used by our research team to manage modeled traces

46 T. Djouad, A. Mille

123

transformation sequence to lead from the primary m-trace to the indicator m-traces, and,

finally, to allow computation of the actual indicator values. The TBS provides facilities to

design new models and to produce m-traces from existing ones using the trace transfor-

mation process.

This is therefore the paper’s main contribution. This approach is quite different from

existing methods and provides original ways for describing, sharing and reusing indicators.

3.3 Indicator, Modeled Trace and Transformation Sequence

While the transformation sequence from the primary m-trace (what we can observe

directly) to some transformed m-traces allows a learning indicator to be evaluated, we have

to define what this indicator is, how it is connected to its corresponding (transformed)

m-traces, and how it can be computed interactively.

3.3.1 Indicator Model and Instance Definition

We consider that an indicator is a structure allowing it to be computed and to be explained

by its values when computed. To clarify this idea, we shall now provide a simple example

of an indicator: number of connections of a specific learner to a learning platform. This

indicator gives an idea of the learner’s engagement in the learning activity, and has to be

updated periodically (day, week, month, etc.). For example, John connects five times the

first day, three times the second day, and so on. The indicator’s structure stays the same,

but the indicator’s values need to be computed over time. We formalize an indicator as:

Definition 1 An indicator is a pair: {indicator model, indicator instances}.

Definition 2 An indicator model consists of the following attributes:

{Name, Variables, Equation, Role, Category, Time interval, Shared}.

where:

• Name: indicator name,

• Variables: variables used to compute indicator values. They are used to describe an

indicator equation in order to compute its values,

• Equation: literal expression of the formula to compute the indicator,

• Role: what the indicator is used for (how to interpret the indicator values for some

actions),

• Category: to index indicators in categories,

• Shared: to share or not the indicator with other people,

• Time interval: used to limit indicator computation in a specific time interval. Start and

end time limits are provided.

Definition 3 An indicator is a computer object with a set of specific methods:{Create

indicator, Share indicator, Delete indicator, Compute indicator}. where:

• Create indicator: instantiates indicator’s attributes with possible default values,

• Delete indicator: removes the indicator from the indicator database,

• Share indicator: shares the indicator to be used by other users, systems, etc.,

• Compute indicator: computes the indicator according to the equation formula. The

equation can define intermediate variables to compute indicator values.

Observing and Understanding an On-Line Learning Activity… 47

123

Definition 4 Computing an indicator means computing its instances. Indicator instances

are temporally situated by a time stamp and satisfy their indicator model.

Definition 5 The final value of an indicator instance is computed using its equation

formula. An equation is computed using the m-trace transformation sequence: each indi-

cator instance is related to a transformation sequence allowing its computation. The

transformation sequence conformed to its transformation model.

Definition 6 Each variable used by the equation8 is related to a transformed m-trace.

Variable value is the number of obsels of its related m-trace.

3.3.2 Indicator Instances and m-Trace Transformation

We propose to compute a new indicator instance by re-applying the corresponding m-trace

transformation sequence to the current primary m-trace and by computing the new current

value of the indicator for this instance. We associate a transformation sequence with each

indicator instance. In this case, each indicator instance complies with its indicator model,

and depends on the result of the transformation sequence which complies with its trans-

formation model.

The transformation sequence description, starting from the primary m-trace through to

the corresponding indicator m-trace, itself constitutes the transformation model of this

indicator model.

Figure 2 illustrates the definitions presented in the above section with the relations

between indicator model and transformation model, transformation sequence and trans-

formation model, and between indicator instance and its transformation sequence.

3.4 Computing Indicator Instances

As stated above, indicator instances are consistent with their indicator model. The primary

m-trace contains all good candidate data used to compute indicator instances. Starting from

this primary m-trace, new indicators are computed through transformation sequences and

according to an explicit equation describing indicator computation with some variables,

where the values are derived from the directly associated m-traces. An indicator is com-

puted in three steps: collecting data in the primary m-trace, transforming this primary

m-trace through a transformation sequence, and, finally, computing the indicator by val-

uating the indicator formula variables on the basis of the obsels of the transformed m-traces

derived from the transformation sequence.

3.4.1 Collecting Data

Collecting data consists in selecting/filtering data from the learning platform’s raw data.

Just as for any analysis process, this is a preparation step and has to be carried out with the

user. A collect all strategy can be adopted because it will be possible to select/filter items

with some transformation within the m-traces base. The collecting step builds a primary

m-trace. Information in the primary m-trace consists of what has been considered as useful

and available in the learning platform for observing the learning process.

8 This is not the case for the intermediate variables which can be used in the formula.

48 T. Djouad, A. Mille

123

At this step, the primary m-trace contains all important information. We consider that

all obsels of this primary m-trace are good candidates for providing information on the

learning activity and indicator computation.

3.4.2 Transformation Sequence

Starting from the primary m-trace, we propose to use transformation sequences to create

new m-traces. A transformation sequence uses operators to transform one m-trace into

another one (examples are given in Sect. 4 to illustrate these operators). A transformation

sequence is one important part of an indicator when considered as a computer object.

Even if some indicator instances have already been built, and a user wants to modify the

indicator model, it is easy to modify the related transformation sequences to update all

instances.

Fig. 2 Relation between indicator and transformation sequence

Observing and Understanding an On-Line Learning Activity… 49

123

3.4.3 Indicator Engineering Driven by Trace Models

In order to demonstrate concretely how this can work, we developed an actual method to

carry out the entire life cycle of an indicator.

We propose four steps to describe and compute an indicator instance using a TBS. Each
indicator instance is computed using these four steps:

Step 1 To compute a new indicator (compute instances), we propose to associate it with

a set of empty9 m-traces. The m-trace instances will be built in the next steps. These

m-traces will be used later for evaluating the indicator formula to compute indicator

instances (Fig. 3).To simplify, we will explain in the next steps how one instance is

computed. All other instances are computed in the same way.

Step 2 In this step, we associate a transformation sequence with the empty indicator

m-traces. The transformation sequence related to these m-traces describes how to move

from the primary m-trace model to the indicator m-traces. Figure 4 illustrates how to

create a transformation sequence from the primary m-trace model to the corresponding

indicator m-traces. Conversely, we can see this transformation sequence as a way of

reformulating what we need to get to compute an indicator in a specific situation starting

from its abstract description (the empty m-traces) through to the basic level (the

available primary m-trace).

Step 3 This step collects data from the learning environment and builds the primary

m-trace instance. The result of this step is a complete primary m-trace (model and

collected obsels). Figure 5 shows an example of such a collection for the primary

m-trace.

Step 4 Finally, we execute the transformation sequence (defined in step 2), from the

primary m-trace instantiated in step 3 to the indicator m-traces defined in step 1. The

result of this step 4 is a complete indicator m-trace with the indicator instance (Fig. 6).

4 Computing Indicators in a Real Learning Situation: Case Study

To illustrate the benefits offered by our approach based on model driven engineering, we

propose to illustrate the indicator computation steps through three different scenarios:

• Creating a new indicator in the context of one learning platform,

• Reusing an existing indicator to compute a new indicator in the same learning platform,

• Reusing an existing indicator (from the shelves) in the context of another learning

platform.

We will use the proportion indicator defined by Dimitracopoulou (2004) to illustrate

scenario one, and the division of labor indicator defined by Jermann (2004) to illustrate

scenarios two and three. We first present the context of the learning situation we choose to

observe.

4.1 Describing the Learning Situation

We recall this paper does not study the quality of new indicators. We chose indicators as

they are on the shelf and we illustrate how to use our approach and tools in different

9 Empty means that the m-trace model is present but that there are no obsels in the instance part.

50 T. Djouad, A. Mille

123

Fig. 3 Associating an indicator model with its set of m-traces (m-traces base)

Fig. 4 Using a transformation sequence to relate the primary m-trace to the indicator m-traces (parts of the
indicator object)

Fig. 5 Preparing data: building the primary m-trace obsels

Observing and Understanding an On-Line Learning Activity… 51

123

situations. The situation is an ecological one, without any research-specific constraints for

the teacher or learners. We focus on the proof of concept of the approach, i.e. on the

efficiency of the approach and its ability to be used within a popular platform (Moodle).

Offering modeled indicators, m-traces, and transformation sequences in TBS allows the

creation, computation and reuse of indicators with a much lighter life cycle than the

classical one.

In this illustration, the pedagogical activity is related to a master course named Tech-

niques and Applications of Artificial Intelligence, at the computer science department of

Claude Bernard Lyon 1 university.

38 students participated in the course over a period of 4 months. The teacher asked

students of a real classroom to organize themselves into 9 groups of 3–5 students. Then he

asked them to use the Moodle course. This course is divided into two main activities:

• Documentation with exercises about: the basics of case-based reasoning, the principles

of case-based reasoning, the life cycle of case-based reasoning, etc.

• A collaborative project: we asked students to jointly design and prototype a case-based

reasoning framework.

To organize their learning activities, students used Moodle tools such as forums, wikis,

chats, web pages, links to on-line media, etc. These tools provide a large raw database that

we can use to compute indicators.

Fig. 6 Running the transformation sequence. In this case, we have grouped the four steps: from the
collection step to indicator computation

52 T. Djouad, A. Mille

123

4.2 Scenario 1: Computing a New Indicator

4.2.1 Our Goal

We propose to use our approach to compute a new indicator. We recall that to compute a

new indicator in ad-hoc classical methods, it needs to be coded directly in the learning

platform. This is a long and difficult task, requiring computer designer experience.

The goal of this scenario is to show how to describe and compute a new indicator

through our method and with our tools. The scenario will be successful if it demonstrates

the process is simpler than an ad hoc approach and above all that it proposes an explicit

way to describe and compute a new indicator in a formal knowledge representation, for

reuse and adaptation.

According to our method, we propose to create a new indicator and associate it with its

transformation sequence (example in Fig. 7).

To illustrate how it works, we propose to compute the proportion between a two

learning activities indicator, defined in Dimitracopoulou (2004). The computation rule of

the proportion (1) between two activities or actions A and B for a specific user U and

related to a time interval T is:

proportionðA;B;U; TÞ ¼ UAT � UBT

UAT þ UBT
ð1Þ

where UAT is the number of actions A performed by user U according to a time interval

T and UBT is the number of actions B performed by the same user U according to the same

time interval T.

In our approach, each variable used in the equation is related to an m-trace. So, the

value of each variable UAT and UBT can be obtained by selecting each obsel of type A and

B for the user U according to a time interval T from the primary m-trace. We can create a

transformation sequence to build two m-traces UAT and UBT related to User U according

to a time interval T.With these m-traces, we just have to count their obsels to get the values

of the variables UAT and UBT.

The transformation sequence from the primary m-trace to the indicator m-traces (UAT

and UBT) is described in Fig. 7.

The process is the following:

• Select all instances related to user U from the primary m-trace. The m-trace result is

m-trace U which contains only user U’s obsels,

• Select and filter all m-trace U obsels related to a time interval T. The result is m-trace

UT,

• Divide m-trace UT into two m-traces: m-trace UAT and m-trace UBT using two

selections where we keep only m-trace obsels related to A and B obsel types,

respectively,

• Create two new variables where their names are the m-trace names and their values are

the number of obsels in the m-traces. The m-traces UAT and UBT become two

variables UAT and UBT used in the proportion computation rule.

This generic transformation sequence is not the only solution available: we can always

find other equivalent generic transformation sequences to compute this indicator.

Observing and Understanding an On-Line Learning Activity… 53

123

4.2.2 Case Study

Indicator computation and m-trace transformation are managed by the prototype we

developed: Trace Based-Indicator Management System TB-IMS.10 Figure 8 shows the TB-

IMS collector module, the transformation module, the equation editor and the visualization

result. In this example we compute the proportion between Chat messages and Private

messages related to User15 according to a time interval T.

Computation is possible without coding in machine. The system saves in its databases

the indicator, its transformation, intermediate m-traces and the primary m-trace, which

allows the indicator to be reused to compute new indicators. We will explain this possi-

bility in the next section.

Fig. 7 Generic transformation sequence to compute the proportion between two activities A and B related
to a specific user U according to a time interval T

10 www.github.com/tb-ims/tb-ims/.

54 T. Djouad, A. Mille

123

http://www.github.com/tb-ims/tb-ims/

4.2.3 Synthesis

This scenario demonstrates that it is possible and easy to describe an indicator and how to

compute it with an immediate ability to check the result. Explicit descriptions of the

transformation, of the traces, of the final indicator formula do not need a big effort and this

effort is rewarded by the automatic computation of the indicator.

4.3 Scenario 2: Computing a New Indicator from an Existing Indicator

4.3.1 Our Goal

The goal of scenario 2 is to show how to use our method in order to compute a new

indicator division of labor, but using raw data issued from the same learning platform.

The system we built allows a new indicator to be created and all its related data to be

saved (indicator instances, its primary m-trace, its transformation sequence, its interme-

diate m-traces generated by the transformation). Even it is not the same one, we propose to

exploit our approach for reusing the proportion indicator computed in scenario 1, in order

to compute a new indicator such as division of labor. Actually, it should be useful to re-use

the preparation transformations of the existing indicator for the new one.

Fig. 8 Computing the proportion indicator value of the last example in TB-IMS

Observing and Understanding an On-Line Learning Activity… 55

123

Several research works are related to collaborative learning measuring. Dillenbourg

(1999) defines collaborative learning as a situation in which two or more people learn or

attempt to learn something together where it has four meanings: situation, interaction,

mechanism, and effects. Barros and Verdejo (2000) compute collaborative indicators using

three elements: coordination, cooperation and argumentation. Each element is computed

using other elements. For example argumentation is computed using initiative, interac-

tivity, tree depth and work. Von Davier and Halpin (2013) measure collaboration using a

framework for educational assessment of cognitive skills with collaborative problem-

solving tasks. This framework proposes to: Measure cognitive skill; Identify the types of

activities that count as evidence of the cognitive skill;- Use strategies for collaborative

assessments; Non cognitive skills and variables that can affect any and all levels of the

assessment elements.

In this example, our goal is not only to identify a better collaboration measurement, but

is to offer a generic mechanism to compute it. The division of labor indicator is defined and

implemented in Jermann (2004). It identifies the division of labor adopted by two users

working on a set of shared resources. This indicator identifies the role assumed by each

user in a collaborative learning process. The division of labor can be computed from the

sum of differences SD (2):

SDðU1;U2;A; TÞ ¼
P

i ðU1AiT � U2AiTÞ
U1AT þ U2AT

ð2Þ

where Ai is an action type (example: chat, forum, etc.), U1AiT is a number of actions Ai

performed by user U1 according to a time interval T (respectively U2AiT), and U1A

(respectively U2A) is the total number of actions performed by the User U1 (respectively

U2) according to a time interval T.

The sum of differences SD indicates the symmetry of actions between users. The value

0 means that both users have the same number of actions, while the value 1 means that all

actions were performed by user 1.

In TB-IMS, U1AiT is the number of m-trace obsels related to a user U1 and action type

Ai according to a time interval T. The transformation sequence from the primary m-trace to

the indicator m-traces is explained in Fig. 9. In this case, we reuse the transformation

sequence defined in Fig. 7 to build this new transformation sequence. The blue parts in

Fig. 9 are what we use from the last transformation sequence.

The process is:

• Select from the primary m-trace all instances related to a specific time interval T. The

result is m-trace All_T,

• Extract, using two selection m-traces, instances related to Users U1 and U2,

respectively. The results are m-traceU1T and m-traceU2T,

• Extract, still using two selections, instances related to A and B instance types. We

apply this to the two users U1T and U2T. The results are: m-traceU1AT, m-traceU1BT,

m-trace U2AT, and m-traceU2BT,

• Count m-trace obsels using the count function and compute the indicator equation.

56 T. Djouad, A. Mille

123

4.3.2 Case Study

In TB-IMS, we compute for example the division of labor between Private Message and

Chat message for two users User1 and User2 (Fig. 10). We can view the transformation

module, the equation editor and the visualization result (Histogram).

4.3.3 Synthesis

Although it is not the same indicator, we demonstrated that it was useful and easy to do to

re-use the knowledge of an existing indicator to design another one. In this case, we

demonstrate that an important part of the process was re-usable, specially to transform the

primary traces for getting well prepared traces for designing the new indicator. As a

consequence, to design a new indicator for the same traces base is then easier to manage

and the designer can check the result on the traces base.

Fig. 9 Reusing the transformation in Fig. 7 to build a new indicator

Observing and Understanding an On-Line Learning Activity… 57

123

4.4 Scenario 3: Reusing the Same Indicator in Another Learning Platform

4.4.1 Our Goal

We recall that in ad-hoc methods (Dimitracopoulou et al. 2005), the indicator computation

life cycle is:

• Select data: identify and filter important data used to compute the indicator from raw

data,

• Prepare data: modify, transform and prepare data prior to indicator computation,

• Compute the indicator: coding equations and visualizing indicator values.

These steps need a computer designer familiar with all details concerning the selected

data structure and indicator equation parameters, and are coded directly in the learning

platform. Teachers can then give feedback on the learning activity using the indicator

values.

The goal of scenario 3 is to show how to use our method in order to compute the same

indicator division of labor built in the previous section, but this time using raw data issued

from another learning platform.

Fig. 10 Computing the division of labor indicator value of the last example in TB-IMS from the sum of
differences

58 T. Djouad, A. Mille

123

4.4.2 Case Study

We propose to use raw data derived from a real learning situation defined in Bratitsis and

Dimitracopoulou (2009). We reuse, without modification, its transformation sequence to

compute it with new raw data (Fig. 11). The only constraint is to update the collector

module. This constraint is necessary to reuse transformation sequences when the raw data

format from the two learning platforms is not the same.

4.4.3 Synthesis

In this scenario, the initial preparation transformations have to be adapted, but the final

transformations for gathering the information about the formula variables and the formula

itself were directly re-used. Time to check the existing indicator on new data is much

shorter.

Fig. 11 Computing the division of labor indicator from another learning platform, using data issued from
Bratitsis and Dimitracopoulou (2009). We reuse the same indicator built beforehand without modification to
compute it with the new learning platform

Observing and Understanding an On-Line Learning Activity… 59

123

Table 1 Comparison of indicator ad-hoc methods and our method

Our method Ad hoc method

Create new indicator from
learning platform.

Example:
Compute proportion indicator
from Moodle raw data-

Collecting Coding collecting plug-in according to
a specific learning platform. The
result of this collecting is a primary
m-trace needs a computer scientist

Coding and
filtering raw
data

Needs a
computer
scientist

Preparing Use primary m-trace and create
transformation sequence related to
indicator model

Teacher or researcher can transform
data using transformation sequences,
without needing a computer scientist
for coding

Coding selected
data
transformation

Needs a
computer
scientist

Computing Compute equation and visualize result
Teacher or researcher can compute
indicator without needing a
computer scientist for coding

The indicator model is available to all
courses for the same learning
platform

Coding
indicator
equation

Computing
needs a
computer
scientist

Reuse existing indicator to
compute a new one from the
same learning platform

Example:
Compute division of labor
indicator from the same
Moodle raw data

Collecting Primary m-trace exists: no need for
collecting data

No need for coding

The same steps
used to create
new indicator

Always codingPreparing Reuse existing transformation
sequence to compute indicator

Does not need a computer scientist
Teacher or researcher can reuse
transformation sequences, without
needing a computer scientist for
coding

Computing Reuse existing equation to create
indicator values

Does not need a computer scientist
Teacher or researcher can reuse
equation and compute indicator
values without needing a computer
scientist for coding

Reuse existing indicator to
compute a new one from
another learning platform

Example:
Compute division of labor
indicator using raw data of
Bratitsis and Dimitracopoulou
(2009)

Collecting Coding and filtering raw data related
to the new learning platform

Needs a computer scientist

The same steps
used to create
new indicator

Always codingPreparing Reuse existing transformation
sequence to compute indicator

Does not need a computer scientist
Teacher or researcher can reuse
transformation sequences, without
needing a computer scientist for
coding

Computing Reuse existing equation to create
indicator values

Teacher or researcher can reuse
equation and compute indicator
values without needing a computer
scientist for coding

60 T. Djouad, A. Mille

123

5 Conclusion

We presented in this paper a new approach for designing and computing human learning

indicator activity in a framework separate from the learning platform used. This approach

is based on a model driven engineering approach, and considers an indicator as a structured

computer object (with model and instances parts) explicitly associated with modeled traces

(m-traces) managed in a trace management system. Computation of the indicator instances

is based on a transformation sequence of m-traces from the primary m-trace to the indicator

m-traces.

Table 2 Comparison of existing indicator engineering methods and our method

Our approach Existing indicator engineering methods

Diagne (2009) Iksal et al.
(2010)

Gendron
(2010)

Create new indicator
from learning
platform

Collecting Create primary
m-trace

Use database
agent to collect
data from data-
base learning
platform

Use ATL
language
to define
useful
data

Use trace
based
system
to collect
data

Preparing Create
transformation
sequence and use it
to create indicator
model

Use request agent
to filter data

Use ATL
language
to get
useful
data

Use
identity
card to
select
data

Computing Compute equation
and visualize result

Use composer
agent to
compute values

Use ATL
language
to
compute
values

Use
equation
to
compute
indicator

Reuse existing
indicator to
compute a new one
from the same
learning platform

Collecting Reuse primary
m-trace

No No No

Preparing Reuse existing
transformation
sequence to create
a new one

Computing Reuse existing
equation to create a
new one

Reuse existing
indicator to
compute a new one
from another
learning platform

Collecting Coding to create
primary m-trace

No No No

Preparing Reuse existing
transformation
sequence without
modification to
create a new one

Computing Reuse existing
equation without
modification to
create a new one

Observing and Understanding an On-Line Learning Activity… 61

123

Indicators can be easily created and reused. This is illustrated through three scenarios

demonstrating the concept we propose. This method is thus an MDE approach for indicator

engineering. A generic architecture and a tool to build and manage learning activity traces

are used to compute indicators.

One other important contribution is that the proposed approach is able to support the

modeling process by facilitating reuse of models for observable collecting as well as for

indicator computation.

The developed system TB-IMS was used in Ji et al. (2014) to design a Dynamic

Dashboard for collection, analysis and visualization of Activity and Reporting Traces

(DDART) to support meta-cognitive activities. DDART is an extension used to improve

learners’ performances by monitoring their activities in Moodle. In DDART, learners can

collect, analyze and visualize their traces, and then build indicators using an interactive

dashboard. It is based on three steps: collecting data, integration data, and computing

indicator. Collecting data: use raw data from the Moodle database. Users can also

introduce their non-instrumental activities such as Skype or Facebook activities, using an

activity report tool integrated into DDART; Integration data: build a primary m-trace

combining Moodle raw data and non-instrumental data. The primary m-trace structure is

based on the TB-IMS primary m-trace; Compute indicator: using a filter operator applied

to the DDART primary m-trace.

The benefit of this method is demonstrated by comparing it to the ad-hoc indicator

computation. The indicator description is available at an abstract level with transformation

operators, leading to a trace specific to facilitating the final computation.

TB-IMS is widely independent from the learning platform except in data collection.

Indicator computation is totally independent from the learning platform with the help of a

TBS. Initial collection of user data remains specific to the learning environment in order to

build a primary m-trace. After this step, all transformations can be independent to build

indicator instances. Table 1 compares the indicator computation process with ad-hoc

methods and with TB-IMS. Table 2 compares existing indicator engineering methods

(from the literature) and our method.

We tried to make clearer the claim of the paper concerning the importance of for-

malizing explicitly what an indicator is. Although there are research frameworks to assist

with analyzing learning processes in general, only a few research works or concrete

frameworks formalize the complete indicator life cycle.

In future works, we will try to create a shared indicator library as an extension of our

TB-IMS. This library will contain the most well-known indicators currently existing in

human learning literature. Researchers and teachers/tutors can reuse these indicators

directly, and then verify and enrich the library by providing their expertise. We offer them

the possibility to create and reuse new indicators using our method without coding.

We will also try to improve TB-IMS using web component technology. Projects like

Taaabs,11 which is currently being developed, propose to use a trace based system such as a

web component service.12 We plan to integrate our TB-IMS through this technology. TB-

IMS is a useful service that is completely independent from data collection and thus from

learning platforms. TB-IMS directly uses the TBS web component services and can deploy

new indicators in a shared library (work in progress).

11 https://github.com/liris-tweak/taaabs.
12 http://dsi-liris-silex.univ-lyon1.fr/taaabs/taaabs/dist/#!/taaabs/taaabs/dist/.

62 T. Djouad, A. Mille

123

https://github.com/liris-tweak/taaabs
http://dsi-liris-silex.univ-lyon1.fr/taaabs/taaabs/dist/%23!/taaabs/taaabs/dist/

References

Barros, B., & Verdejo, F. M. (2000). Analyzing student interaction processes in order to improve collab-
oration. The DEGREE approach. International Journal of Artificial Intelligence in Education, 11(3),
221–241. http://ijaied.org/pub/1004/file/1004_paper.pdf.

Bézivin, J., & Gerbé, O. (2001). Towards a precise definition of the OMG/MDA framework. In Proceedings
of the 16th International Conference on Automated Software Engineering, IEEE (pp. 273–280). San
Diego, USA. https://pdfs.semanticscholar.org/6586/b19c6edf8850ac97fffb4ea6f65144200b1b.pdf.

Bratitsis, T., & Dimitracopoulou, A. (2009). Studying the effect of interaction analysis indicators on stu-
dents’ selfregulation during asynchronous discussion learning activities. In Proceedings of the 9th
International Conference on Computer Supported Collaborative Learning (pp. 601–605). Greece.
https://www.researchgate.net/publication/221033728_Studying_the_effect_of_Interaction_Analysis_
indicators_on_student’s_Selfregulation_during_asynchronous_discussion_learning_activities.

Butoianu, V., Vidal, P., & Broisin, J. (2012). A model-driven approach to actively manage TEL indicators.
In T. Amiel, & B. Wilson (Eds.), Proceedings of the EdMedia: World Conference on Educational
Media and Technology (pp. 1757–1765). Denver, Colorado, USA: Association for the Advancement of
Computing in Education (AACE). https://www.researchgate.net/publication/230675845_A_Model-
driven_Approach_to_Actively_Manage_TEL_Indicators.

Champalle, O., Sehaba, K., & Mille, A. (2013). Capitalize and share observation and analysis knowledge to
assist trainers in professional training with simulation case of training and skills maintain of nuclear
power plant control room staff. In Proceedings of the 5th International Conference on Computer
Supported Education (pp. 627–632). Aachen, Germany. http://liris.cnrs.fr/Documents/Liris-6056.pdf.

Champin, P. A., Mille, A., & Prié, Y. (2013). Vers des traces numériques comme objets informatiques de
premier niveau : Une approche par les traces modélisées. Journal of Intellectica, 59, 171–204. http://
liris.cnrs.fr/Documents/Liris-5998.pdf.

Cordier, A., Lefevre, M., Champin, P. A., Georgeon, O., & Mille, A. (2013). Trace-based reasoning-
modeling interaction traces for reasoning on experiences. In Proceedings of the 26th International
Florida Artificial Intelligence Research Society Conference (pp. 363–368). Pete Beach, Florida, USA.
http://www.aaai.org/ocs/index.php/FLAIRS/FLAIRS13/paper/download/5903/6100.

Cordier, A., Lefevre, M., Champin, P. A., Mille, A., Georgeon, O., & Mathern, B. (2014). Connaissances et
raisonnement sur les traces d’interaction. Journal of Intelligence Artificielle, 28(2–3), 375–396. https://
pdfs.semanticscholar.org/92c3/fb8d4cb4d2a4f45b1320afb4ed99af271ad3.pdf.

Diagne, F. (2009). Instrumentation de la supervision par la réutilisation d’indicateurs: Modèles et Archi-
tecture. Doctoral dissertation, Joseph Fourier University, Grenoble, France. https://hal.inria.fr/tel-
00366368/document.

Dillenbourg, P. (1999). What do you mean by collaborative learning?. Collaborative learning: Cognitive and
computational approaches, 1, 1–19. http://tecfa.unige.ch/tecfa/publicat/dil-papers-2/Dil.7.1.14.pdf.

Dimitracopoulou, A. (2004). State of the art of interaction analysis: Interaction analysis indicators inter-
action and collaboration analaysis supporting teachers and students selfregulation (ICALTS). In Re-
searsh report. JEIRP Deliverable D.26.1.1. Kaleidoscope NoE (pp. 153). https://hal.archives-ouvertes.
fr/hal-00190145/document.

Dimitracopoulou, A., Petrou, A., Martinez, A., Marcos, J. A., Kollias, V., Jermann, P., et al. (2005). State of
the art on interaction analysis for metacognitive support and diagnosis. In Researsh report JEIRP.
D.31.1.1, EU 6th Framework programme priority 2, Information society technology, Kaleidoscope
Network of Excellence (pp. 2–62). https://hal.archives-ouvertes.fr/hal-00190146/document.

Gendron, E. (2010). Cadre conceptuel pour l’élaboration d’indicateurs de collaboration à partir des traces
d’activité. Doctoral dissertation, Claude Bernard Lyon1 University, France. https://tel.archives-
ouvertes.fr/tel-00708083/document.

Iksal, S., Choquet, C., & Pham Thi Ngoc, D. (2010). Generic modeling of indicator with UTL-the col-
laborative action function example. In Proceedings of the 2nd International Conference on Computer
Supported Education (pp. 114–119). Valencia, Spain. https://www.researchgate.net/publication/
221130379_A_Generic_Modeling_of_Indicator_with_UTL_-_The_Collaborative_Action_Function_
Example.

Jermann, P. R. (2004). Computer support for interaction regulation in collaborative problem-solving.
Doctoral dissertation, Geneva University, Switzerland. http://tecfa.unige.ch/tecfa/research/theses/
jermann2004.pdf.

Ji, M., Michel, C., George, S., & Lavoué, E. (2014). DDART: A dynamic dashboard for collection, analysis
and visualization of activity and reporting traces. In Proceedings of the 9th European Conference on
Technology Enhanced Learning (pp. 440–445). Graaz, Austria. https://hal-univ-lyon3.archives-
ouvertes.fr/hal-01130922/document.

Observing and Understanding an On-Line Learning Activity… 63

123

http://ijaied.org/pub/1004/file/1004_paper.pdf
https://pdfs.semanticscholar.org/6586/b19c6edf8850ac97fffb4ea6f65144200b1b.pdf
https://www.researchgate.net/publication/221033728_Studying_the_effect_of_Interaction_Analysis_indicators_on_student%e2%80%99s_Selfregulation_during_asynchronous_discussion_learning_activities
https://www.researchgate.net/publication/221033728_Studying_the_effect_of_Interaction_Analysis_indicators_on_student%e2%80%99s_Selfregulation_during_asynchronous_discussion_learning_activities
https://www.researchgate.net/publication/230675845_A_Model-driven_Approach_to_Actively_Manage_TEL_Indicators
https://www.researchgate.net/publication/230675845_A_Model-driven_Approach_to_Actively_Manage_TEL_Indicators
http://liris.cnrs.fr/Documents/Liris-6056.pdf
http://liris.cnrs.fr/Documents/Liris-5998.pdf
http://liris.cnrs.fr/Documents/Liris-5998.pdf
http://www.aaai.org/ocs/index.php/FLAIRS/FLAIRS13/paper/download/5903/6100
https://pdfs.semanticscholar.org/92c3/fb8d4cb4d2a4f45b1320afb4ed99af271ad3.pdf
https://pdfs.semanticscholar.org/92c3/fb8d4cb4d2a4f45b1320afb4ed99af271ad3.pdf
https://hal.inria.fr/tel-00366368/document
https://hal.inria.fr/tel-00366368/document
http://tecfa.unige.ch/tecfa/publicat/dil-papers-2/Dil.7.1.14.pdf
https://hal.archives-ouvertes.fr/hal-00190145/document
https://hal.archives-ouvertes.fr/hal-00190145/document
https://hal.archives-ouvertes.fr/hal-00190146/document
https://tel.archives-ouvertes.fr/tel-00708083/document
https://tel.archives-ouvertes.fr/tel-00708083/document
https://www.researchgate.net/publication/221130379_A_Generic_Modeling_of_Indicator_with_UTL_-_The_Collaborative_Action_Function_Example
https://www.researchgate.net/publication/221130379_A_Generic_Modeling_of_Indicator_with_UTL_-_The_Collaborative_Action_Function_Example
https://www.researchgate.net/publication/221130379_A_Generic_Modeling_of_Indicator_with_UTL_-_The_Collaborative_Action_Function_Example
http://tecfa.unige.ch/tecfa/research/theses/jermann2004.pdf
http://tecfa.unige.ch/tecfa/research/theses/jermann2004.pdf
https://hal-univ-lyon3.archives-ouvertes.fr/hal-01130922/document
https://hal-univ-lyon3.archives-ouvertes.fr/hal-01130922/document

Laforcade, P., Nodenot, T., Choquet, C., & Caron, P. A. (2007). Model-driven engineering (MDE) and
model-driven architecture (MDA) applied to the modeling and deployment of technology enhanced
learning (TEL) systems: Promises, challenges and issues. In Architecture Solutions for ELearning
Systems (pp. 116–136). https://www.researchgate.net/publication/281327763_Model-Driven_
Engineering_MDE_and_Model-Driven_Architecture_MDA_applied_to_the_Modeling_and_
Deployment_of_Technology_Enhanced_Learning_TEL_Systems_promises_challenges_and_issues.

Laperrousaz, C. (2007). Question de la réutilisation d’outils de suivi d’activités d’apprenants dans des
plates-formes de formation en ligne. In Proceedings of the 3rd Conference on EIAH: Environnements
Informatiques pour l’Apprentissage Humain (pp. 485–496). Lausanne, Switzerland. https://hal.
archives-ouvertes.fr/hal-00161482/document.

Martinez, A., Dimitriadis, Y., Rubia, B., & Fuente, P. (2003). Combining qualitative evaluation and social
network analysis for the study of classroom social interactions. Computers and Education, 41(4),
353–368. https://telearn.archives-ouvertes.fr/hal-00190427/document.

May, M., George, S., & Prévôt, P. (2011). TrAVis to enhance online tutoring and learning activities: Real
time visualization of students tracking data. Journal of Interactive Technology and Smart Education,
8(1), 52–69. https://www.researchgate.net/publication/220373199_TrAVis_to_Enhance_Online_
Tutoring_and_Learning_Activities_Real_Time_Visualization_of_Students_Tracking_Data.

Mazza, R., & Botturi, L. (2007). Monitoring an online course with the GISMO tool: A case study. Journal of
Interactive Learning Research, 18(2), 251–265. https://www.researchgate.net/publication/252554029_
Monitoring_an_online_course_with_the_GISMO_tool_A_case_study.

Merceron, A., & Yacef, K. (2004). Mining student data captured from a web-based tutoring tool: Initial
exploration and results. Journal of Interactive Learning Research, 15(4), 319–346. https://www.
researchgate.net/publication/292023411_Mining_student_data_captured_from_a_web-based_
tutoring_tool_Initial_exploration_and_results.

Mostow, J., Beck, J., Cuneo, A., Gouvea, E., & Heiner, C. (2005). A generic tool to browse tutor-student
interactions: Time will tell!. In Proceedings of the 12th International Conference on Artificial Intel-
ligence in Education (pp. 29–32). Amsterdam, The Netherlands. https://pdfs.semanticscholar.org/eeb8/
7c154e2dca61141354ba6208210908509c8c.pdf.

Reffay, C., Teplovs, C., & Blondel, F. M. (2011). Productive re-use of CSCL data and analytic tools to
provide a new perspective on group cohesion. In Proceedings of the 9th International Computer-
Supported Collaborative Learning Conference: Connecting Computer-Supported Collaborative
Learning to Policy and Practice (pp. 846–850). Hong Kong, China. https://halshs.archives-ouvertes.fr/
edutice-00616547/document.

Santos, O. C., Gaudioso, E., & Boticario, J. G. (2003). Helping the tutor to manage a collaborative task in a
web-based learning environment. In Proceedings of the AIED 2003 Workshop Towards Intelligent
Learning Management Systems (pp. 72–81). Sydney, Australia. https://pdfs.semanticscholar.org/40e6/
ab1079a0848a5ebb260082c09a226c7d98a6.pdf.

Seidwitz, E. (2003). What models mean. IEEE Software, 20(5), 26–32. http://www.ie.inf.uc3m.es/grupo/
docencia/reglada/ASDM/Seidewitz03.pdf.

Settouti, L. S., Marty, J. C., Mille, A., & Prié, Y. (2009). A trace-based system for technology-enhanced
learning systems personalisation. In Proceedings of the 9th International Conference on Advanced
Learning Technologies ICALT (pp. 93–97). Riga, Latvia. https://www.researchgate.net/publication/
221423776_A_Trace-Based_System_for_Technology-Enhanced_Learning_Systems_Personalisation.

Soller, A., Martinez, A., Jermann, P., & Muehlenbrock, M. (2005). From mirroring to guiding: A review of
state of the art technology for supporting collaborative learning. International Journal of Artificial
Intelligence in Education, 15, 261–290. http://ijaied.org/pub/1016/file/1016_Soller05.pdf.

Tedesco, P. A. (2003). MArCo: building an artificial conflict mediator to support group planning interac-
tions. International Journal of Artificial Intelligence in Education, 13, 117–155. http://ijaied.org/pub/
979/file/979_paper.pdf.

Von Davier, A. A., & Halpin, P. F. (2013). Collaborative problem solving and the assessment of cognitive
skills: Psychometric considerations. Research report no. 13–41. P. Educational testing service, NJ
(Ed.) (p. 36). https://www.ets.org/Media/Research/pdf/RR-13-41.pdf.

Zarka, R., Champin, P. A., Cordier, A., Egyed-Zsigmond, E., Lamontagne, L., & Mille, A. (2013). TStore: A
trace-base management system using finite-state transducer approach for trace transformation. In
Proceeding of the 1st International Conference on Model-Driven Engineering and Software Devel-
opment (pp. 117–122). Barcelona, Spain. http://liris.cnrs.fr/Documents/Liris-5880.pdf.

Zhang, H., & Almeroth, K. (2010). Moodog: Tracking student activity in online course management
systems. Journal of Interactive Learning Research, 21(3), 407–429. https://www.learntechlib.org/p/
32307.

64 T. Djouad, A. Mille

123

https://www.researchgate.net/publication/281327763_Model-Driven_Engineering_MDE_and_Model-Driven_Architecture_MDA_applied_to_the_Modeling_and_Deployment_of_Technology_Enhanced_Learning_TEL_Systems_promises_challenges_and_issues
https://www.researchgate.net/publication/281327763_Model-Driven_Engineering_MDE_and_Model-Driven_Architecture_MDA_applied_to_the_Modeling_and_Deployment_of_Technology_Enhanced_Learning_TEL_Systems_promises_challenges_and_issues
https://www.researchgate.net/publication/281327763_Model-Driven_Engineering_MDE_and_Model-Driven_Architecture_MDA_applied_to_the_Modeling_and_Deployment_of_Technology_Enhanced_Learning_TEL_Systems_promises_challenges_and_issues
https://hal.archives-ouvertes.fr/hal-00161482/document
https://hal.archives-ouvertes.fr/hal-00161482/document
https://telearn.archives-ouvertes.fr/hal-00190427/document
https://www.researchgate.net/publication/220373199_TrAVis_to_Enhance_Online_Tutoring_and_Learning_Activities_Real_Time_Visualization_of_Students_Tracking_Data
https://www.researchgate.net/publication/220373199_TrAVis_to_Enhance_Online_Tutoring_and_Learning_Activities_Real_Time_Visualization_of_Students_Tracking_Data
https://www.researchgate.net/publication/252554029_Monitoring_an_online_course_with_the_GISMO_tool_A_case_study
https://www.researchgate.net/publication/252554029_Monitoring_an_online_course_with_the_GISMO_tool_A_case_study
https://www.researchgate.net/publication/292023411_Mining_student_data_captured_from_a_web-based_tutoring_tool_Initial_exploration_and_results
https://www.researchgate.net/publication/292023411_Mining_student_data_captured_from_a_web-based_tutoring_tool_Initial_exploration_and_results
https://www.researchgate.net/publication/292023411_Mining_student_data_captured_from_a_web-based_tutoring_tool_Initial_exploration_and_results
https://pdfs.semanticscholar.org/eeb8/7c154e2dca61141354ba6208210908509c8c.pdf
https://pdfs.semanticscholar.org/eeb8/7c154e2dca61141354ba6208210908509c8c.pdf
https://halshs.archives-ouvertes.fr/edutice-00616547/document
https://halshs.archives-ouvertes.fr/edutice-00616547/document
https://pdfs.semanticscholar.org/40e6/ab1079a0848a5ebb260082c09a226c7d98a6.pdf
https://pdfs.semanticscholar.org/40e6/ab1079a0848a5ebb260082c09a226c7d98a6.pdf
http://www.ie.inf.uc3m.es/grupo/docencia/reglada/ASDM/Seidewitz03.pdf
http://www.ie.inf.uc3m.es/grupo/docencia/reglada/ASDM/Seidewitz03.pdf
https://www.researchgate.net/publication/221423776_A_Trace-Based_System_for_Technology-Enhanced_Learning_Systems_Personalisation
https://www.researchgate.net/publication/221423776_A_Trace-Based_System_for_Technology-Enhanced_Learning_Systems_Personalisation
http://ijaied.org/pub/1016/file/1016_Soller05.pdf
http://ijaied.org/pub/979/file/979_paper.pdf
http://ijaied.org/pub/979/file/979_paper.pdf
https://www.ets.org/Media/Research/pdf/RR-13-41.pdf
http://liris.cnrs.fr/Documents/Liris-5880.pdf
https://www.learntechlib.org/p/32307
https://www.learntechlib.org/p/32307

	Observing and Understanding an On-Line Learning Activity: A Model-Based Approach for Activity Indicator Engineering
	Abstract
	Introduction
	Indicators and Indicator Engineering in Technology Enhanced Learning Systems
	Building Indicators from Modeled Traces
	Trace Based System
	Model Driven Architecture
	Indicator, Modeled Trace and Transformation Sequence
	Indicator Model and Instance Definition
	Indicator Instances and m-Trace Transformation

	Computing Indicator Instances
	Collecting Data
	Transformation Sequence
	Indicator Engineering Driven by Trace Models

	Computing Indicators in a Real Learning Situation: Case Study
	Describing the Learning Situation
	Scenario 1: Computing a New Indicator
	Our Goal
	Case Study
	Synthesis

	Scenario 2: Computing a New Indicator from an Existing Indicator
	Our Goal
	Case Study
	Synthesis

	Scenario 3: Reusing the Same Indicator in Another Learning Platform
	Our Goal
	Case Study
	Synthesis

	Conclusion
	References

