
ORIGINAL RESEARCH

Predicting Student Success: A Naı̈ve Bayesian
Application to Community College Data

Fermin Ornelas1 • Carlos Ordonez2

Published online: 17 August 2017
� Springer Science+Business Media B.V. 2017

Abstract This research focuses on developing and implementing a continuous Naı̈ve

Bayesian classifier for GEAR courses at Rio Salado Community College. Previous

implementation efforts of a discrete version did not predict as well, 70%, and had

deployment issues. This predictive model has higher prediction, over 90%, accuracy for

both at-risk and successful students while easing interpretation and implementation. Pre-

dictive results across eleven courses and cumulative gain charts show potential improve-

ments to be made in students’ academic success by focusing on high level risk students.

Researchers at other colleges might find this empirical application relevant for imple-

mentation of early alert systems.

Keywords At risk students � Cumulative gains � Naı̈ve Bayesian � Predictive
model

1 Introduction

Academic institutions today face several challenges driven by cost concerns, increasing

accountability, and diminishing resources. For instance, a recent report (Oliff et al. 2013)

assessed state financial cuts to higher education for the fiscal years 2008–2013. Among its

main findingswere: all states except forNorthDakota andWyoming saw severe reductions in

higher education funding; 11 states cut educational funding by more than a third; 36 states

shrank funding by more than 20%; and Arizona and New Hampshire occupied first and

second place in the list among those states, decreasing their funding to higher education by

50%. Meanwhile, graduation rates for young adults have been stagnant for at least twenty
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years. The Lumina Foundation (2015) reported that in the 1970s the college graduation rate

was 40% and recently reported it at 45.8%. However, according to a newspaper report

(Rampell 2013) the trend has improved in the last five years. Furthermore, there is an ongoing

federal effort to increase graduation rates while preventing college cost increases (President

Obama 2013 State of theUnionAddress 2013). Therefore, to address the low graduation rates

problem institutions have responded with additional online academic options to entice stu-

dents to continue their education. For instance, Allen et al. (2016) reports that more than one

in four students takes at least one online course. Subsequently, to monitor student progress

new decision tools primarily used by the business community are now being tailored to the

needs of academic institutions. Predictive modeling, profiling and segmentation, which are

tools used for portfolio risk management and targeted marketing in the financial industry, are

now utilized to monitor students’ academic progress and to customize programs for student

academic engagement (Bienkowski et al. 2012; Eduventures 2013; ECAR-ANALYTICS

Working Group 2015). Online behavior such as, students—instructors interactions, student-

to-student contacts, number of logins to class material, on time or lack of assignment sub-

mission and grades are being appended to demographic attributes to predict student academic

success (Hung and Zhang 2008).

Rio Salado Community College (RSCC) offers most of its courses on line and to

monitor its students’ progress it has implemented a Naı̈ve Bayesian (NB) classifier into its

LMS, Rio Learn. Moreover, it has implemented a faculty driven support program intended

to provide timely customized course feedback to meet students’ needs, Guided Evaluation

Assessment Response (GEAR). The program is a ‘‘technology-based, faculty-developed

solution that contains an integrated set of teaching tools intended to increase feedback

quality and consistency, as a fundamental component for providing guidance that promotes

learning as part of assessment. The system provides students with enhanced feedback,

consistent grading, and an improved learning experience (Rio Salado College Report of

Student Learning 2013). The predictive model uses student attributes to generate warning

indicator levels alerting instructors on how his/her students are performing in the course.

The NB classifier though, has converted the predictor attributes to comparative measures.

The predictors used by the current classifier implemented at RSCC are: number of logins,

number of site engagement activities, total points earned, total points submitted, credit load

and weighted versions of logins and site engagement (Smith et al. 2012). This approach in

the pilot study has presented roll out issues to additional courses and results are less

appealing for analysis and actual decision-making. Therefore, the objectives of this paper

are: (1) to report empirical findings of a redesigned approach; (2) to demonstrate predictive

efficiency gains derived from modeling with continuous attributes in the relational data-

base; and (3) to compare Naı̈ve Bayesian classifier to logistic regression results. The next

section focuses on related online-learning research, data description and aggregation will

follow, next we discuss the methodology followed by empirical results and finally the

paper concludes with some recommendations arising from this empirical study.

2 Literature Research

To put this project research into context, we looked at several studies focusing on student

success. Barber and Sharkey (2012) reported on two logistic regression models predicting

student course success at the University of Phoenix through course week 4. One model had

the following variables: \65% points in prior courses, [85% points in prior courses,

credits earned at the university of Phoenix and cumulative points earned. They considered
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three risk tiers: high risk, low risk, and grey zone. Their findings were that the model

predicted passing (low risk) or failing (high risk) accurately often 90% of the time. The

second model added to those variables, non-current financial status, credits earned to

credits attempted ratio, transfer credits higher than 18, days until first activity date, number

of online posts, and point delta to prior courses. Credits earned to credits attempted ratio

and non-current financial status both were strong indicators of students’ difficulties. The

investigators concluded that adding these new variables increased the predicted accuracy

of the second model.

Smith et al. (2012) were the early developers of the currently used classifier at RSCC.

The predictors used by the current classifier implemented at RSCC are: number of logins,

number of site engagement activities, total points earned, total points submitted, credit load

and weighted versions of logins and site engagement. To guide instructor support, these

researchers created a three-warning risk level system: low, moderate, and high for student

successful class completion with a C or better. The model was tested on a pilot class and

found that it correctly classified 70% of students in the high-risk category but did not do as

well identifying students in the remaining warning levels. This effort was an analytic

improvement as it has served to layout the foundations for tracking and monitoring student

performance and further development in predictive modeling at RSCC.

Liu et al. (2009) wanted to measure the effect of social presence on course retention and

final grade for students taking online community college courses. Using survey data on

social presence they estimated two logistic regression models. One model was developed

to predict course retention using a dichotomous indicator for success and another ordinal

model to predict final grade. The later model specification, had grades as a multilevel

dependent variable. From survey data collected after the third week into the semester, they

concluded that there was a positive relation between social presence and course retention.

The odds of course retention were 1.015 more times for each unit increase in social

presence score. Similarly, in the ordinal model predicting grade level as a function of

social readiness, they concluded that the higher the social presence the higher the chances

of a better grade. Their recommendation was to develop tools for early identification of at-

risk students and create effective interventions intended to increase students’ social

presence.

Hung and Zhang (2008) analyzed patterns of online behaviors to make predictions on

learning outcomes for 98 students enrolled in a business course in Taiwan. The variables

included in the analysis were: final grade, total frequency of LMS logins, total frequency of

accessing course material, last time accessed course materials, number of bulletin boards

messages posted, number of synchronous discussions attended, hours spent reading bulletin

board messages, and number of board bulletin messages read. Descriptive and predictive

analysis was undertaken and a decision tree was applied to build a predictive model of

online learning performance. Decision trees are rule driven algorithms where an outcome

variable—root-relation to a set of attributes is divided into various segments—nodes-based

on significant Chi square values at each level, (Buntine 1992). Among the empirical

findings discussed by Hung and Zhang, were: frequency of accessing course material was

the most important variable for performance prediction. Students accessing the course

material more than 44.5 times had improvement in their grade to 89.62. If students read

more than 66.5 messages the corresponding grade would improve from 72.57 to 88.

Overall, Hung and Zhang (2008) found that when students were more actively engaged

tended to perform academically better. Thus, accessing the course material and actively

participating on online discussion were strong performance predictors.
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Shelton, Hung and Baughman (2016) utilized time-series clustering analysis to predict

course failure for graduate students in teacher education. Data from the spring semester

was collected and divided into training and validation at 60 and 40%, respectively. Static

demographic variables combined with performance dynamic variables were employed to

estimate six models: decision tree, boosting, logistic regression and rule induction. Based

on their respective misclassification rates in the validation data set, the researchers con-

cluded that the decision tree was the best model in predicting at-risk students at the 10th

week into a sixteen week course; it captured 78.6% of at risk students. However, according

to Shelton et al. (2016), predicting at the 10th week presented a problem when designing

timely successful interventions. A subsequent paper by Shelton, Hung, and Lowenthal

(2017) studying the same population, intended to enhance both timing and increase in

prediction rates by taking into account variances in learning patterns and course activity

requirements. Utilizing the time difference in login data they successfully augmented the

model prediction accuracy earlier at week six into the semester. This new effort led to

higher prediction rates, 85.45%, while model accuracy was at 89.26%.

Ifenthaler and Widanapathirana (2014) undertook a major learning analytical project for

Australian universities. They focused on two aspects of the analytical framework: student

profile and learning profile. The former refers to static and dynamic parameters inherent to

the individual (i.e. demographics, learning strategies, motivation, social media skills, etc.).

The latter, relates to variables within the learning management system such as: time per

session, time on task, time on assessment. Other parameters included were: login fre-

quency, task completion rate, assessment activity, assessment outcome, learning material

activity, discussion activity, support access, rating of learning material, assessment, sup-

port, effort, etc. Their estimation methods applied were multiple regression and support

vector machines (SVM). Several model versions were built to analyze the data for each

profile. For the student profile a sample of 146,001 students encompassing 1509 study units

were gathered. They identified as more important variables associated with study unit

outcome: historical grade, historical cumulative fails and highest level of prior education.

The preferred model (6) accounted for 80% accuracy in predicting study unit outcome. For

the learning profile, they focused on two units at one institution impacting 12,002 students.

According to them assessment attempts, learning materials accessed, and self-assessment

were the most important variables. Of the two SVM learning models built, model 1

predicted the study unit outcome with an accuracy of over 90%. Moreover, to assess the

performance of the model they divided the study period in four equal intervals. The

explained variance went from .528 in the first period to .878 in the last period suggesting

that the model performance enhanced with the increased interaction. Furthermore, the

predictive accuracy of the SVM model increased overtime over 90%. In both analyses, the

authors stressed the importance of addressing students’ needs early in the study unit to

prevent attrition and increase success.

Macfadyen and Dawson (2010) conducted a pilot study to assess the usefulness of LMS

tracking data to predict student success in an online undergraduate Biology course at the

University of British Columbia in 2008. Data gathered at the student level included term

counts for frequency usage of course material and tools supporting content delivery,

engagement and discussion, assessment and administration/management. Moreover, total

time spent on tool-based activities such as: assessments, assignments, and total time gave a

measure of time-on-task by the student. They estimated two statistical models: (1) a

multiple regression model to predict grade as a function of total number of discussion

messages posted, number of completed assignments and number of messages sent; (2) a

binary logistic model with the same set of predictors where the class event defined students
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at risk if final grade was\60, otherwise the student was successful in the course. The main

empirical finding from model (1) was that more than 30% of the variation in student final

grade was explained by the set of independent attributes. Likewise, model (2) correctly

identified 70.3% of the students at risk of failure. Interestingly the most predictive attribute

in the logistic model was the variable measuring total student contribution to course

discussion forums. This empirical fact validated student peer engagement as part of the

learning process for student success. Note that these studies focused on predicting success

and retention for a single course using course behavior predictors. Our study applies the

NB model to eleven high enrollment courses using similar learning predictors because they

are dynamic and highly modifiable through targeted interventions by faculty and

instructors.

The outcome of interest, success and non-success in a course can be seen as an event

classification problem and as such it can be described by a Bernoulli probability distri-

bution (Elkan 2014) suitable for estimation with logistic regression or NB. In this research

the authors pursued a continuous Naı̈ve Bayesian classifier because the predictors selected

were continuous, easiness of interpretation and implementation. In the following section

we discuss data set collection steps for the development of the NB classifier and some

sample characteristics.

3 Data Collection Process

To build the continuous Naive Bayesian classifier we extracted the data from various

tables residing in the SQL server, generated from Rio Learn the internal LMS system. The

activity table records all student transaction interactions with the course material and the

corresponding instructor. These activities were condensed to create four learning dynamic

variables: number of logins, site engagement, weighted logins, and weighted site

engagement. A separate database from the Maricopa Community College District cap-

turing course modality, number of credits, grading and course enrollment provided student

performance fields used to elaborate points earned, points submitted, and credits load.

The courses selected experience high enrollment and since they are geared towards

either an associate degree or a university transfer course length is mostly 16 weeks. The

courses included are: BIO100, CHEM130, CHEM130LL, CRE101, ECN212, ENG101,

ENG102, FON241, FON241LL, GBS233, HIS103, HIS104, and PSY101. Rio Salado has

forty eight weekly start dates with classes beginning every Monday and with different

course lengths. Going forward an adjustment in the attributes calculation and segmentation

is likely to require further research to reflect this dynamic process. For this stage of the

research, the data has been aggregated by student ID, actual class event and course

included in the GEAR program for students enrolled in the fall 2012 through spring 2013.

The fall semester data was utilized to develop the predictive model while the spring data

set was kept separate for conducting out of sample validation. Actual success frequencies

for both training and validation showing total success for the courses selected are provided

in Table 1 below.

Success is defined as achieving a C or higher in a course. Success rates are 56.8 and

60.1% for training and validation data sets, respectively; while non-success figures are 43.2

and 39.9%, accordingly. Moreover, Table 2 provides some demographic characteristics of

students enrolled in the fall of 2012 by success indicator. Since 60% of the students in the
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considered sample are enrolled in a single course the demographic analysis is focused on

these students.

In Table 2 we present some demographic characteristics of the studied population. It is

noticeable that both genders have roughly the same level of success, but women have about

twice the enrollment of men. Regarding race, whites achieved the highest success rate at

70%, at the other extreme Blacks had the lowest success rate at 42%, while Hispanics were

in around the middle at 59%, Asians had almost the same success as whites but their actual

numbers were smaller, American Indians had a 50% success rate but also their actual

participation is much lower. When considered by age, success rates remained somewhat

constant at around 60–67%, interestingly age categories 21–24 and 25–30 constitute 45%

of the total sample. When looking at student work activity two large groups exist students

declaring not working at all and those working 31 or more hours; thus nearly half of the

sample is composed of non-traditional mature students most likely working at least

31 hours. Furthermore, a significant number of these students enrolled at RSCC are first

college generation. Finally at the bottom of Table 2 we provide success rates for students

taking one course and more than one course. The success rate for those taking more than

one course is lower at 48% compared to 63% for those taking one course. Students enrolled

in one GEAR course represent 77% of the training sample, while 19% of the sample took

two courses and the rest of students the enrolled in three classes or more. It appears that

more than half of them are first time in college students and are more likely to be females.

Close to half of those students appear to be working 31 or more hours per term. Thus

statistical evidence in Table 2 shows that 37% of the students taking one GEAR course in

the training sample are not being successful.

The overall non-success rate for this sample is slightly higher at 43% compared to the

actual validation sample 39.9% (Table 1). Therefore, we have undertaken this project

research so that struggling students and instructors can use Rio PACE indicators moni-

toring their academic progress to receive timely course feedback and targeted assistance to

enhance their likelihood of success.

To assess actual success distribution across the GEAR courses in both samples two

histograms are provided below. Figure 1 shows the graphical distribution for the training

sample, while Fig. 2 presents the distribution for the validation data set. Despite the

different number of observations in the training and validation samples, both data sets

appear to have similar distributions. Interestingly, in the validation data despite the smaller

sample size success counts by course follow the same behavior as in the training sample. In

both histograms higher success is observed in ENG102 and PSY101, while low success

rates are present in BIO101, CHEM130 and HIS103. The latter two courses, BIO101 and

CHM130, differ in complexity with respect to the other courses and that could account for

such low success rates.

It is recommended that both training and validation data sets share similar distributions,

so that the estimated model obtains better prediction rates for meaningful out of sample

Table 1 Frequency distribution
for training and validation
samples

Success indicator Training Validation

Frequency Percent Frequency Percent

0 2564 43.2 1085 39.9

1 3372 56.8 1637 60.1

Total 5396 100 2722 100
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validation. If that were not the case then one is likely to find that actual and predicted

success rates might differ, thus leading to a possible rebuilding of the model. Brooks and

Thompson (2017) advise building a model on data available from one year, then construct

a testing set consisting of data from the following year, rather than dividing the data set

from a single year into training and validation. The approach followed in this paper is

Table 2 Selected demographic attributes for GEAR enrollees, fall 2012

Demographics Success indicator

Gender Non-success Non-success (%) Success Success (%) Total

Females 837 37 1420 63 2257

Males 455 37 782 63 1237

Unknown 15 38 25 63 40

Race

Unknown 89 37 151 63 240

Hispanics 250 41 366 59 616

American Indian 26 50 26 50 52

Asian 28 31 61 69 89

Black 294 58 217 42 511

Hawaiian, Pacific Islander 4 40 6 60 10

White 606 30 1382 70 1988

Two or more races 10 36 18 64 28

Age

LE 20 253 40 382 60 635

21–24 281 39 431 61 712

25–30 314 36 558 64 872

31–35 170 34 331 66 501

36–40 109 36 194 64 303

41–45 73 33 145 67 218

46–50 57 41 83 59 140

51–55 27 28 71 72 98

GE 56 23 42 32 58 55

Work hours

Unknown 40 40 59 60 99

None 456 41 655 59 1111

1–10 42 31 94 69 136

11–15 39 38 63 62 102

16–20 98 41 140 59 238

21–30 117 35 216 65 333

31 or more 515 34 1000 66 1515

First in college

N 531 35 1007 65 1538

Y 776 39 1220 61 1996

GEAR courses taken

1 GEAR course 1307 37 2227 63 3534

2 or more GEAR courses 1257 52 1145 48 2402
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consistent with their recommendation but applied to Fall and Spring terms. It is important

to notice that success rates for the validation data set were not available at the time of the

scoring of this sample. Final grades from the eleven courses were later appended to the

validation data after being posted.

Next, we present two tables containing the set of sufficient statistics to be used by the

scoring algorithm as specified in the methodology section. Tables 3 and 4 below provide

these statistics, means and standard deviations, for the predictors included in the model.

The class event, success/non-success is represented by a binary indicator for students

achieving a grade of C or higher as successful or otherwise in the eleven courses listed in

the table. Note that cell sizes by class event category and course are greater than thirty, thus

adequate for model estimation and checking for normality of the predictors. These
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statistical figures are derived from the algorithm in the estimation and used in the out of

sample validation.

The corresponding variable definitions are given in Table 5 below. Given the model

specification all the variables are defined as numeric easing their interpretation for analysis

by administrators at the institution. Ideally as stated in the methodology section, we want

these predictors to satisfy the normality assumption. Logins and site engagement with their

weighted counterparts satisfied the mentioned condition, while points earned and points

possible violated this assumption. That was somewhat expected as the latter two attributes

are performance related, thus subject to more sample variability.

Also, the value ranges is wider for BIO100 and CHM130 undoubtedly related to subject

matter complexity. The next sections focus on methodological aspects of the model, data

interpretation and empirical findings.

4 Methodological Procedures

In developing the SQL algorithm for the continuous Naı̈ve Bayesian model we followed

research undertaken by Ordonez and Pitchaimalai (2010), and Pitchaimalai et al. (2010).

The Naı̈ve Bayesian model specification rests on the following assumptions: predicting

attributes of success are independent and normally distributed. While the first condition,

Table 3 Mean statistics for GEAR courses by success indicator, fall 2012

Success indicator Course Ng m_x1 m_x2 m_x3 m_x4 m_x5 m_x6

0 BIO100 207 23.86 19.68 8.13 6.61 1349.00 2812.80

0 CHM130 348 28.42 19.22 10.66 7.00 1013.22 1812.82

0 CRE101 87 15.89 12.23 3.99 2.80 137.14 427.64

0 ECN212 77 16.66 11.21 5.67 3.56 137.74 397.27

0 ENG101 570 25.38 19.52 8.78 6.37 233.78 676.09

0 ENG102 428 23.56 17.60 8.24 5.68 217.16 465.19

0 FON241 200 20.81 17.09 7.15 5.77 253.77 492.68

0 GBS233 31 21.39 15.26 7.64 5.26 173.68 535.81

0 HIS103 130 21.09 12.44 7.97 4.63 108.70 300.38

0 HIS104 70 15.39 8.81 5.16 2.91 67.77 257.14

0 PSY101 416 20.97 16.34 6.89 5.10 107.06 296.60

1 BIO100 159 54.77 46.75 26.13 21.98 4687.70 5838.36

1 CHM130 330 46.00 31.64 21.92 14.78 2415.44 2829.21

1 CRE101 271 49.15 42.94 23.25 20.18 899.31 969.24

1 ECN212 130 33.27 24.59 15.15 10.80 552.23 655.54

1 ENG101 625 55.18 46.66 27.04 22.88 889.42 997.46

1 ENG102 635 50.72 41.68 24.92 20.25 877.54 991.97

1 FON241 301 45.20 38.43 21.07 17.62 949.77 1081.06

1 GBS233 94 46.29 36.53 22.38 17.18 822.93 916.60

1 HIS103 108 41.98 28.27 20.65 13.61 422.81 499.54

1 HIS104 88 37.56 24.78 18.45 12.03 424.26 499.43

1 PSY101 631 47.58 38.79 22.58 18.09 425.45 495.73
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Table 4 Standard deviation statistics for GEAR courses by success indicator, fall 2012

Success indicator Course Ng s_x1 s_x2 s_x3 s_x4 s_x5 s_x6

0 BIO100 207 19.08 15.75 9.95 7.92 1454.56 1973.82

0 CHM130 348 17.15 12.24 9.29 6.51 685.36 917.78

0 CRE101 87 11.13 8.15 5.15 3.37 142.25 156.15

0 ECN212 77 11.45 7.86 6.30 4.10 144.04 163.14

0 ENG101 570 15.32 12.34 7.82 6.16 192.91 175.93

0 ENG102 428 15.22 11.78 7.68 5.62 180.37 215.10

0 FON241 200 16.92 13.99 8.82 7.13 238.56 280.82

0 GBS233 31 12.77 8.79 6.93 4.84 172.81 171.48

0 HIS103 130 15.09 9.18 7.91 4.71 122.19 139.84

0 HIS104 70 10.90 6.84 5.48 3.47 96.97 122.26

0 PSY101 416 14.30 11.01 6.98 5.22 102.90 107.04

1 BIO100 159 16.00 12.34 7.65 5.94 390.86 277.60

1 CHM130 330 14.64 10.48 7.29 5.20 259.12 207.42

1 CRE101 271 15.07 13.81 7.84 7.11 108.64 100.07

1 ECN212 130 11.71 8.24 6.04 3.96 47.31 17.40

1 ENG101 625 14.36 11.97 7.44 6.22 66.44 12.04

1 ENG102 635 14.78 12.22 7.60 6.17 77.60 32.48

1 FON241 301 15.00 12.27 7.56 6.26 248.10 224.27

1 GBS233 94 13.96 9.36 7.02 4.60 53.52 17.20

1 HIS103 108 11.63 8.38 6.14 4.19 34.20 4.81

1 HIS104 88 13.02 8.01 6.80 4.25 37.13 5.33

1 PSY101 631 14.00 11.63 7.15 5.80 34.81 11.56

Table 5 Variable definitions
Variable Definition Type

Success indicator Achieving C or better Binary

Course Course Catalog Name Descriptive

Ng Count per Course and Class Numeric

m_x1 Mean of Logins Numeric

m_x2 Mean of Site Engagement Numeric

m_x3 Mean Weighted Logins Numeric

m_x4 Mean Weighted Site Eng. Numeric

m_x5 Means Points Earned Numeric

m_x6 Means Points Possible Numeric

s_x1 Std. Deviations Logins Numeric

s_x2 Std. Deviation Site Eng. Numeric

s_x3 Std. Weighted Logins Numeric

s_x4 Std. Weighted Site Eng. Numeric

s_x5 Std. Weighted Points Earn. Numeric

s_x6 Std. Deviations Points Poss. Numeric
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independence, is rarely satisfied Naı̈ve Bayesian application results seems to be robust

(Zhang 2004). Those assumptions facilitate the calculation of sufficient statistics necessary

for model prediction and implementation at the course level. For alternative distribution

specifications to predicting attributes see John and Langley (1995).

Let Cj represent an element belonging to the jth. class of the event of interest, i.e.

success and non-success; h be the number of dimensions of a set of attributes given by X,

i.e. number of site engagements; k be the number of GEAR courses students enrolled into;

and n be the number of observations per each element of X, Xih. Then for each class Cj, the

continuous Naı̈ve Bayesian basic statistics and probability density parameters require the

following conditions:

Lk2j ¼
X

xi2Xk2j

xi ð1Þ

Moreover, let Qk2j ¼
P

xi2Xk2j
xi � x0i be the cross product matrix. However, because of the

independent assumption among the attribute elements in X we focus only on the diagonal

elements of Qk[j.

These calculations apply to each element of attributes X per class Ck[j. Furthermore, for

each Xd belonging to the class event Ck[j corresponds a number of observations Nk[j.

Therefore one can obtain the Gaussian sample parameter estimates given as:

Mk2j ¼
Lk2j
Nk2j

; and ð2Þ

Vk2j ¼
Qk2j
Nk2j

� Lk2j
N2
k2j

� L0

k2j ð3Þ

Both expressions for Mk[j and Vk[j are statistical representations of lkh and rkh per each

dimensional class j for course k.

Once these statistics are computed subsequently for scoring Gaussian conditional

probabilities and prior probabilities are derived at each data point in the data set X for each

class event j. The set of prior probability values is given by pðCk2jÞ ¼ Nk2j
n

for each class

event j in course k. Furthermore, the conditional Gaussian probabilities to compute final

posterior probabilities can be expressed as:

P Xk2i;h
� �

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pr2k2j;h

q � exp �:5ðXk2i;h � lk2j;hÞ2=r2k2j;h
n o

ð4Þ

The joint probability of each X element h is expressed as p Xk2i;hjj
� �

¼ PhP Xk2i;hjj
� �

;

where Xk2i;h represents the h-dimensional value for Xi in each course k. To score both

development and validation data sets, then optimum class Cj is determined by the fol-

lowing maximum probability expression:

P k 2 jjXk2ið Þ ¼ maxk2jpk2jPðXk2i;hjk 2 jÞ: ð5Þ

Thus, these mathematical expressions were combined into a decision algorithm written in

SQL in the Microsoft Server Management Studio 2012 for the selected GEAR courses.

Both training and validation score codes were implemented using data for fall 2012 for the

estimation of the model and for out of sample validation using data for spring 2013,
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respectively. In the next section, we will report on empirical results from applying this

Naı̈ve Bayesian specification to both training and validation data.

5 Empirical Results

In our research we wanted to predict student success for high enrollment courses partic-

ipating in the GEAR program at the course level. The model was estimated using the

following predictors: number of logins, weighted number of logins, site engagement

activities, weighted site engagement, points earned, and points possible. Model results

under the continuous Naı̈ve Bayesian were encouraging as the classifier achieved higher

non-success and successful identification compared with earlier work with a discrete

version of this model specification focusing on one course (Smith et al. 2012).

Two algorithms were created one for the development of the model using the training

data set, which generated the set of sufficient statistics in Tables 3 and 4. The second

algorithm used those coefficients to predict probability of success for the validation

sample. This step will provide a sense for how well the model is likely to perform in a

production environment. Therefore, the discussion now centers on presenting our empirical

findings for both training and validation samples.

The total sample for training encompassed 5936 students enrolled in GEAR courses

during the fall of 2012. Nonsuccess was 43.2%, while success stood at 56.8%. The total

validation sample amounted to 2722 students for the same courses during the spring of

2013. The corresponding nonsuccess/success rates were 39.86 and 60.14%, respectively.

These figures were not known at the time the actual validation took place, but became

available after the data warehouse was updated reflecting spring 2013 final grade results.

To evaluate the model fit, Table 6 below shows a cross tabulation of actual and esti-

mated outcomes for students in the GEAR courses based on the training sample. Table 6

depicts how the NB model has performed comparing the actual event with the estimated

outcome. For those students whose actual event was a success, 3290 were correctly

classified while only 82 were identified as false negatives. That will represent 97.6 and

2.4% of students where the actual outcome is positive, respectively. For those failing the

class, 2251 were correctly classified while 313 were classified as false positives. The latter

represent 12.2% of the students whose actual outcome was non-success, while the former

totaled 87.8% of the students failing a course. The overall classification rate of the NB was

93.3%. These results are expected since this is the training sample data set.

Since the intent of the model is to make predictions for the eleven GEAR courses we

provide a graphical representation of actual versus estimated success rates for the training

sample below at the course level (Fig. 3). As expected in this modeling stage estimated

Table 6 PACE GEAR courses
confusion matrix, fall 2012

Success Outcome

Fail Pass Total

0 2251 313 2564

87.8% 12.2%

1 82 3290 3372

2.4% 97.6% 100%

Total 2333 3603 5936
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rates are very close to actual rates in all courses except for BIO100, CHEM130, and

CHEM130LL showing wider gaps in estimated rates.

Most courses show less than 10% difference between actual and predicted estimated

success rates. Only those three courses show larger differences with CHM130 experiencing

the most difference in excess of 10%. One possible reason the model is not performing as

well for those three courses is that the points scale is very different from the other courses

and the complexity of those courses. Moreover, both point variables did not meet the

normality assumption.

Gains chart are frequently used in the financial industry to evaluate a model’s ability to

identify individuals more likely to respond to marketing offers. The larger the area between

the two curves the better the model’s classification. The 45 degree line usually represents

random targeting of customers, while the curved line represents the additional customers to

be gained if more selective targeting arising from a predictive model is initiated (Jaffery

and Liu 2009).

In our research this gains chart, Fig. 4, identifies the unsuccessful students by sample

tile that could be targeted for instructor-led interventions. We rank ordered students by

probability of non-success and segmented them into 10 tiles for both training and vali-

dation results. Students in lower tile numbers are likely at higher risk of non-success than

students in high number tiles. Figure 4 shows that at the 4th tile 89% of non-success

students in the training sample are identified.

To assess how well the model would perform in a production environment the out of

sample validation results for all eleven GEAR courses are shown in Table 7 below. Note

that the success indicator was unavailable at the time predictions were made. It was

appended to the data once final grades were uploaded into the data warehouse. This has

allowed us to gauge the model’s ability to predict success and non-success in the courses of

interest.

The main findings for the validation sample were the following: 91.9% of the students

were classified as true negative (997), i.e. unsuccessful, while 8.1% were predicted as false

positives, successful but in fact not doing well (88); likewise, 1547 were identified as true

positives, i.e. successful, while only 90 were misclassified as false negatives—successful

students but misclassified as un-successful; percentage wise figures translate to 94.5 and

5.5%, accordingly. Thus, the overall prediction was 93.5%.

0%
10%
20%
30%
40%
50%
60%
70%
80%

Non Success Actual Non Success Predicted Actual Success Predicted Success

Fig. 3 PACE GEAR courses actual versus predicted success rates for training sample
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Next we present a graphical representation (Fig. 5) demonstrating how well the model

predicted students’ performance at the course level for the validation sample. As we can

observe, the model predicts both non-success and success reasonably well across courses

with slightly higher differences for CHM130, HIS103 for non-successes. Interestingly, for

these courses the validation sample predictions are actually better than estimated results in

the training sample.

The initial number distribution of the actual success/non-success charts provided in the

data section is a useful tool to gauge both training and validation sample similarities,

particularly when predictions need to be made (Brooks and Thompson 2017). This is an

important feature that could ensure robust out of sample model performance. As seen in

Fig. 6 below, the cumulative gains chart for the validation sample provided were derived

based on the model using the predicting attributes from Table 3. Maximum lift and proper

classification for true negatives occurs at the 4th tile where over 90% of the non-successful

students are correctly classified.

The empirical interpretation arising from the chart is that proper identification of at-risk

students can lead to better allocation of programmatic assistance resources such as:

tutoring, advising and peer mentoring to high risk students. Thus, the institution can time
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Fig. 4 PACE cumulative gains chart model training sample

Table 7 PACE GEAR courses
confusion matrix, spring 2013

Success Outcome

Fail Pass Total

0 997 88 1085

91.9% 8.1%

1 90 1547 1637

5.5% 94.5% 100%

Total 1087 1635 2722
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its resources more adequately to increase student success in the eleven courses in the

GEAR program.

The overall performance of the model for the validation sample stands at 93.5%. Pre-

cision and accuracy rates are frequently used to determine the classification quality of

binary classifiers (Vuk and Curk 2006); thus by these measures the NB classifier achieved

accuracy and precision values of 93.3 and 91.3% in the training sample, while in the

validation sample those figures were 93.5 and 94.6% respectively. It is worth mentioning

that early estimation of the discrete model (Smith et al. 2012) predicted nonsuccess rates at

70% for one course, while our findings are in line with those of Barber and Sharkey (2012);

however the latter analysis was applied to a different student population.

We also estimated a logistic regression model on the training data set. In this

exploratory analysis, the dependent variable was an overall success indicator. Initial model
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Fig. 5 PACE GEAR courses actual versus predicted success rates for validation sample
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Fig. 6 PACE cumulative gains chart model validation sample
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diagnostics left us with three variables: weighted site engagement, points earned and points

possible. The signs of these variables were as expected. For instance, the more engaged

students were the more likely they were to be successful. Likewise, the higher the number

of points earned the higher the chances students had of passing a course. Points possible

had a negative sign suggesting that as points increase the success likelihood may decrease.

Since this was a predictive model on the overall success indicator, we did not pursue

further investigation on this because we were primarily interested in predicting success at

the course level. To pursue this approach would require estimation of separate models for

each course. However, the continuous Naı̈ve Bayesian under the independence assumption

facilitates estimation, prediction, and implementation across courses with a single model

specification; thus we opted for this model over logistic regression.

6 Conclusions and Limitations of the Study

The intent of this empirical research was to develop and implement a continuous Naı̈ve

Bayesian model to predict student success for high enrollment courses under the GEAR

program at Rio Salado Community College. This risk model is a key component of an alert

system to enhance student success at the course level. Training and validation findings

suggest that the model achieves high classification of non-successes and successes cases.

Compared to the early version of the discrete NB classifier, the continuous model obtains

higher rates of student classification and better prediction accuracy to a larger number of

courses. This performance could be attributed to both better model specification and data

measurement. The early model prediction non-success rate was 70% in a single course

(Smith et al. 2012), while this new model predicts 91.8% on eleven courses in the GEAR

program. The results of this research while not completely similar to those reported in the

literature review are consistent with their findings.

The gains charts capturing at-risk students’ distribution allow us to conclude that the

model identifies success and non-success properly. Students belonging into 1–4 tiles are

primary candidates for possible early intervention from instructors, advisors, and peer

mentors. Targeting this subpopulation is likely to improve success rates possibly leading to

higher persistence and completion rates.

For the training sample, the largest differences in predicting success were observed for

BIO100, CHM130, and CHM130LL. One explanation for this is that the point scale values

are different in these classes and material complexity. Surprisingly, for the validation

sample, results were actually better. Further development will be required to rollout the

model to other courses with shorter duration. Also early identification of at-risk students

might require model modifications for predicting success within a shorter time window so

that RSCC can program and target assistance resources accordingly. This is one limitation

of the study as students in an online environment are more likely to drop early in the

course. Predictions in the model are based on full term length but in exchange discussions

on these empirical findings, faculty has expressed concerns that by then it could be too late.

Recent empirical research (Shelton et al. 2016, 2017; Ifenthaler and Widanapathirana

2014) suggests that predicting early in the courses would result in timely interventions

while addressing student retention. Thus, some modeling work is currently in progress to

address these challenges. Finally, the results of this project could be relevant to other

community colleges practitioners expanding into online learning and having the means to

capture the needed data in their respective LMS to build similar early warning systems to

assist at-risk students.
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