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Abstract Interest in collecting and mining large sets of educational data on student

background and performance to conduct research on learning and instruction has devel-

oped as an area generally referred to as learning analytics. Higher education leaders are

recognizing the value of learning analytics for improving not only learning and teaching

but also the entire educational arena. However, theoretical concepts and empirical evidence

need to be generated within the fast evolving field of learning analytics. The purpose of the

two reported cases studies is to identify alternative approaches to data analysis and to

determine the validity and accuracy of a learning analytics framework and its corre-

sponding student and learning profiles. The findings indicate that educational data for

learning analytics is context specific and variables carry different meanings and can have

different implications across educational institutions and area of studies. Benefits, con-

cerns, and challenges of learning analytics are critically reflected, indicating that learning

analytics frameworks need to be sensitive to idiosyncrasies of the educational institution

and its stakeholders.

Keywords Learning analytics � Student profile � Learning profile �
Study success � Machine learning � Support vector machines

1 Introduction

Massive administrative, systems, academic, and personal data within educational settings

are becoming more and more available. This vast amount of educational information
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requires well-established data management, analysis, and interpretation (Long and Siemens

2011). Three concepts are linked to processing such educational information: Educational

data mining, academic analytics, and learning analytics.

Educational data mining (EDM) refers to the process of extracting useful data out of a

large collection of complex educational datasets (Romero et al. 2011). Academic analytics

(AA) is the identification of meaningful patterns in educational data in order to inform

academic issues (e.g., retention, success rates) and produce actionable strategies (e.g.,

budgeting, human resources) (Campbell et al. 2010). Learning analytics (LA) uses

dynamic information about learners and learning environments, assessing, eliciting and

analyzing it, for real-time modeling, prediction and optimization of learning processes,

learning environments, as well as educational decision-making (Ifenthaler in press;

Lockyer et al. 2013; Johnson et al. 2013).

All three concepts (EDM, AA, LA) refer to processing massive educational data,

however, only the LA concept does emphasize the optimization of learning processes and

learning environments in real-time. Further, learners’ needs and their predispositions are

multidimensional and quickly change over time (Ashby 1992; Ifenthaler and Seel 2013).

Numerous approaches for understanding these complex patterns of learning and predicting

their future developments for automating instruction have been challenged repeatedly in

the past (Ifenthaler et al. 2010). Applications of LA presupposes a seamless and system-

inherent analysis of learner’s progression in order to continuously adapt the learning

environment (Azevedo et al. 2005; Kalyuga 2006; Lin et al. 2013). Additionally, LA

provides the pedagogical and technological background for producing real-time inter-

ventions at all times during the learning process.

The purpose of this study is to address two major challenges of LA: (1) Explore

different approaches for data analysis for LA and (2) determine the validity of profiles

based on a LA framework. The following section introduces a LA framework, its related

profiles, and Support Vector Machines as an alternative approach for data analysis. Next,

two case studies for validating student and learning profiles of the LA framework using

support vector machines are presented. The general discussion critically reflects on the

results, suggests implications, and addresses concerns as well as further challenges of LA.

The final section concludes with a general comment towards future applications of LA.

2 Learning Analytics

2.1 Holistic Framework

As the field of LA is growing, several frameworks have been proposed which focus on

available data, instruments for data analysis, involved stakeholders, and limitations

(Greller and Drachsler 2012; Ferguson 2012). d’Aquin et al. (2014) argue for a closer

relationship between LA and linked data with a particular emphasis on semantic web

technologies. By connecting online available educational resources this approach, how-

ever, does not include valuable information of learner’s background information as well as

curricular requirements. Other frameworks focus on social learning analytics (SLA) in

which discussion activities are visualized using data mining and visualization tools

(Schreurs et al. 2014; Buckingham Shum and Ferguson 2012). The proposed tools have the

potential to provide rich information about learning processes in discussion activities in

real-time. Greller and Drachsler (2012) introduce six critical dimensions of a LA frame-

work including stakeholders, objectives, data, instruments, internal and external
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constraints. These dimensions are critical when designing and implementing LA appli-

cations and therefore provide a valuable guideline for LA projects. Still, elaborated and

more importantly empirically validated LA frameworks are scarce. Another limitation of

existing frameworks is the missing link of learner characteristics (e.g., prior learning),

learning behavior (e.g., access of materials), and curricular requirements (e.g., compe-

tences, sequencing of learning).

Therefore, Fig. 1 illustrates a holistic view of a LA framework linking various types of

educational information in a meaningful way (Ifenthaler in press).

The LA framework combines data directly linked to (1) individual stakeholders, their

interaction with the (2) social web and the (5) online learning environment, as well as (4)

curricular requirements. Additionally, data from (3) outside of the educational system is

integrated. The (6) processing and analysis of the combined data is carried out in a

multilayer data warehouse and (7, 8) returned to the stakeholders, e.g., (10) governance or

(9) institution, in a meaningful way.

Characteristics of (1) individual stakeholders include socio-demographic information,

personal preferences and interests, responses to standardized inventories (e.g., learning

strategies, achievement motivation, personality), demonstrated skills and competencies

(e.g., computer literacy), acquired prior knowledge and proven academic performance, as

well as institutional transcript data (e.g., pass rates, enrolment, dropout, special needs).

Associated interactions with the (2) social web include preferences of social media tools

(e.g., Twitter, Facebook, LinkedIn) and social network activities (e.g., linked resources,

friendships, peer groups, web identity).

Data from (3) outside the educational system is collected through various systems, for

example through a library system (i.e., university library, public library). Other physical

data may include sensor and location data from mobile devices (e.g., study location and

time), or affective states collected through reactive tests (e.g., motivation, emotion, health,

stress, commitments).

Fig. 1 Components and relations of the LA framework
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The (5) online learning environment (i.e., learning management system, personal

learning environment, learning blog) provides rich data of stakeholder activities which are

mostly numeric, for example logging on/off, viewing and/or posting discussions, results on

assessment tasks, or responses to ratings and surveys. These data can be aggregated to

produce data trails, such as navigation patterns or learning preferences and pathways. More

importantly, rich semantic and context specific information are available from discussion

forums as well as from complex learning tasks, for example from written essays, Wikis, or

blog posts. Additionally, interactions of various stakeholders (e.g., student–student; stu-

dent–teacher; tutor–teacher) are tracked.

Closely linked to the content and activities available from the online learning envi-

ronment is the (4) curricular information which includes meta data of all features of the

online learning environment. This meta data reflects the learning design (e.g., sequencing

of materials, tasks and assessments) and expected learning outcomes (e.g., specific com-

petencies). Ratings of materials, activities, and assessments as well as formative and

summative evaluation data are directly linked to specific curricula and stakeholders.

Structured and unstructured data from all systems are combined and processed in a

multilayer data warehouse using adaptive algorithms, referred to as the (6) LA engine. The

results of the data mining process are validated before further analyses are computed. Data

analytics approaches include supervised and unsupervised machine learning methods as

well as linear and nonlinear modeling methods. Such approaches include Support Vector

Machines, Bayesian networks, neural networks, natural language processing, survival

analysis, and hierarchical linear modeling which need to be closely linked to the under-

pinnings of applied pedagogical theories (see Sect. 2.3 for detailed information of these

approaches).

The (7) reporting engine uses the results of the LA engine and presents them in forms of

interactive dashboards, heat maps, statistics and graphs, as well as automated reports.

These automated reports are utilized for specific stakeholders such as the (10) governance

level (e.g., for cross-institutional comparisons), a (9) single institutions (e.g., for internal

comparisons, optimization of sequence of operations), as well as the (4) curriculum level

including insights and reports for learning designers and facilitators for analyzing

instructional processes, processing of learning materials, and students’ pathways.

The (8) personalization and adaption engine uses the results of the LA engine for

informative real-time feedback and scaffolds in the (5) online learning environment.

Interactive elements include simple learning prompts and recommendations (e.g., reminder

of deadlines, links to further learning materials, social interaction), rich personalized

visualizations (e.g., current and forecast of learning paths), as well as informative scaffolds

for specific learning activities and assessment tasks.

The implementation of the LA framework requires access to a real-time data collection

and adaptive processing of available data. This allows all stakeholders to personalize the

LA process in order to meet their individual requirements.

2.2 Profiles

Based on the above described LA framework, three profiles have been identified for

implementation: (1) student profile, (2) learning profile, and (3) curriculum profile (see

Fig. 2).

The student profile includes static and dynamic parameters. Static parameters do not

change quickly over time and include gender, age, education level and history, work

experience, current employment status, etc. Dynamic parameters are changing over time
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and include interest, motivation, response to reactive inventories (e.g., learning strategies,

achievement motivation, emotions), computer and social media skills, enrolments, drop

outs, pass-fail rate, average performance rate, etc.

The learning profile includes variables reflecting the current performance within the

learning environment (e.g., learning management system). Dynamic parameters include

time specific information such as time spent on learning environment, time per session,

time on task, time on assessment. Other parameters of the learning profile include login

frequency, task completion rate, assessment activity, assessment outcome, learning

material activity (upload/download), discussion activity, support access, ratings of learning

material, assessment, support, effort, etc.

The curriculum profile includes parameters reflecting the expected and required per-

formance defined by the learning designer and course creator. Static parameters include

course information such as facilitator, title, level of study, and prerequisites. Individual

learning outcomes are defined including information about knowledge type (e.g., content,

procedural, causal, meta cognitive), sequencing of materials and assessments, as well as

required and expected learning activities.

The available data from all profiles are analyzed using pre-defined analytic models

allowing summative, real-time, and predictive comparisons. The results of the comparisons

are used for specifically designed interventions that are returned to the corresponding

profiles. The automated interventions include reports, dashboards, prompts, and scaffolds.

Additionally, stakeholders receive customized messages for following up with critical

incidents (e.g., students at risk, assessments not passed, satisfaction not acceptable,

learning materials not used, etc.).

2.3 Support Vector Machines

The relative new field of LA and big data in education does not provide standardized

analytical strategies for informing LA frameworks and related profiles. Currently, major

Fig. 2 Connectedness of student, learning, and curriculum profiles of the LA framework
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analytical strategies for LA involve variations of regression analysis, such as, linear

regression models, logistic regression models, hierarchical linear models (da Silva et al.

2013). Other stochastic approaches include Bayesian networks and neural networks which

enable adjustments to the applied algorithms based on previous results (Bartholomew

1967). However, to identify highly non-linear and complex parameter relationships, the

above-mentioned analytical strategies have obvious limitations.

Besides random forest (Breiman 2001) and decision tree (Quinlan 1986) approaches,

support vector machines (SVM) is a promising alternative data analytic approach for

educational data and LA. SVM is a binary classification technique based on supervised

machine learning in the broad area of artificial intelligence (Drucker et al. 1997). Major

applications include pattern recognition, classification, and regression modeling (Christ-

mann and Steinwart 2008). The basic SVM takes a set of input data and predicts, for each

given input, which of two possible classes forms the output, making it a non-probabilistic

binary linear classifier (Cortes and Vapnik 1995). Given a set of training examples, each

marked as belonging to one of two categories; an SVM training algorithm builds a model

that assigns new examples into one category or the other. An SVM model is a represen-

tation of the examples as points in space, mapped so that the examples of the separate

categories are divided by a clear gap that is as wide as possible. New examples are then

mapped into that same space and predicted to belong to a category based on which side of

the gap they fall on. SVM can efficiently perform a non-linear classification using what is

called the kernel trick, implicitly mapping their inputs into high-dimensional feature

spaces. The advantages of SVM can be summarized as follows (Williams 2011; Cleophas

and Zwinderman 2013):

• SVM offer flexibility in modeling non-linear educational data.

• SVM has short training times to create new models and offer very fast testing speeds

when new samples are classified. These capabilities satisfy the demands of a real-time

LA system.

• SVM are flexible with regard to interactions between educational parameters from

different sources and hardly effected by the correlated parameters unlike most other

regression techniques.

• SVM does not rely on priori-knowledge on event probabilities that are often

unavailable and unreliable in education data.

• SVM can process imperfect educational data by providing a better sensitivity for

modeling dependent variables. SVMs are inherently robust against parse data and

outliers.

2.4 The Case Studies

Not all educational data is relevant and equivalent (Macfadyen and Dawson 2012).

Therefore, the theoretical and empirical validity of underlying profiles and the accuracy of

algorithms as well as its reliable analyses are critical for generating useful summative, real-

time, and predictive insights from LA. This initial investigation of the above-presented LA

framework includes two case studies focussing on the (1) student profile and (2) learning

profile through the application of SVM as an alternative data analytic approach.

The purpose of the first case study is to validate the above described student profile.

Well accepted empirical investigations identified variables directly linked to the student

profile (e.g., age, gender, education background, work hours, etc.) as critical factors for

study success (Tinto 1999; James et al. 2010; Thomas 2011; Crosling et al. 2009; Tinto
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1982). As part of assessing the validity of the proposed student profile, we adhere to the

question which specific factors of the student profile best explain study unit outcomes?

Hypotheses 1a It is hypothesized that student profile factors can be identified which

explain at least 40 % of variance of study unit outcomes.

Further, a major benefit expected from the underlying student profile of the LA

framework is providing early personalized interventions for students as well as facilitating

their on-going learning progression towards successful study unit outcomes (Aflalo and

Gabay 2012; Fenwick and Cooper 2012; Allen et al. 1988; Perumallaa et al. 2010; Lockyer

et al. 2013; Greller and Drachsler 2012; Macfadyen and Dawson 2010). Therefore, the

algorithms of the applied SVM model for the student profile require a high accuracy for

suggesting interventions for successful study unit outcomes (Williams 2011). This leads to

our second research question: Do the algorithms of the SVM model for the student profile

contain sufficient information for providing recommendations for personalized interven-

tions for predicting study unit outcomes with acceptable accuracy?

Hypothesis 1b It is hypothesized that the student profile can predict study unit outcomes

with at least 80 % accuracy.

Another challenge for establishing a LA framework is the interpretation of results

against the educational setting and its contextual idiosyncrasies (Coates 2010). Conse-

quently, the interpretation of analysis results depends on the context in which the educa-

tional data were collected (Lockyer et al. 2013). In other words, variables and indicators

can carry different meanings and can therefore have different implications. Further, these

variables and indicators may be underpinned by different data from different contexts such

as distinct area of studies or various institutions (Coates 2009, 2010; Bauer 1966).

Therefore, this case study investigates the student profile in the light of the idiosyncrasies

of higher education institutions and area of studies.

Hypothesis 1c It is hypothesized that the explained variance of the student profile differs

across higher education institutions.

Hypothesis 1d It is hypothesized that the explained variance of the student profile differs

across area of studies.

The second case study seeks to investigate the validity of the above-described learning

profile. More specifically, the case study investigates which specific factors of the learning

profile explain study unit outcomes.

Hypotheses 2a It is hypothesized that learning profile factors can be identified which

explain at least 80 % of variance of study unit outcomes.

Similar to the first case study, the algorithms of the applied SVM model for the learning

profile require a high accuracy for suggesting interventions towards successful study unit

outcomes. Therefore, we adhere to the question whether the algorithms of the SVM model

for the learning profile contain information for predicting study unit outcomes with

acceptable accuracy?

Hypothesis 2b It is hypothesized that the learning profile can predict study unit outcomes

with at least 80 % accuracy.

Finally, the purpose of a higher education institution’s course is that students should

attain a higher level of competence through a constant evolving and changing of individual
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dispositions as a result of learning experiences (Brabrand and Dahl 2009; Ifenthaler and

Seel 2011; Robinson 2004). The learning profile has the potential to track the individual

learning experiences (through reactive and non-reactive measures) and provide meaningful

interventions towards successful study unit outcomes. Hence, a final focus of the second

case study is the change of explained variance and accuracy of the learning profile during a

specific study period.

Hypothesis 2c It is hypothesized that the explained variance of the learning profile

increases over the course of the study period.

Hypothesis 2d It is hypothesized that the predictive accuracy of the learning profile

increases over the course of the study period.

3 Case Study 1: Student Profile

This case study intended to use large existing datasets from multiple higher education

institutions and area of studies in order to validate the student profile of the LA framework.

3.1 Method

3.1.1 Participants

The sample consisted of N = 146,001 students (54,073 male; 91,928 female) enrolled in

1,509 unique study units (1,030,778 total enrolments) with major higher education insti-

tutions in Australia. Their mean age was 33.06 years (SD = 9.90). 85 % of the participants

reported that they completed secondary school. 5 % of the students reported having a

disability. 94 % studied at undergraduate levels and 6 % at postgraduate levels.

3.1.2 Data Models

Table 1 shows the data models that were implemented for the student profile. The first

model includes variables referring to the students’ background and demographic data.

Variables of student background include first language spoken, country of residence, and

citizenship. Variables of demographic data include gender, age, socio-economic status, and

disability. The second model includes the variables of model 1 plus parameters referring to

the student’s and family’s historical education background such as completion of sec-

ondary school, highest education level of the student, and highest education level of the

parents. The third model includes the variables of model 2 plus variables referring to

information related to the study unit. Variables of study unit include undergraduate and

postgraduate level study, study area, enrolment mode, delivery method, and study support

utilized. The forth model includes the variables of model 3 plus student’s historical edu-

cation record with the institution such as time since last unit, study load, dropped and

swapped study units. The fifth model includes the variables of model 4 plus the historical

study performance of the student, i.e., average grade. The sixth and final model includes

the essential variables identified from previous models. It is important to note that the

current work-in-progress study does not include all variables of the above presented stu-

dent profile (see Sect. 2.2). As the project is progressing, more variables will be included

which will be added in future analysis.
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3.2 Results

3.2.1 Explained Variance and Predictive Accuracy of the Student Profile Models

For each model of the student profile (see Table 1), we conducted a linear regression

analysis and a SVM analysis to determine whether the student profile variables were

significant predictors as well as showed acceptable accuracy for the study unit outcomes.

Table 2 shows the results of linear regression and SVM analysis for the six student

profile models. The explained variance for predicting the study outcome increases from

model 1 (R2–SVR = .059) to Model 6 (R2–SVR = .451). The findings suggest that

variables included in the final student profile model 6 explain more than 40 % of variance.

The most important variables of the final student profile model associated with study unit

outcomes were the students’ historical grade (43 % relative importance), historical

cumulative fails (18 %), and highest level of prior education (10 %). Accordingly, the

results support Hypothesis 1a.

As a next step, for each of the six models, a training set was randomly chosen to train

the SVM classifier (Koggalage and Halgamuge 2004). Each classifier was trained with

variables from the models shown in Table 1. We used fivefold cross validation to analyze

prediction performance of the SVM classifier models. The predictive accuracy of each

SVM classifier model is reported in Table 2. Classifier with variables from model 1 pre-

dicted the correct study unit outcome with an accuracy of 59 %. The classifier created with

variables from model 6 which were determined as the most significant for the SVM

regression models predicted the correct study unit outcome with an accuracy of 80 %. The

training data contained students with no historical record with the institution. Since the

historical record is a significant factor, large portion of the misclassifications were first time

students. A classifier identical to model 6 and trained with data from students that have

taken more than one study unit showed a final prediction accuracy of study unit outcome of

85 %. To sum up, the findings suggest that variables included in the final student profile

model 6 account for 80 % accuracy for predicting study unit outcome. Accordingly, the

results support Hypothesis 1b.

3.2.2 Idiosyncrasies of Student Profile Models

Table 3 shows the results of linear regression and SVM analysis for the student profile

model 6 separated by eight higher education institutions. The explained variance for

predicting the study outcome varies among the higher education institutions: Lowest R2–

SVR = .353 (UniR) and highest R2–SVR = .489 (UniC), SD = .126. Accordingly, the

results support Hypothesis 1c.

Similar results are shown in Table 4 that presents the linear regression and SVM analysis

for the student profile model 6 separated by area of studies. Given the overall standard

deviation of SD = .129, the lowest R2–SVR = .359 was found for IT and highest R2–

SVR = .517 was found for Law and Justice. Accordingly, the results support Hypothesis 1d.

4 Case Study 2: Learning Profile

This case study intended to use interaction data of the learning management system from

two study units of a higher education institution in order to validate the learning profile of

the LA framework.
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Table 1 Model descriptions for student profile

Model 1 Student background and demographic data

Model 2 Student background and demographic data

Student’s and parent’s historical education background

Model 3 Student background and demographic data

Student’s and parent’s historical education background

Study unit related information

Model 4 Student background and demographic data

Student’s and parent’s historical education background

Study unit related information

Historical education record with institution

Model 5 Student background and demographic data

Student’s and parent’s historical education background

Study unit related information

Historical education record with institution

Average historical grade within institution

Model 6 Most important parameters identified from previous models

Table 2 Student profile model performance comparison

R2 Adjusted R2 R2-SVR Predictive accuracy (SVM) (%)

Model 1 .057 .057*** .059 58.63

Model 2 .128 .128*** .130 63.80

Model 3 .187 .187*** .192 67.50

Model 4 .361 .361*** .424 79.52

Model 5 .441 .446*** .438 79.69

Model 6 .444 .435*** .451 80.03

*** p \ .001; SVR support vector regression, SVM support vector machines

Table 3 Student profile model performance comparison for higher education institutions

Higher Education Institution R2 Adjusted R2 R2-SVR Predictive accuracy (SVM)

UniC .464 .463*** .489 81.69 %

UniG .453 .453*** .460 79.65 %

UniS .431 .431*** .460 79.64 %

UniA .372 .372*** .381 76.57 %

UniM .438 .437*** .443 80.71 %

UniR .364 .364*** .353 76.31 %

UniO .434 .433*** .460 80.28 %

UniU .372 .371*** .356 78.25 %

SD .096 .096 .126 .024

*** p \ .001; SVR support vector regression, SVM support vector machines
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4.1 Method

4.1.1 Participants

A total of 12,686 enrolments of a major higher education institution in Australia were

considered. Due to institutional regulations, detailed information on the participants (e.g.,

age, gender, socio-economic status, etc.) was not available. After cleaning the dataset, the

final sample consisted of N = 12,002 students enrolled in two unique study units

(N = 4,978 in unit A and N = 7,024 in unit B).

4.1.2 Data Models

Table 5 shows the data models that were implemented for the learning profile. The first

model includes variables referring to the students’ interaction with the online learning

environment. Variables include access of learning materials, time spent, forum activities,

and self-assessment attempts. The second model includes the variables of model 1 plus

final assessment results.

4.2 Results

4.2.1 Explained Variance and Predictive Accuracy of the Learning Profile Model

For the learning profile model, data from the learning management system were analyzed for

two study units from the Science and Engineering programs of a higher education institution.

Table 6 shows the results of the linear regression and SVM analyses for the learning profile

model 1. The explained variance for predicting the study outcome varied between the study

units: Study unit A (R2–SVR = .906) and Study unit B (R2–SVR = .896). Despite the

variability of the results, the findings suggest that variables included in the learning profile

model 1 explain more than 80 % of variance. The most important variables of the learning

profile model 1 associated with study unit outcomes were the assessment attempts (65 %

relative importance), learning materials accessed (26 %), and self-assessments (7 %).

Accordingly, the results support Hypothesis 2a. Additionally, the SVM regression models of

the learning profile model 1 predicted the study unit outcome with an accuracy of over 90 %

(see Table 6). Accordingly, the results support Hypothesis 2b.

4.2.2 Learning-Dependent Change of the Learning Profile Model

In order to investigate the change of the overall performance of the learning profile model

1, the study period was divided into four equal time periods. Table 7 shows the results of

the linear regression and SVM analyses for the learning profile model 1 over the four time

periods. The explained variance for predicting the study unit outcome increased from the

initial interaction with the learning environment (R2–SVR = .528) to the final interaction

with the learning environment (R2–SVR = .878). The findings suggest that as the learning

profile model performance gains with the increased interaction over the study period.

Accordingly, the results support Hypothesis 2c.

Additionally, the predictive accuracy of the learning profile increases over time with an

accuracy of over 90 % (see Table 7). Accordingly, the results support Hypothesis 2d.

The results of a post hoc analysis including the final assessment outcomes (learning

profile model 2) are shown in Table 8. The additional information included in the learning
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profile model 2 has a major impact on the explained variance and predictive accuracy

throughout the study period.

5 General Discussion

LA emphasizes insights and responses to real-time learning processes based on educational

information from digital learning environments, administrative systems, and social plat-

forms. However, well-established empirical evidence within the emerging field of LA is

lacking. As new frameworks for LA are being developed across the education sector, we

argue that they need to be empirically tested with regard to their reliability and validity

before they may be implemented at larger scale.

The presented LA framework is a work-in-progress and being further developed and

implemented within a major higher education institution in Australia. The two case studies

provide empirical evidence for the implementation of the proposed student and learning

profile. However, as the theoretical profiles have not been fully implemented yet, the

results need to be interpreted as preliminary.

Table 4 Student profile model performance comparison for area of studies

Area of studies R2 Adjusted R2 R2-SVR Predictive accuracy (SVM)

Arts and Humanities .430 .430*** .450 79.88 %

Business .405 .405*** .436 78.02 %

Education .489 .489*** .505 82.39 %

Law and Justice .490 .490*** .517 82.69 %

IT .373 .373*** .359 77.56 %

Science and Engineering .423 .422*** .423 80.01 %

SD .107 .107 .129 .027

*** p \ .001; SVR support vector regression, SVM support vector machines

Table 5 Model descriptions for learning profile

Model 1 Assessment attempts, access of learning materials, videos seen, video seen repeated,
time spent, time taken for assessments, forum discussions started, forum posts,
forum replies, forum social polarity, forum positive votes, forum negative votes

Model 2 Assessment attempts, access of learning materials, videos seen, video seen
repeated, time spent, time taken for assessments, forum discussions started,
forum posts, forum replies, forum social polarity, forum positive votes,
forum negative votes, final assessment outcomes

Table 6 Learning profile model performance comparison

R2 Adjusted R2 R2-SVR Predictive accuracy (SVM) (%)

Study unit A .880 .879*** .906 95.18

Study unit B .845 .843*** .896 94.12

Combined .854 .854*** .905 95.41

*** p \ .001
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The first case study focused on the student profile and identified variables which help to

better provide early personalized interventions for students as well as facilitating their on-

going learning progression towards successful learning outcomes (Fenwick and Cooper

2012; Lockyer et al. 2013). The most important variables associated with study unit

Table 7 Learning profile model 1 performance over the progression of a study period

Time 1 Time 2 Time 3 Time 4

R2

Study unit A .470 .764 .839 .862

Study unit B .499 .759 .822 .838

Combined .489 .762 .824 .845

Adjusted R2

Study unit A .467*** .761*** .837*** .859***

Study unit B .497*** .757*** .821*** .836***

Combined .488*** .488*** .827*** .844***

R2-SVR

Study unit A .497 .757 .840 .856

Study unit B .542 .786 .845 .870

Combined .528 .784 .860 .878

Predictive accuracy (SVM)

Study unit A 74.98 % 87.54 % 93.26 % 94.67 %

Study unit B 76.94 % 88.07 % 93.51 % 94.33 %

Combined 76.44 % 88.79 % 93.83 % 94.63 %

*** p \ .001

Table 8 Learning profile model 2 performance over the progression of a study period

Time 1 Time 2 Time 3

R2

Study unit A .647 .908 .962

Study unit B .708 .907 .971

Combined .702 .903 .966

Adjusted R2

Study unit A .644*** .908*** .961***

Study unit B .707*** .906*** .970***

Combined .701*** .902*** .965***

R2-SVR

Study unit A .580 .900 .973

Study unit B .644 .863 .924

Combined .632 .868 .925

Predictive accuracy (SVM)

Study unit A 77.68 % 92.01 % 96.71 %

Study unit B 80.34 % 90.29 % 95.48 %

Combined 79.69 % 90.27 % 95.52 %

*** p \ .001
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outcomes were the students’ historical grades and failures as well as their prior study

experience. These results support the requirement for early student interventions in order to

help students overcome initial problems and provide opportunities for student engagement

when commencing higher education studies (Dobozy and Ifenthaler 2014; Thomas and

May 2012). However, the findings also indicate that educational data is context specific

and variables and indicators carry different meanings and can have different implications

across educational institutions and area of studies (Coates 2010). This is evident through

the differences of the performance of an identical analytical model in different institutions

(e.g., 8 universities presented in Table 3) and different area of studies (e.g., 6 area of

studies presented in Table 4). Therefore, a LA framework needs to be sensitive for idio-

syncrasies of the educational institution and its stakeholders. Universal LA solutions using

global algorithms may be biased and produce incorrect recommendations as well as

inaccurate predictions. In adding the dynamic variables to the student profile (see Sect. 2.2)

a more accurate performance of the algorithms is expected.

The second case study focused on the learning profile as it is assumed that learners

should attain a higher level of competence through a constant evolving and changing of

individual dispositions as a result of learning experiences (Brabrand and Dahl 2009). This

learning progression is not to be a single, unique pathway to learning, rather, each learner

will experience different learning activities, starting from different prior knowledge, and

using individual strategies. Hence, it is important to understand the interaction of the

learner with the learning environment in real-time in order to provide appropriate and

meaningful interventions towards successful learning outcomes. The findings of the second

case study indicate that increased data from the learning environments provides stronger

evidence for more accurate predictions of students’ pathways. Still, data from the first

study period already helps to identify almost 50 % of variance of the learning profile.

Hence, the initial days and weeks of a study unit provide important opportunities to address

students’ needs in order to help them to become more successful learners or to not drop out

(Aflalo and Gabay 2012; Tinto 1999; Willging and Johnson 2009).

Additionally, the results of both case studies support the application of SVM for LA

applications. The flexibility for modeling non-linear educational data, short training times

for more robust models, responsiveness to interactions and changing variables, as well as

sensitivity to imperfect data sets are strong arguments for further implementation of SVM

in LA frameworks (Williams 2011).

To sum up, the findings of the two case studies provide initial but resilient evidence of

the reliability, validity, and predictive accuracy of the student and learning profiles,

however, the full strength of the LA framework lies in the combination of the student,

learning, and curriculum profiles. Hence, limitations of the two case studies need to be

addressed and further empirical research is required to replicate and advance the findings

of the reported study.

5.1 Implications

The benefits of the holistic learning analytics framework can be associated with four levels

of stakeholders: mega-level (governance), macro-level (institution), meso-level (curricu-

lum, teacher/tutor), and micro-level (learner, OLE). An essential prerequisite for LA

benefits, however, is the real-time access, analysis, and modeling of relevant educational

information.

The mega-level facilitates cross-institutional analytics by incorporating data from all

levels of the learning analytics framework. Such rich datasets enable the identification and
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validation of patterns within and across institutions and therefore provide valuable insights

for informing educational policymaking. The macro-level enables institution-wide analytics

for better understanding learner cohorts for optimizing associated processes and allocating

critical resources for reducing dropout and increasing retention as well as success rates. The

meso-level supports the design of the curriculum and related learning materials as well as

provides detailed insights about learning processes for course facilitators (i.e., teachers,

tutors). This information can be used for improving the overall quality of courses (e.g.,

sequencing of learning processes, alignment with higher level outcomes and competencies)

as well as enhancing learning materials (e.g., their alignment to anticipated learning outcomes

and associated assessments). The micro-level analytics supports the learner through rec-

ommendations and help functions implemented in the digital learning environment. This may

include personalized and adaptive scaffolds that are expected to be more successful for

achieving expected learning outcomes and competencies. Another critical component for

improving the benefits of LA is information from the physical environment (e.g., learner’s

current emotional state) which is not directly linked with the educational data. Accordingly,

data may be collected within the digital learning environment through reactive prompts and

linked with the available educational information.

Table 9 provides a matrix outlining the benefits of LA for stakeholders including three

perspectives (Ifenthaler in press): (1) summative, (2) real-time, and (3) predictive. The

summative perspective provides detailed insights after completion of a learning phase (e.g.,

study period, semester, final degree), often compared against previously defined reference

points or benchmarks. The real-time perspective uses ongoing information for improving

processes through direct interventions. The predictive perspective is applied for forecasting

the probability of outcomes in order to plan for future strategies and immediate actions.

The benefits matrix enables decision makers to analyze the requirements of LA within an

institution and further guide the implementation of a LA framework and strategy at dif-

ferent levels (Ifenthaler in press).

5.2 Limitations and Future Work

The presented research is a work-in-progress providing initial insights into the conceptual

development of a holistic LA framework and its empirical validation. Not all variables

from the student and learning profiles have been added to the currently implemented

learning analytics application yet. As the project is evolving, more and more variables will

be included and data collected accordingly. Additionally, there are limitations to the

empirical study, which need to be addressed.

First, while our sample size was large enough to achieve statistically significant results,

the explained variance for some of our regression models require careful interpretation.

This indicates that besides the tested variables other variables may have influenced the

outcomes that were not tested in the reported case study. Second, the development of the

holistic LA framework is still in progress. Therefore, we tested the student profile and

learning profile separately due to lack of being able to link the available data, future

research will include rich combined data from the student, learning, and curriculum pro-

files which will add substantially towards the explained variance of the proposed models.

Third, the predictions are only valid for individual study unit outcomes; however, do not

reflect higher education outcomes in general. Accordingly, further studies will be needed to

cross-validate the initial results of this study. Forth, the expected explained variance

reflected in the hypotheses is based on standards within social sciences as no previous

empirical findings are available for learning analytics. Future studies may critically review
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the initially set numbers and provide further evidence for expected explained variance in

learning analytics applications. Fifth, it is also important to note that the presentation of

linear and non-linear model fit results shall highlight the necessity of alternative data

analytics approaches for learning analytics applications. Evidently, a direct comparison of

linear and non-linear approaches using regression to fit is different for both approaches.

Future work includes empirical validation of all profiles and a full implementation of

the holistic LA framework as a dynamic plug-in for digital learning environments. A

further iteration of the LA framework will include a natural language processing (NLP)

approach which will be utilized for analyzing discussion forums and providing recom-

mendations of social interaction (Dawson et al. 2011; Macfadyen and Dawson 2010) and

rich semantic feedback in near real-time (Ifenthaler and Pirnay-Dummer 2011; Pirnay-

Dummer and Ifenthaler 2011a, b).

5.3 Concerns and Challenges

Besides the above-described benefits of LA, serious concerns and challenges are associated

with the application of LA:

Table 9 LA benefits matrix

Stakeholder Perspective

Summative Real-time Predictive

Governance Apply cross-institutional
comparisons

Develop benchmarks
Inform policy making
Inform quality assurance

processes

Increase productivity
Apply rapid response to

critical incidents
Analyze performance

Model impact of
organizational decision-
making

Plan for change management

Institution Analyze processes
Optimize resource

allocation
Meet institutional

standards
Compare units across

programs and faculties

Monitor processes
Evaluate resources
Track enrolments
Analyze churn

Forecast processes
Project attrition
Model retention rates
Identify gaps

Instructional
design

Analyze pedagogical
models

Measure impact of
interventions

Increase quality of
curriculum

Compare learning designs
Evaluate learning materials
Adjust difficulty levels
Provide resources required by

learners

Identify learning preferences
Plan for future interventions
Model difficulty levels
Model pathways

Facilitator Compare learners, cohorts
and courses

Analyze teaching practices
Increase quality of

teaching

Monitor learning progression
Create meaningful

interventions
Increase interaction
Modify content to meet

cohorts’ needs

Identify learners at risk
Forecast learning progression
Plan interventions
Model success rates

Learner Understand learning habits
Compare learning paths
Analyze learning outcomes
Track progress towards

goals

Receive automated
interventions and scaffolds

Take assessments including
just-in-time feedback

Optimize learning paths
Adapt to recommendations
Increase engagement
Increase success rates

236 D. Ifenthaler, C. Widanapathirana

123



1. Not all educational data is relevant and equivalent (Macfadyen and Dawson 2012; Thompson

et al. in press). Therefore, the validity of data and its analyses is critical for generating useful

summative, real-time, and predictive insights. This generates a new interdisciplinary research

area for cognitive psychology, educational technology, learning design, psychometrics, data

management, artificial intelligence, web development, and statistics. The challenges are to

investigate the complex processes within LA frameworks and to understand their immediate

and long-term effects on learning and teaching processes.

2. Ethical issues are associated with the use of educational data for LA (Slade and

Prinsloo in press). That implies how personal data is collected and stored as well as

how it is analyzed and presented to different stakeholders. Hence, procedures

regulating access and usage of educational data need to come into operation before LA

frameworks are implemented. This will also include transparency of applied

algorithms and weighting of educational data for predictive modeling. Storing and

processing anonymized personal data is only a small step towards a more

comprehensive educational data governance structure for LA.

3. Limited access to educational data generates disadvantages for involved stakeholders.

For example, invalid forecasts may lead to inefficient decisions and unforeseen

problems. A misalignment of prior knowledge, learning pathways, and learning

outcomes could increase churn and the late identification of learners at risk may create

dropouts. A definition of threshold standards for LA could prevent vast gaps between

educational institutions and provide equal opportunities for all stakeholders.

4. The preparation of stakeholders for applying insights from LA in a meaningful way is

vital. Professional development for stakeholders ensures that issues are identified and

benefits are transformed into meaningful action. Hence, the increased application of

LA requires a new generation of experts with unique interdisciplinary competences.

This will also require new infrastructures for administration and research in order to

accelerate the understanding of LA.

5. Information from distributed networks and unstructured data cannot be directly linked to

educational data collected within an institution’s environment. An aggregation of such

data and uncontrolled relations to existing educational data increases the chance of

critical biases as well as invalid analysis, predictions, and decisions. The challenge is to

develop mechanisms to filter biased information and warn stakeholders accordingly.

6. An optimal sequence of data collection and economic response times (seconds,

minutes, hours, days, weeks) of LA have yet to be determined. This includes the

minimum requirements for making valid predictions and creating meaningful

interventions. Missing data is a critical challenge for future LA algorithms.

7. Besides the analysis of numerical data (e.g., click streams), a qualitative analysis of

semantic rich data (e.g., content of discussion forums, responses to open-ended

assessments) enables a better understanding of learners’ knowledge and needs. An

obvious requirement is the development of automated natural language processing

(NLP) capabilities. The major challenge besides the development of real-time NLP is

the validation of such algorithms and the link to quantitative educational data.

6 Conclusions

More educational data does not always make better educational data (Greller and Drachsler

2012; Macfadyen and Dawson 2012). Hence, LA has its obvious limitations and data
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collected from various educational sources can have multiple meanings. Empirically val-

idating LA frameworks and corresponding profiles such as presented in the two case

studies may provide evidence for the implementation of intelligent systems which have the

capabilities to facilitate learning of individual students, improve instructional practice of

teachers, and advance the quality of higher education offerings of individual intuitions and

across the education sector.

References

Aflalo, E., & Gabay, E. (2012). An information system for dropout prevention. Education and Information
Technologies, 17(2), 233–250. doi:10.1007/s10639-011-9156-x.

Allen, C. B., Higgs, Z. R., & Holloway, J. R. (1988). Identifying students at risk for academic difficulty.
Journal of Professional Nursing, 4(2), 113–118. doi:10.1016/S8755-7223(88)80033-4.

Ashby, F. G. (Ed.). (1992). Multidimensional models of perception and cognition. Hillsdale, NJ: Lawrence
Erlbaum Associates.

Azevedo, R., Cromley, J. G., Winters, F. I., Moos, D. C., & Greene, J. A. (2005). Adaptive human
scaffolding facilitates adolescents’ self-regulated learning with hypermedia. Instructional Science,
33(5–6), 381–412.

Bartholomew, D. J. (1967). Stochastic models for social processes. New York: Wiley.
Bauer, R. (1966). Social indicators. Cambridge, MA: MIT Press.
Brabrand, C., & Dahl, B. (2009). Using the SOLO taxonomy to analyze competence progression of uni-

versity science curricula. Higher Education, 58(4), 531–549. doi:10.1007/s10734-009-9210-4.
Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. doi:10.1023/A:1010933404324.
Buckingham Shum, S., & Ferguson, R. (2012). Social learning analytics. Educational Technology and

Society, 15(3), 3–26.
Campbell, J. P., DeBlois, P. B., & Oblinger, D. (2010). Academic analytics: A new tool for a new era.

EDUCAUSE Review, 42(4), 40–57.
Christmann, A., & Steinwart, I. (2008). Support vector machines. New York: Springer.
Cleophas, T. J., & Zwinderman, A. H. (2013). Support vector machines. Machine learning in medicine (pp.

155–161). Amsterdam: Springer.
Coates, H. (2009). What’s the difference? A model for measuring the value added by higher education in

Australia. Higher Education Management and Policy, 21(1), 69–88.
Coates, H. (2010). Defining and monitoring standards in Australian higher education. Higher Education

Management and Policy, 22(1), 41–58.
Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273–297. doi:10.1007/

bf00994018.
Crosling, G., Heagney, M., & Thomas, L. (2009). Improving student retention in higher education. Aus-

tralian Universities’ Review, 51(2), 9–18.
d’Aquin, M., Dietze, S., Herder, E., Drachsler, H., & Taibi, D. (2014). Using linked data in learning

analytics. E-Learning Papers, 36, 1–9.
da Silva, J. L., Caeiro, F., Natário, I., & Braumann, C. A. (2013). Advances in regression, survival analysis,

extreme values, markov processes and other statistical applications. Berlin: Springer.
Dawson, S., Macfadyen, L., Lockyer, L., & Mazzochi-Jones, D. (2011). Using social network metrics to

assess the effectiveness of broad-based admission practices. Australasian Journal of Educational
Technology, 27(1), 16–27.

Dobozy, E., & Ifenthaler, D. (2014). Initial teacher education by open and distance modes: A snapshot of
e-competency experiences in Australia. eLearning Papers, 38, 43–54.

Drucker, H., Burges, C. J. C., Kaufman, L., Smola, A., & Vapnik, V. (1997). Support vector regression
machines. In M. C. Mozer, M. I. Jordan, & T. Petsche (Eds.), Advances in neural information pro-
cessing systems 9 (pp. 155–161). Cambridge, MA: MIT Press.

Fenwick, L., & Cooper, M. (2012). Prevailing pedagogies for classes in low SES contexts and the impli-
cations for standards-based reform in Australia. The Australian Educational Researcher, 39(3),
349–361. doi:10.1007/s13384-012-0066-8.

Ferguson, R. (2012). Learning analytics: Drivers, developments and challenges. International Journal of
Technology Enhanced Learning, 4(5/6), 304–317. doi:10.1504/IJTEL.2012.051816.

238 D. Ifenthaler, C. Widanapathirana

123

http://dx.doi.org/10.1007/s10639-011-9156-x
http://dx.doi.org/10.1016/S8755-7223(88)80033-4
http://dx.doi.org/10.1007/s10734-009-9210-4
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1007/bf00994018
http://dx.doi.org/10.1007/bf00994018
http://dx.doi.org/10.1007/s13384-012-0066-8
http://dx.doi.org/10.1504/IJTEL.2012.051816


Greller, W., & Drachsler, H. (2012). Translating learning into numbers: A generic framework for learning
analytics. Educational Technology and Society, 15(3), 42–57.

Ifenthaler, D. (in press). Learning analytics. In J. M. Spector (Ed.), Encyclopedia of educational technology.
Thousand Oaks, CA: Sage.

Ifenthaler, D., & Pirnay-Dummer, P. (2011). States and processes of learning communities: Engaging
students in meaningful reflection and elaboration. In B. White, I. King, & P. Tsang (Eds.), Social media
tools and platforms in learning environments: Present and future (pp. 81–94). New York: Springer.

Ifenthaler, D., Pirnay-Dummer, P., & Seel, N. M. (Eds.). (2010). Computer-based diagnostics and sys-
tematic analysis of knowledge. New York: Springer.

Ifenthaler, D., & Seel, N. M. (2011). A longitudinal perspective on inductive reasoning tasks. Illuminating
the probability of change. Learning and Instruction, 21(4), 538–549. doi:10.1016/j.learninstruc.2010.
08.004.

Ifenthaler, D., & Seel, N. M. (2013). Model-based reasoning. Computers and Education, 64, 131–142.
doi:10.1016/j.compedu.2012.11.014.

James, R., Krause, K.-L., & Jennings, C. (2010). The first-year experience in Australian universities:
Findings from 1994 to 2009. Melbourne, VIC: Centre for the Study of Higher Education.

Johnson, L., Adams Becker, S., Cummins, M., Freeman, A., Ifenthaler, D., & Vardaxis, N. (2013). Tech-
nology outlook for Australian tertiary education 2013–2018: An NMC horizon project regional ana-
lysis. Austin, TX: The New Media Consortium.

Kalyuga, S. (2006). Assessment of learners’ organised knowledge structures in adaptive learning environ-
ments. Applied Cognitive Psychology, 20, 333–342.

Koggalage, R., & Halgamuge, S. (2004). Reducing the number of training samples for fast support vector
machine classification. Neural Information Processing-Letters and Reviews, 2(3), 57–65.

Lin, C. F., Yeh, Y.-C., Hung, Y. H., & Chang, R. I. (2013). Data mining for providing a personalized
learning path in creativity: An application of decision trees. Computers and Education, 68, 199–210.
doi:10.1016/j.compedu.2013.05.009.

Lockyer, L., Heathcote, E., & Dawson, S. (2013). Informing pedagogical action: Aligning learning analytics with
learning design. American Behavioral Scientist, 57(10), 1439–1459. doi:10.1177/0002764213479367.

Long, P. D., & Siemens, G. (2011). Penetrating the fog: Analytics in learning and education. EDUCAUSE
Review, 46(5), 31–40.

Macfadyen, L., & Dawson, S. (2010). Mining LMS data to develop an ‘‘early warning system’’ for edu-
cators: A proof of concept. Computers and Education, 54(2), 588–599.

Macfadyen, L., & Dawson, S. (2012). Numbers are not enough. Why e-Learning analytics failed to inform
an institutional strategic plan. Educational Technology and Society, 15(3), 149–163.

Perumallaa, C., Maka, J., Keea, N., & Matthewsa, S. (2010). Integrating web applications to provide an
effective distance online learning environment for students. Procedia Computer Science, 3, 770–784.
doi:10.1016/j.procs.2010.12.127.

Pirnay-Dummer, P., & Ifenthaler, D. (2011a). Reading guided by automated graphical representations: How
model-based text visualizations facilitate learning in reading comprehension tasks. Instructional Sci-
ence, 39(6), 901–919. doi:10.1007/s11251-010-9153-2.

Pirnay-Dummer, P., & Ifenthaler, D. (2011b). Text-guided automated self assessment: A graph-based
approach to help learners with ongoing writing. In D. Ifenthaler, P. I. Kinshuk, D. G. Sampson, & J.
M. Spector (Eds.), Multiple perspectives on problem solving and learning in the digital age (pp.
217–225). New York: Springer.

Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1(1), 81–106. doi:10.1023/A:
1022643204877.

Robinson, R. (2004). Pathways to completion: Patterns of progression through a university degree. Higher
Education, 47(1), 1–20. doi:10.1023/B:HIGH.0000009803.70418.9c.

Romero, C., Ventura, S., Pechenizkiy, M., & Baker, R. S. J. D. (Eds.). (2011). Handbook of educational data
mining. Boca Raton, FL: CRC Press.

Schreurs, B., de Laat, M., Teplovs, C., & Voogd, S. (2014). Social learning analytics applied in a MOOC-
environment. e-Learning Papers, 26, 45–48.

Slade, S., & Prinsloo, P. (in press). Learning analytics: Ethical issues and dilemmas. American Behavioral
Scientist, doi:10.1177/0002764213479366.

Thomas, L. (2011). Engaging students to improve retention and success. In L. Thomas, & M. Tight (Eds.),
Institutional transformation to engage a diverse student body (Vol. 6, pp. 41–55, International per-
spectives on higher education research). Bingley: Emerald Group Publishing Limited.

Thompson, K., Ashe, D., Carvalho, L., Goodyear, P., Kelly, N., & Parisio, M. (in press). Processing and
visualizing data in complex learning environments. American Behavioral Scientist, doi:10.1177/
0002764213479368.

Development and Validation of a Learning Analytics Framework 239

123

http://dx.doi.org/10.1016/j.learninstruc.2010.08.004
http://dx.doi.org/10.1016/j.learninstruc.2010.08.004
http://dx.doi.org/10.1016/j.compedu.2012.11.014
http://dx.doi.org/10.1016/j.compedu.2013.05.009
http://dx.doi.org/10.1177/0002764213479367
http://dx.doi.org/10.1016/j.procs.2010.12.127
http://dx.doi.org/10.1007/s11251-010-9153-2
http://dx.doi.org/10.1023/A:1022643204877
http://dx.doi.org/10.1023/A:1022643204877
http://dx.doi.org/10.1023/B:HIGH.0000009803.70418.9c
http://dx.doi.org/10.1177/0002764213479366
http://dx.doi.org/10.1177/0002764213479368
http://dx.doi.org/10.1177/0002764213479368


Tinto, V. (1982). Limits of theory and practice I student attrition. The Journal of Higher Education, 53(6),
687–700.

Tinto, V. (1999). Taking retention seriously: Rethinking the first year of college. NACADA Journal, 19(2),
5–9. doi:10.12930/0271-9517-19.2.5.

Willging, P. A., & Johnson, S. D. (2009). Factors that influence students’ decision to dropout of online
courses. Journal of Asynchronous Learning Networks, 13(3), 115–127.

Williams, G. (2011). Support vector machines. In Data mining with Rattle and R (pp. 293-304, Use R). New
York: Springer.

240 D. Ifenthaler, C. Widanapathirana

123

http://dx.doi.org/10.12930/0271-9517-19.2.5

	Development and Validation of a Learning Analytics Framework: Two Case Studies Using Support Vector Machines
	Abstract
	Introduction
	Learning Analytics
	Holistic Framework
	Profiles
	Support Vector Machines
	The Case Studies

	Case Study 1: Student Profile
	Method
	Participants
	Data Models

	Results
	Explained Variance and Predictive Accuracy of the Student Profile Models
	Idiosyncrasies of Student Profile Models


	Case Study 2: Learning Profile
	Method
	Participants
	Data Models

	Results
	Explained Variance and Predictive Accuracy of the Learning Profile Model
	Learning-Dependent Change of the Learning Profile Model


	General Discussion
	Implications
	Limitations and Future Work
	Concerns and Challenges

	Conclusions
	References


