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Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impairments in social communication 
and behavior, frequently accompanied by restricted and repetitive patterns of interests or activities. The gut microbiota has 
been implicated in the etiology of ASD due to its impact on the bidirectional communication pathway known as the gut-brain 
axis. However, the precise involvement of the gut microbiota in the causation of ASD is unclear. This study critically exam-
ines recent evidence to rationalize a probable mechanism in which gut microbiota symbiosis can induce neuroinflammation 
through intermediator cytokines and metabolites. To develop ASD, loss of the integrity of the intestinal barrier, activation 
of microglia, and dysregulation of neurotransmitters are caused by neural inflammatory factors. It has emphasized the 
potential role of neuroinflammatory intermediates linked to gut microbiota alterations in individuals with ASD. Specifically, 
cytokines like brain-derived neurotrophic factor, calprotectin, eotaxin, and some metabolites and microRNAs have been 
considered etiological biomarkers. We have also overviewed how probiotic trials may be used as a therapeutic strategy in 
ASD to reestablish a healthy balance in the gut microbiota. Evidence indicates neuroinflammation induced by dysregulated 
gut microbiota in ASD, yet there is little clarity based on analysis of the circulating immune profile. It deems the repair of 
microbiota load would lower inflammatory chaos in the GI tract, correct neuroinflammatory mediators, and modulate the 
neurotransmitters to attenuate autism. The interaction between the gut and the brain, along with alterations in microbiota and 
neuroinflammatory biomarkers, serves as a foundational background for understanding the etiology, diagnosis, prognosis, 
and treatment of autism spectrum disorder.
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Introduction

The human gut microbiota is a complex biome and variable 
collection of microorganisms interacting with one another 
and the human host, including bacteria, fungi, archaea, 
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and viruses. The gut microbiome influences many aspects 
of host health, including immune system control, gut hor-
mone regulation, and neuronal transmission. It modifies the 
ingested medications and their metabolism, toxin clearance, 
and the generation of numerous host-affecting agents [1]. 
The gut microbial load can directly or indirectly influence 
the brain via a mutual relationship known as the "gut-brain 
axis." The gut microbiota can directly influence the brain by 
producing neuroactive substances such as neurotransmitters, 
amino acids, and microbial metabolites. These substances 
can potentially interfere with the host immune system and 
metabolism, affecting the gastrointestinal (GI), nervous sys-
tem and vagus nerve. The gut microbiota can also influence 
the integrity of the gut barrier, which limits the passage of 
luminal substances into the bloodstream. Accessibility of 
such bacterial structural components like lipopolysaccha-
rides or by-products of metabolic activities like short-chain 
fatty acids (SCFAs) may result in an inflammatory cascade 
that affects the CNS [2].

Autism spectrum disorder (ASD) is a persistent psycho-
logical abnormality characterized by impaired social com-
munication and limiting and repetitive behavior patterns, 
hobbies, or activities [3]. Both genetic and environmental 
variables have been involved in ASD. Recent studies have 
shown that inflammation and inflammatory mediators have 
a role in disease genesis. Inflammatory elements that con-
tribute to ASD include unusual microglia activation and 
polarization phenotypes, higher systemic levels of pro-
inflammatory mediators, and altered patterns of immune 
cell responsiveness to activation triggers [4].

Numerous types of research in recent years have impli-
cated gut bacteria in the etiology of ASD. However, stud-
ies have found that the structure of the gut microbiota is 
meaningfully changed in ASD; the significance of the gut 
microbiota as an etiology of ASD is yet unclear. It has been 
accepted that the microbiome of autistic children differs 
from healthy individuals [4]. Inflammatory deviations are 
potential etiology candidates in how gut microbiota can 
influence the gut-brain axis of ASD patients. Neuroinflam-
matory factors in ASD result from changes in the regulation 
of intestinal barriers, activation and function of microglia, 
and levels of neurotransmitters [5, 6].

ASD is currently diagnosed based on clinical symptoms, 
which can lead to delays and misinterpretation. Biomarkers 
based on neuroinflammatory processes associated with gut 
microbiota may provide a more objective and precise way of 
detecting ASD. Several examples of these markers include 
microRNAs that modulate immune signaling; brain-derived 
neurotrophic factor (BDNF), which promotes brain growth; 
S100B, which reflects neural immunity; and chemokines 
that facilitate immunological activation, such as RANTES 
and eotaxin [7]. This review aims to evaluate and discuss 

neuroinflammatory biomarkers in the pathogenesis and 
potential diagnostic trials of ASD in more detail.

Gut Microbiota, Inflammation, and ASD

Nearly two decades earlier, a potential association between 
gut microbiota and ASD was proposed [8]. While the exact 
cause of ASD is still unknown, existing literature has shown 
that gut dysbiosis, along with a neuroinflammatory condi-
tion, is found in individuals with ASD [9]. Studies found 
inconsistent differences in the gut microbiota composition 
of ASD cases. Overall, the ASD population shows signs 
of dysbiosis, with a different abundance of Bacteroidetes/
Firmicutes, Prevotella, Clostridium, Lactobacillus, Bifido-
bacterium, Faecalibacterium, Streptococcus, Enterobacte-
riaceae, Verrucomicrobia, Fusobacteria, Escherichia coli, 
Enterococcus, Akkermansia, Phascolarctobacterium, and 
lots of other microbes compared to healthy controls [10–12]. 
Nonetheless, specific microbial patterns associated with 
ASD remain unidentified.

Moreover, Cuomo et al. [9] recently indicated that gut 
dysbiosis and inflammation were identified by host fecal 
DNA-specific methylation in autistic children. They revealed 
that autistic patients with dysbiosis significantly enriched 
inflammatory and immune pathways, including the produc-
tion of interleukin (IL)-2, 6, and 12 and the activation of the 
toll-like receptor (TLR) 3 signaling pathway. Consistently, 
several studies corroborated earlier findings of the neuroin-
flammation caused by dysbiosis in various neurodegenera-
tive and neuropsychiatric conditions [12, 13]. Disruptions in 
immune signaling pathways like the NLRP3 inflammasome, 
type 1 interferon, and nuclear factor kappa-light-chain-
enhancer of activated B cells (NF-κB) signaling pathways 
are among the possible dysbiotic consequences. Alterations 
to the T-helper 17 cell/T-reg proportion and imbalances in 
macrophage polarization, tumor necrosis factor (TNF)-α, 
IL-1β, 18, and 6 are also possible [14, 15].

On the other hand, the involvement of inflammation 
and immunological dysregulation has been indicated in 
the development and/or severity of ASD [16, 17]. Prior 
investigations on autistic cases have shown elevated lev-
els of inflammatory markers such as TNF-α, interferon-γ, 
IL-2,4,5,6,8,17, and 10 [12, 18, 19]. A study also reported 
that autistic children with an innate proinflammatory 
response or impaired T cell activation indicate more severe 
behavioral issues compared to those with noninflamed or 
non-T cell-activated immunological profiles [20]. Given the 
lack of research on gut microbial composition and metabo-
lites in autistic patients concerning inflammatory condi-
tions (Table 1), the precise relationship between these three 
factors remains unclear and requires further investigation. 
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Overall, gut microbiota seems to play a crucial role in ASD 
through inflammation.

S100B

Protein and peptide-based biomarkers have been the subject 
of some research for early diagnosis of ASD [7]. The S100 
calcium-binding protein beta subunit (S100B) is expressed 
in astrocytes and other extra-neural cells, including enteric 
glial cells (EGCs). It affects neurons depending on the con-
centration, which can be trophic up to a few nanomolar 
doses and toxic at micromolar levels. Extracellular protein 
S100B contributes considerably to neuroinflammation by 
acting synergistically with pro-inflammatory cytokines and, 
at higher concentrations, acting as a cytokine [32]. Despite 
the existing conflict [33–35], multiple studies have found a 
significant elevation of S100B in autistic individuals com-
pared to healthy cases, supporting the possible role of this 
factor in the etiology and development of ASD [36–40]. The 
source of this elevated S100B concentration in the periphery 
can be injured neurons or EGCs. In a recent study, the cor-
relation between plasma S100B levels and fecal concentra-
tions of calprotectin (an objective marker of GI inflammation 
status) revealed that not only brain astrocytes but also EGCs 
might be involved in the pathophysiology of autism [41]. 
One hypothesis says that the alternation of enteric glial-
derived S100B expression in autistic patients can result 
from changed microbiota, disruption of the intestinal barrier, 
and even pathogenic bacteria, altogether inducing intestinal 
inflammation and converting EGCs to reactive EGCs [38]. 
Another in vivo study in mice showed that gut microbiota 
biodiversity increases with S100B levels or oral administra-
tion. Firmicutes phylum, including Lactobacillus and Bac-
teroidetes, including Barnesiella and Butyricimonas spp, 
are affected by S100B levels [42]. However, higher lev-
els of Bacteroidetes and lower levels of Firmicutes were 
observed in a group of children with autism [43]. No study 
clarified the correlation between gut microbial alternation 
and the effect of probiotic use and S100B levels in autistic 
patients. Studies can be directed to know the effects of pro-
biotic administration as a manipulative factor of gut micro-
biota on the levels of S100B in ASD patients. Furthermore, 
it is suggested that S100B can be investigated as a potential 
biomarker both in the diagnosis and treatment of autism.

Brain‑derived Neurotrophic Factor

BDNF is a protein member of the nerve growth factor fam-
ily (neurotrophins). BDNF has a key role in both the pre-
synaptic site (modulates neurotransmitter release) and post-
synaptic site (augments the function of ion channels), so it 

generally contributes to affect neuroplasticity and, thereby, 
behavior-related conditions [44]. Abnormal levels of BDNF 
were seen in a wide range of neurological diseases, including 
schizophrenia, depression, and even autism [45]. Accord-
ing to recent studies, altered BDNF levels were observed 
in ASD patients compared to the controls, revealing that 
BDNF might play a role in autism pathophysiology [46–50]. 
A relatively higher level of BDNF was seen in mild pheno-
types compared to severe autism, emphasizing the probable 
protective function of this factor [51]. Downregulation of the 
BDNF in the antiapoptotic signaling pathway in the brains of 
autistic individuals is one of the possible underlying mecha-
nisms in the pathophysiology of autism [52]. The reduc-
tion of BDNF expression as a neuroprotective agent can be 
caused by raised inflammatory factors, including IL-1β and 
TNF; therefore, it may have a negative regulatory role in 
neuroinflammation [53, 54]. The dysbiotic gut microbiota 
in autistic patients may contribute to this inflammatory 
condition through immune dysregulation and the release of 
inflammatory factors such as IL-1β, which crosses the BBB 
[55]. Animal studies showed that BDNF has been lower in 
germ-free mice's cortex and hippocampus [56]. Probiotic 
administration in these sterile mice also resulted in partial 
and complete normalization of behavior and BDNF levels, 
respectively. It has also been suggested that probiotics, spe-
cifically a combination of the Lactobacillus and Bifidobac-
terium genera, may be effective in increasing BDNF levels 
and improving mental health parameters in patients with 
depression and neurological disorders [57, 58]. Balance of 
fecal Clostridium spp. and normal BDNF expression were 
both achieved through fecal microbiota transplantation or 
Bifidobacterium treatment in an animal model of autism 
[21]. In another rat model study, Lactobacillus supplemen-
tation could increase BDNF levels and attenuate behavioral 
anomalies [59]. Regarding these relations, further studies are 
needed to know if the induction and modification of micro-
bial alteration in the gut of autistic patients can be monitored 
and controlled by BDNF levels.

RANTES AND Eotaxin

Regulated upon Activation, Normal T Cell Expressed and 
Secreted, RANTES (CCL5), and eotaxin (CCL11) are pro-
inflammatory chemokines released by a variety of cells, 
including blood cells, fibroblasts, endothelium, epithelium, 
neurons, and glial cells [60, 61]. RANTES [60, 62–66] and 
eotaxin [65–68] plasma levels are considerably higher in 
autistic children. Since RANTES and eotaxin act as pro-
inflammatory mediators, their rise implies that both play a 
neuroinflammatory role in ASD [60, 61, 69, 70]. Although 
Shen et al. [63] reported no significant correlations between 
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RANTES or eotaxin and behavioral patterns of ASD, Han 
et al. [64, 65] and Hu et al. [67] found RANTES and eotaxin 
related to ASD, respectively. Besides, other studies dem-
onstrated that the rise of both factors is ASD related [66]. 
wMoreover, gut microbiota seems to induce RANTES-medi-
ated inflammation [71–73]. Earlier studies uncovered the 
NOD‐like receptor family pyrin domain containing 6–gut 
microbiota axis and subsequent IL-6 and TNF release as 
one possible connection of gut microbiota dysbiosis with 
RANTES-mediated immune dysregulation [74, 75]. Con-
cerning the expression of gene encoding, it has been found 
that gut microbiota can manipulate eotaxin expression levels 
[76]. On this matter, antibiotic-treated mice had an altered 
microbiome with elevated eotaxin and different structures 
in their microglia [77]. Also, it has been found that mice's 
eotaxin levels changed after fecal microbiota transfer [78]. 
Regarding gut microbiota and ASD relation, modified anx-
iety-like and repetitive behaviors were observed while the 
levels of RANTES and eotaxin were improved through gut 
microbiota transplant in ASD mice. These results showed 
that RANTES and eotaxin play important roles in CNS 
synaptic transmission and development, and their levels are 
associated with the structure of microbiota in mice [22]. 
Clostridiaceae, Erysipelotrichaceae Prevotella families, 
Candidatus Arthromitus, and Proteus genus were found to be 
inversely associated with the level of RANTES and eotaxin 
[22]. In-vivo topical and oral probiotic administrations have 
reported a connection of RANTES with strains Lactoba-
cillus paracasei SGL 04, Lactobacillus plantarum SGL 07, 
Lactobacillus fermentum SGL 10, and Lactobacillus brevis 
SGL 12 lysates, and Lactobacillus rhamnosus GG [79, 80]. 
Similarly, Probiotics containing Lactobacillus acidophilus, 
Lactobacillus rhamnosus GG, and Bifidobacterium also 
changed eotaxin gene expression in an animal [81]. Overall, 
the important findings implied from these studies suggest a 
potential mechanism of gut microbiota in ASD pathogenesis 
and severity through inflammatory factors of RANTES and 
eotaxin.

GM‑CSF

The cytokine granulocyte–macrophage colony-stimulating 
factor (GM-CSF) drives many aspects of myeloid hemopoi-
etic cell biology, including survival, proliferation, differen-
tiation, and functional activity. It also affects the immune 
system through dendritic and T-cell functions [82, 83]. GM-
CSF triggers chronic inflammation in the CNS and acts as a 
neuronal growth factor to stimulate neuronal and glial dif-
ferentiation [82–84].

Although some earlier studies presented a low GM-CSF 
level in autistic patients [85, 86], higher levels of GM-CSF 

were found consequently in the brains of ASD patients 
[70, 82–84]. Perroud et al. reported higher levels of GM-
CSF- IL-1α, TNF-α, and interferon-α among ASD children 
experiencing co-morbid GI symptoms [87]. The changes in 
GM-CSF levels in ASD can indicate that an inflammatory 
process may be involved in developmental and neuroim-
mune impairment [83]. Results of co-culture experiments by 
Takada et al. are the first to show that GM-CSF-induced 
macrophages inhibit the dendritic outgrowth of neurons in 
autistic individuals. This phenomenon is mediated through 
the secretion of pro-inflammatory cytokines, IL-1α and 
TNF-α, and may lead to more severe behavioral effects [88].

Interestingly, GM-CSF levels vary with alterations in 
gut microbiota [89–92] and mostly with IL-17a, a cytokine 
that correlated with the severity of behavioral symptoms 
in individuals with ASD [89, 90]. Different species of gut 
bacteria have been linked to GM-CSF, including Parabacte-
roide, Prevotella, Streptococcus, Clostridium, Lactobacillus 
reuteri, Lactobacillus crispatus Enterococcus faecalis, Blau-
tia, Butyricimonass, Roseburia, Anaerotruncus, and Blautia 
[89, 92]. An important finding showed that gut microbiota-
derived metabolites like SCFAs may alter GM-CSF levels 
[90]. Within a study, GM-CSF as a neuroimmune factor was 
increased with the administration of probiotics containing 
Bifidobacterium longum, Lactobacillus delbrueckii bul-
garicus, and Streptococcus thermophilus [93]. Altogether, 
the change of GM-CSF neuroinflammatory factors by gut 
microbiota alteration provides insight into the mechanism 
of pathogenesis in this way in ASD patients.

HMGB‑1

The high mobility group box 1 protein (HMGB-1) is one of the 
most abundant members of the HMGB protein family and has 
many potential roles [94]. It has a key role in DNA regulatory 
activities as a nuclear protein [95]. As an extracellular factor, it 
is actively released when immune cells respond to an inflam-
matory condition [96] and also passively released by necrotic or 
damaged cells [95]. HMGB1 has numerous membrane recep-
tors called pathogen recognition receptors, TLR4, TLR9, and 
receptors for advanced glycation end products (RAGE) are the 
dominant ones. Through its interactions with these receptors, 
HMGB1 promotes inflammation in cells [97]. HMGB1 can 
cross the blood–brain barrier, promote neurite outgrowth and 
cell migration, or mediate neuroinflammation after injury [98].

It has been understood that plasma levels of HMGB-1 can 
elevate in ASD patients [99] and positively correlated with 
the severity of autism [100]. Another effective inflammatory 
molecule, the epidermal growth factor receptor, was consid-
ered to be related to symptom severity in children with autism, 
and the HMGB1 level seems to correlate with that [101, 102]. 
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Interestingly, higher HMGB1 levels are found to be associated 
with higher GI dysfunctions in individuals with autism, which 
can imply an intestinal concept of pathogenesis [23, 103]. It is 
similarly studied that fecal levels of HMGB1 were correlated 
with GI sign severity in ASD children, which regards ASD-
related dysbiosis [23]. Microbiome dysbiosis accompanied by 
intestinal inflammation can lead to the activation of monocytes, 
upregulating HMGB1 excretion for a pro-inflammatory feed-
back loop [104].

Higher levels of HMGB1 and TLR4 have also been reported 
to be associated with autistic-like behaviors in mice, possibly 
through activation of the HMGB1/TLR4 signaling cascade 
[105]. Serum levels of TLR4 were elevated in ASD chil-
dren and positively associated with their hyperactivity scores 
[106]. Activation of the HMGB1/RAGE/TLR4 axis leads to 
leukocyte infiltration into nerve cells and results in persistent 
CNS inflammation. It is suggested that neuroinflammation is 
strongly related to ASD occurrence [107] through activating 
the inflammasome system as a mechanism [108]. In addition, 
it is described that HMGB1 can bind to endogenous secretory 
RAGE, resulting in a decline in plasma RAGE levels. This 
may contribute to the pathophysiology of autism by interfering 
with neuropeptide oxytocin transport from the periphery to the 
brain [109].

The effect of probiotics and gut microbiota alteration on 
HMGB1 levels in ASD patients can strengthen the idea and 
can be further studied. HMGB1 might play a key role in ASD 
pathogenesis through neuroinflammation and can conduct 
treatment strategies. However, it is a highly potential factor 
in the pathophysiology of autism, not precisely clarified, and 
more research is needed.

Osteopontin

Osteopontin (OPN) is both a soluble proinflammatory 
cytokine with a well-established role in autoimmune neu-
roinflammatory diseases and a component of the non-colla-
genous bone matrix that controls biomineralization in bone 
tissue [110]. Depending on its location and context, OPN 
is involved in local inflammation, cell adhesion, immune 
response, chemotaxis, and protection from apoptosis 
[111]. Heilmann et al. hypnotized that OPN can activate 
the immune system, reduce tissue damage, and stimulate 
mucosal repair during acute inflammation while promot-
ing the Th1 response and strengthening inflammation under 
chronic circumstances [112].

OPN has been related to the pathogenesis of neuropsy-
chological disorders like multiple sclerosis and Alzheimer's 
disease [110, 113]. Expression of secreted phosphoprotein 1 
and its encoded protein OPN by CD11c + cells were associ-
ated with cognitive impairment and common neuropatholo-
gies in Alzheimer’s disease [114]. Studies on OPN levels in 

autistic patients are limited. However, Al-ayadhi and Mostafa 
[111] found an association between elevated serum levels of 
OPN and disease severity, indicating the role of OPN in neu-
roinflammation and the development of brain-specific auto-
antibodies. Their findings can support the idea of OPN as 
an important neuroinflammation factor in the mechanism of 
ASD.

The possible interaction of OPN with gut microbiota has 
been discussed in metabolic disorders [115]. However, the role 
of OPN is not yet studied in association with gut microbiota 
in neurological disorders, especially in ASD patients, and can 
be a potential target for future studies. The finding of altera-
tions in specific strains of gut microbiota connected to OPN 
and symptoms of ASD may help to improve diet, treatment 
methods, and probiotic supplements.

Calprotectin

Calprotectin is a protein that binds to calcium and is mainly 
found in neutrophils, which are white blood cells that increase 
when inflammation and cell damage occur. Calprotectin 
in stool can indicate intestinal inflammation and serve as 
a biomarker [116]. Considering the possible role of gut 
inflammation in the development of ASD, a number of 
research have studied the association of calprotectin levels 
in ASD patients, but their results were inconsistent. Some 
reports show that ASD patients and their relatives may have 
higher calprotectin levels than control groups [41, 117]. 
Interestingly, Babinská et al. found that calprotectin levels of 
ASD individuals were significantly related to all domains of 
autism diagnostic interview-revised, which measures social 
interaction, communication, and restricted and repetitive 
behaviors [41].

Similarly, Iovene et al. reported a significant correlation 
between autism severity, calprotectin level, and Clostridium 
spp—abundance [24]. Contrarily, Azouz et al. found no rela-
tion between calprotectin and disease severity, though they 
revealed a moderate correlation between calprotectin and 
GI symptoms [118]. Tomova et al. also revealed a positive 
correlation between Costridiacae bacteria, the severity of 
GI manifestations, and behavioral symptoms of ASD chil-
dren. Calprotectin levels were also moderately correlated 
with higher expression of macrophage inflammatory protein 
1β, which was associated with communication subscale and 
total score of autism diagnostic observation schedule, indi-
cating that it may play a role in microbial-neuronal cross-
talk [25]. Unlikely, some investigations found no statistically 
significant difference in calprotectin levels between ASD 
patients and controls [119–122] and, consequently, no appre-
ciable variation in calprotectin levels of ASD patients with 
and without GI symptoms.
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Studies on probiotic effects on calprotectin levels and 
autism are limited in the literature. Laghi et al. showed that 
greater calprotectin levels were associated with more Prevo-
tella and fewer Akkermansia bacteria in the gut, indicating 
these bacteria may have inflammatory or protective effects, 
respectively [26]. However, Santocchi et al. found probiotic 
therapy, including eight strains of Streptococcus, Bifidobacte-
rium, and Lactobacillus, to have a favorable impact on adap-
tive functioning in ASD patients but no discernible impact 
on calprotectin levels with or without GI symptoms [123]. 
This indicates that the probiotic effect on autistic patients is 
more complex than the reduction of gut inflammation, and the 
role of calprotectin as a probable neuroinflammatory mediator 
should be more studied.

Overall, the heterogeneities of calprotectin studies could be 
due to the diversity of trialed individuals, the accuracy of the 
used methods, and insufficient simultaneous studies of micro-
biota alterations and calprotectin. However, it is still possible to 
understand that host-microbiota dysbiosis and inflammation-
induced calprotectin trigger neuroinflammatory mechanisms 
that cause autistic aspects.

Gut Microbiota Metabolites and ASD

Many gut microbiota-derived metabolites are highlighted in 
ASD, such as complex polysaccharides or metabolic amino 
acids, which can be neurotransmitters [124]. Several of them 
have been recently discussed as early diagnostic biomarkers 
of ASD [7]. One significant group of metabolites through 
which gut microbiota regulates the host physiology is short-
chain fatty acids, which primarily constitute acetate (AA), 
butyrate (BTA), and propionate (PPA).

The genera Prevotella, Bifidobacterium, and Ruminococ-
cus are the primary producers of acetate [125], the most 
prevalent SCFA, which is reported to be decreased in ASD 
[29, 126]. BTA is mainly produced by the Firmicutes phy-
lum, more precisely by Lachnospiraceae and Ruminococ-
caceae families [127], and PPA is synthesized by the Bac-
teroidetes phylum (including Bacteroides and Prevotella) 
and Firmicutes phylum (including Roseburia, Blautia and 
Coprococcus) [128]. However, alongside Bacteroides, the 
elevated level of PPA is associated with increased Clostrid-
ium and Desulfovibrio species in autistic individuals [129]. 
Also, a study on autistic children revealed lower Bifidobac-
terium and higher PPA levels, both of which attenuated at 
older ages [27].

Unlike some studies [28, 29, 126], others reported higher 
levels of AA, PPA, and BTA in autistic patients compared to 
control groups [27, 30, 31, 130, 131]. These gut microbiota-
related SCFAs exhibit conflicting pro-inflammatory and anti-
inflammatory effects in the host's inflammatory response, 
possibly due to the differences in binding receptors and local 

concentrations [132]. Some animal studies revealed that sup-
plementation with the microbial metabolites AA and BTA 
could reverse the social behavioral phenotypes [133–136]. 
In contrast, intracerebroventricular injection of PPA in rat 
brains has induced ASD-like symptoms, including reactive 
gliosis [137]. It has been understood that PPA can lead to 
gliosis, disturbed neuro-circuitry, and neuroinflammatory 
response through modulation of the PTEN/AKT pathway 
in ASD [138]. As the finding data regarding SCFA levels in 
autistic patients are inconsistent and yet to be studied [7, 28, 
124, 139], additional research is required to verify the poten-
tial role of SCFAs in the pathophysiology of ASD. They 
might be considered as neuroinflammatory biomarkers and 
indicators of gut microbiota modification in autism patients.

MicroRNAs and ASD

Over 60% of human genes are controlled by microRNAs 
(miRNAs), small, non-coding RNAs of around 18–24 nucle-
otides that function as epigenetic regulators. MiRNAs modify 
brain plasticity and neuronal development, and their dysregu-
lation causes a broad spectrum of neurological impairments, 
including ASD [140–144]. The importance of miRNAs as 
regulators of numerous cellular and physiological processes, 
including hematopoiesis, immune reactions, and inflamma-
tion, is well-established [145]. Additionally, miRNAs are 
affected by host-microbiota interactions and play a key role 
in dysbiosis and induced inflammations [146–149]. An inten-
sive study found over-expressed miRNAs in ASD and their 
possible role in impaired neurodevelopment through dys-
regulated inflammatory genes [150]. Besides, several studies 
have identified that miRNAs directly and indirectly activate 
inflammasomes through their interaction with 3'-UTR genes 
that modulate inflammasome expression [151].

In detail, animal studies suggest that an increase or 
decrease of miR-146a can be a potential cause of ASD [152]. 
A clinical study of the postnatal period compared miRNAs 
of ASD and healthy controls and confirmed miR-146a as 
the most dysregulated miRNA in ASD [152]. Using in vitro 
models and postmortem human brain tissues, another study 
also found that miR-146a overexpression in the brains of 
ASD patients is detectable as early as childhood [153]. The 
changes in Gut microbiota-host interaction could induce 
miR-146a and consequently promote neuroinflammatory 
pathways [154]. It is highlighted that miR-146a-induced 
nuclear factor kappa-B augments the inflammation signal-
ing pathway in the gut-brain axis. It has been shown that 
Bacteroides fragilis, Lactobacillus rhamnosus GG, Lacto-
bacillus acidophilus, Lactobacillus delbrueckii Bulgaricus, 
and Escherichia coli Nissle 1917 were linked to miR-146a 
expression [149, 154, 155]. Another research indicates that 
miR-146a is essential for certain inflammatory cytokine 
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expression and that its absence in the brain leads to an over-
all compensatory upregulation of miR-155. Enhanced pro-
tein carbonylation and decreased cysteine thiol levels were 
additional indicators of this elevated neuroinflammatory flux 
due to an upsurge in oxidative stress mediators [156].

Several studies have identified miR-146a and miR-155 to 
various pathologic conditions indicated by chronic inflam-
mation [157]. A possible explanation is that gut-derived 
toxins, such as LPS, capable of traversing the blood–brain 
barrier and are in systemic circulation, can potentially acti-
vate the NF-kB-miRNA-146a-miRNA-155 signaling path-
way. This pathway would then transmit pathogenic signals 
originating from the microbiome to the brain, which might 
disturb the innate immune reactions and lead to neuroinflam-
matory conditions [158]. MiR-155 could also be altered by 
gut microbiota dysbiosis [159]. One study added evidence of 
increased miR-155 expression in the amygdala, frontal cor-
tex, and cerebellum of children with ASD [62]. miRNA-155 
is involved in TLR activation by bacterial lipopolysaccha-
rides, activation of tumor necrosis factor-alpha and IL-6, and 
regulation of suppressor of cytokine signaling 1 on dendritic 
cells. These activities, alongside the variation with micro-
biota dysbiosis, can give a candidate role to miRNA-155 in 
the neuroinflammatory mechanism of the gut-brain axis and 
ASD [152, 159]. Earlier studies identified probiotics of Lac-
tobacillus fermentum, Lactobacillus salivarius, Lactobacil-
lus rhamnosus GG, Lactobacillus acidophilus, Lactobacillus 
delbrueckii, Bifidobacterium bifidum, and E coli Nissle 1917 
could change the level of miR-155 [149, 155, 159, 160].

Moreover, studies found upregulated miR-181 in ASD 
patients, expected to impact the ASD-related neurexin 1 
gene [152, 161, 162]. Neuroinflammation and immunologi-
cal dysregulation are two of the many physiological pro-
cesses linked to the miR-181 family [163–165]. On the other 
hand, some studies show that gut microbiota could regulate 
miR-181 in mice [148, 166, 167]. It has also been revealed 
that Lactobacillus rhamnosus and Lactobacillus delbrueckii 
probiotics affect the miR-181a expression in inflammatory 
diseases [160]. Additionally, metabolites derived from gut 
microbiota could affect miR-181 expression in different 
states [148]. Altogether, these pieces of evidence strengthen 
the argument about the possible miR-mediated role of gut 
microbiota through the neuroinflammatory process in ASD.

Probiotics and ASD

Living microorganisms known as probiotics can influence 
host health through various mechanisms. According to 
recent research, they can be used as a therapeutic tool to treat 
ASD by restoring a healthy balance in the gut microbiota, 
adjusting the levels of neurotransmitters in the tissues, and 
reducing inflammation in the gut [168, 169].

Animal models revealed that probiotic supply 
considerably modified the social and emotional behaviors 
of the rats as well as blood levels of cytokines like IL-6, 
IL-17a, and IL-10 [59, 170, 171]. On the other hand, only 
a few trials assessed the impact of probiotics on ASD with 
the aspect of inflammatory modulation and immune system 
regulation (Table 2). Sanctuary et al. evaluated the use 
of Bifidobacterium infantis in combination with a bovine 
colostrum product in autistic children. Some patients 
revealed lower frequency of GI symptoms and aberrant 
behavior, possibly due to a reduction in TNF-α and IL-13 
[172]. Tomova et  al. also showed a strong correlation 
between fecal levels of TNF-α and the severity of autism, 
indicating the possible involvement of GI inflammation 
and permeability in ASD through inflammatory pathways. 
They could significantly decrease the TNF-α levels in the 
feces of autistic children through probiotic supplementation 
involving strains of Lactobacillus, Bifidobacteria, 
and Streptococcus [173]. However, Santocchi et al. found the 
plasma levels of plasma inflammatory biomarkers, including 
TNF-α, IL-6, leptin, and plasminogen activator inhibitor 1, 
and fecal calprotectin contrarily unaffected by the probiotic 
treatment, involving the same genera as Tomova et al.… 
Nevertheless, there is a greater improvement in some GI 
symptoms, adaptive functioning, and sensory profiles in 
the group treated with probiotics compared to placebo in 
the subgroup of autistic children with GI problems [123]. 
Similarly, using strains of Bifidobacterium and Lactobacillus 
alongside an oligosaccharide could improve disease severity 
and GI problems in autistic children [174].

Limosilactobacillus genus can also lead to improvement 
in adaptive symptoms of ASD [175, 177]. However, Schmitt 
et al. did not see any relevant changes in the plasma TNF-α 
and HS-CRP, fecal calprotectin, and lactoferrin with the use 
of this probiotic [175]. Synergic use of Lactiplantibacillus 
plantarum and oxytocin was also revealed to have an anti-
inflammatory effect through the reduction of IL-1β [176]. 
The probiotic mixture containing five strains of Bifidobac-
terium longum with anti-inflammatory and high homeostatic 
intestinal activity, along with Limosilactobacillus fermen-
tum, Lactiplantibacillus plantarum, and Ligilactobacillus 
salivarius, showed significantly alternation the diversity 
of gut microbiota. The species that are consistent with this 
formulation of probiotics were found in the feces of autistic 
children, including Streptococcus thermophilus, Bifidobac-
terium longum, Limosilactobacillus fermentum, and Ligilac-
tobacillus salivarius [177].

There are no medicines indicated for the core deficits of 
ASD. Therefore, there is a substantial requirement for the 
creation of novel pharmacological approaches for patients 
with ASD. Overall, these findings support that probiotics 
may serve as a promising therapy due to their beneficial 
impact on symptoms of ASD. Considering the existing 
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association between immune system dysfunction and behav-
ioral abnormalities [178] and the possible impact of gut 
microbiota on ASD through inflammatory mediators, it is 
suggested that neuroinflammatory variables be examined 
during probiotic administration and the most effective for-
mulation to alter them be determined.

Conclusion

Given the complexity and lack of clarity surrounding the 
pathophysiology of ASD, research into the role of inflam-
matory mechanisms and immunological dysregulation has 
been raised in recent years. Dysregulation pathways in ASD 
may also be etiologically traced back to gut microbial alter-
ations and host-microbiota dysbiosis. These changes have 
been associated with ASD symptoms and severities probably 
through the released metabolites, neural signaling pathway 
by BDNF, and neuroinflammatory biomarkers, including 
S100B, HMGB-1, OPN, miRNAs, RANTES, eotaxin, and 
GM-CSF. In this review, the role of mediators as a trigger-
ing mechanism and bridging cause between gut microbiota 
dysbiosis-induced inflammation from one side, and neuro-
inflammatory processes of CNS in autism from the other 
side is emphasized. Probiotics as an applicable therapeutic 
option to recover microbiota in ASD suggest the relevance 
of gut microbiota and potential beneficial impacts. However, 
further studies are essential to evaluate the efficacy of differ-
ent probiotic formulations considering microbiota alteration 
types, coincidence neuroinflammatory mediators, interven-
tion length, and autistic age and symptoms. In fact, many 
ideas have been proposed to explain ASD pathogenesis, but 
there is currently a lack of intensive immunological, neuro-
chemical, and microbiota studies in the field. This approach 
can clinically explain the trajectory through microbiota 
alteration, related metabolites, neurological inflammatory 
mediators, and the CNS process of ASD. This constructed 
dogma can be used to create etiologic, diagnostic, prognos-
tic, or therapeutic targets for ASD.
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