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Abstract— Hepatocellular carcinoma (HCC), one of the most prevalent cancers globally, is 
closely associated with tumor-associated macrophages (TAMs), including monocyte-derived 
macrophages and liver-resident Kupffer cells. Understanding TAM heterogeneity at the cel-
lular level is crucial for developing effective HCC prevention and treatment strategies. In 
this study, we conducted an integrated single-cell analysis of four cohorts (GSE140228, 
GSE125449, GSE149614 and GSE156625) to elucidate the TAM landscape in HCC. We 
identified 284 gene markers, termed Panmyeloid markers, that characterize myeloid cells 
within this context. Our analysis distinguished six clusters of monocyte-derived mac-
rophages (Macro1-Macro6) and four clusters of Kupffer cells (Kupffer1-Kupffer4). Notably, 
CXCL10 + macrophages and MT1G + Kupffer cells, predominantly located within tumor tis-
sues, exhibited distinct functional characteristics relevant to HCC. We also explored cellular 
communication between TAMs and T cells, uncovering potential signaling pathways such as 
the CXCL10/CXCL11-CXCR3 and CXCL12-CXCR4 networks. These findings enhance our 
understanding of TAMs in HCC and open new avenues for targeted therapeutic interventions.

KEY WORDS: Tumor associated macrophages; Hepatocellular carcinoma; Single-cell RNA sequencing; 
CXCL10 + Macrophages; MT1G + Kupffer cells

INTRODUCTION

Hepatocellular carcinoma (HCC) stands as a 
major global health challenge, representing one of 
the most common and aggressive cancers worldwide 
with a continually rising incidence and poor progno-
sis. The complexity of HCC pathogenesis, coupled 
with its late diagnosis and limited therapeutic options, 
underscores the urgent need for deeper insights into 
its underlying mechanisms [1, 2]. Recent advances in 
understanding HCC have highlighted the pivotal role 
of the tumor immune microenvironment, particularly 
focusing on the function and influence of tumor-
associated macrophages (TAMs). TAMs, comprising 
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monocyte-derived macrophages and liver-specific 
Kupffer cells, are increasingly recognized for their sig-
nificant contributions to HCC progression and metasta-
sis. Their dynamic interactions within the tumor micro-
environment influence various aspects of HCC, from 
tumor initiation to metastatic spread [3–5].

Despite this recognition, a comprehensive under-
standing of TAM heterogeneity and function at the cel-
lular level in HCC remains elusive. Previous research 
has provided valuable insights yet often lacked a holistic 
view, focusing on specific cell clusters or a limited set 
of gene markers [6]. This has hindered the construc-
tion of a detailed landscape of TAMs’ heterogeneity 
and their multifaceted roles in HCC. The advent of 
single-cell RNA sequencing (scRNA-seq) technology 
offers an unprecedented opportunity to unravel the com-
plex cellular composition of human tissues, including 
HCC. By enabling a high-resolution view of individual 
cells, scRNA-seq has been instrumental in delineating 
the diverse immune phenotypes and intricate cell–cell 
interactions within HCC [7–10]. Pioneering studies 
have shed light on the distinct subtypes of infiltrating 
lymphocytes, the inflammatory states of myeloid cells, 
and the nuanced interplay between various immune 
cells within the HCC microenvironment [11, 12]. Con-
sequently, further research is imperative to comprehen-
sively delineate both the patterns and the potential roles 
of TAMs in HCC, which could be crucial for advancing 
our understanding and treatment of this disease.

In this study, we leverage the power of scRNA-seq to 
conduct an integrated analysis of four comprehensive cohorts, 
encompassing 70 HCC samples. Our aim is to provide a 
detailed characterization of the TAM landscape in HCC. By 
offering a comprehensive view of TAM heterogeneity and 
interaction networks in HCC, this study aims to fill a critical 
gap in our understanding and pave the way for novel thera-
peutic approaches targeting the tumor microenvironment.

RESULTS

Integration of Single Cell Cohorts in Human HCC
We integrated single cell RNA sequencing datasets 

from human HCC samples, as detailed in Table S1. For 
data integration, we employed the Mutual Nearest Neigh-
bors (MNN) method [13] (Fig. 1a), chosen for its efficacy in 
minimizing batch effects across datasets. To further reduce 
potential batch effects, we carefully controlled for variables 

such as sequencing techniques, disease types, and species. 
All datasets were derived using 10X Genomics technol-
ogy, specifically employing the Chromium Single Cell 3’ 
Library, Gel Bead & Multiplex Kit, and Chip Kit. Each sam-
ple analyzed was histologically diagnosed as HCC.

Following the integration and subsequent clustering 
process, we identified cell type annotations using canoni-
cal markers (Table S2). This process yielded a total of 
32 distinct clusters, encompassing 135,900 cells, across 
70 samples (Fig. 1b). The distribution of these clusters 
across various tissue samples is visually represented 
in Fig. S1A, with specific tissue locations detailed in 
Fig. S1B. Hepatocyte and cholangiocyte markers were 
used to distinguish epithelial clusters (Fig. 1b, Fig. S1C). 
Among the clusters, a noteworthy finding was the iden-
tification of 23,010 myeloid cells. These cells were pre-
dominantly categorized into clusters 3, 5, 16, 19, 21, 
22, 25, and 26 (Fig. 1b). This significant subset of cells 
offers potential insights into the myeloid cell landscape 
and their roles in the pathology of HCC.

Panmyeloid Marker Profiling by Lineage 
and Tissue in Hepatocellular Carcinoma

Following our detailed annotation of the cell land-
scapes in human HCC (Fig. 2a), we re-analyzed differ-
entially expressed genes within various cell lineages. 
Utilizing canonical myeloid markers—CD68, CD14, 
and CD163—we isolated myeloid cells and identified 284 
gene markers. These markers, termed ’Panmyeloid mark-
ers,’ form a unique gene list representative of myeloid 
cells in HCC (Table S3). Notably, these markers showed 
significant expression in TAMs and dendritic cells (DCs), 
compared to other cell types (Fig. 2b).

Panmyeloid markers encompass genes encoding 
proteins essential for diverse myeloid cell functions, such 
as migration (e.g., AIF1, CXCL8, IL1B, CD74), differ-
entiation (C1QC, CCL3, TYROBP, FCER1G), cytokine 
production (CD74, CD36, NR4A3), and homeostasis 
(FCER1G, MAFB, HMOX1, SPI1) [14, 15]. Addition-
ally, these markers play crucial roles in myeloid-leucocyte 
interactions, with genes involved in leucocyte chemot-
axis, migration, and degranulation (CST3, CST8, LYZ, 
CD68) [16, 17]. Furthermore, some markers participate 
in Toll-like receptor binding (S100A8, S100A9, LY96) 
and lipopeptide binding (CD1C, CD1E) [18, 19].

We identified two primary myeloid cell groups in 
HCC: TAMs and DCs. TAMs, known for their produc-
tion of pro-inflammatory or pro-tumorigenic cytokines, 
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display characteristics that can be either anti-tumor 
[20] or pro-tumor [21]. Panmyeloid markers in TAMs 
include genes associated with tumorigenesis (VEGFA, 
TGFB1, PDGFA) and inflammation (FCGR3A, IL12, 
TNF). DCs predominantly function in antigen process-
ing and presentation, with related genes (HLA-DRA, 
FCER1G, FGL2, CTSD) also present in Panmyeloid 
markers [22–24]. To rigorously validate the effective-
ness of Panmyeloid markers, we conducted a detailed 
myeloid score analysis leveraging a comprehensive set 
of 284 gene markers. This analysis revealed that, within 
the spectrum of myeloid cell groups, Kupffer cells reg-
istered notably higher scores in comparison to both 
macrophages and DCs (Fig. 2c). When broadening the 
comparison to encompass other immune cells, includ-
ing B cells, NK cells, and T cells, it became evident that 
all myeloid cell groups exhibited significantly elevated 
myeloid scores (Fig. 2c, Fig. S2). These findings under-
score the utility of Panmyeloid markers in distinguish-
ing between myeloid cells and other types of immune 
cells with a high degree of precision.

Moreover, we identified specific markers, termed 
’location markers,’ differentially expressed between 
tumor and adjacent tissues (Table S3). The top ten mark-
ers with up-regulation (based on average logFC) were 
SPP1, RNASE1, APOC1, APOA2, MMP12, APOE, 
MMP9, NUPR1, CSTB, and FABP5. Conversely, the 
top ten markers with down-regulation included THBS1, 
CXCL12, S100A9, IGHA1, S100A8, CFP, LYVE1, 
CETP, PLAC8, and MARCO (Table S3). Significantly, 
67 genes found at the intersection of Panmyeloid and 
location markers showed high expression in HCC tumor 
sites (Table S3), and 44 were down-regulated (Table S3).

Identification of Monocyte‑Derived 
Macrophages and Kupffer Cells 
in Hepatocellular Carcinoma

In our detailed analysis of TAMs in HCC, we re-
clustered the myeloid cell population (23,010 cells) 
and performed an in-depth annotation (Table S4). This 
analysis distinguished 6 clusters of monocyte-derived 

Fig. 1  Overview of the study design and integrated dataset. a Overview of the study design. Single-cell RNA sequencing of 4 cohorts (GSE140228, 
N = 13; GSE125449, N = 9; GSE149614, N = 18 and GSE156625, N = 15) were integrated to form the hepatocellular atlas. b UMAP representation 
of the hepatocellular carcinoma as obtained from 135,900 cells of 70 tumor samples using dotplot. Each dot represents a single cell.
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macrophages (Macro1-Macro6) and 4 clusters of Kupffer 
cells (Kupffer1-Kupffer4) from the 5 clusters of dendritic 
cells (DCs) (Fig. 3a-d).

Utilizing canonical markers, we classified the 
monocyte-derived macrophages into three broad cat-
egories: 1) pro-tumorigenic (10,152 cells in Macro 1, 2, 
4, and 6), 2) pro-inflammatory (1,705 cells in Macro 5), 
and 3) myeloid-derived suppressor cells (MDSCs, 2,366 
cells in Macro 3) (Table S4, Fig. 4A). The pro-tumor-
igenic macrophages, exhibiting an M2 polarized phe-
notype, were characterized by high expression of fac-
tors including transforming growth factor β1 (TGFB1) 
[25], vascular endothelial growth factor A (VEGFA) 
[26, 27], platelet-derived growth factor (PDGFA and 
PDGFB) [28], IL6 [29], IL1B [30], CD163, CCL2 [31], 
proliferative factors (CD206 and MKI67), and tumor 
necrosis factor (TNF) [32]. These factors are known to 
contribute to tumor growth and proliferation (Table S4). 

In contrast, the pro-inflammatory macrophages (M1 
polarized phenotype) demonstrated elevated levels of 
immunostimulatory pro-inflammatory factors such as 
FCGR3A, IL12, and TNF (Table S4). MDSCs were 
characterized by high expression of immunosuppressive 
factors, including THBS1, FCN1, VCAN, and CD33 
[33] (Table S4).

Further dissection of the pro-tumorigenic mac-
rophages revealed four distinct subpopulations, which 
will be described in subsequent sections.

In the resident liver macrophage population, 
we identified two major subsets of Kupffer cells: 
MARCO + (3,201 cells in Kupffer1 and 2) and MARCO- 
(1,173 cells in Kupffer 3 and 4), differentiated using 
specific markers (Fig. 5a). MARCO + Kupffer cells were 
marked by high expression of MARCO, TIMD4, and 
activated cytokines including CCL2, CCL5, interleu-
kin 1β (IL-1β), and TNF. Conversely, MARCO- Kupffer 

Fig. 2  Visualization of Panmyeloid markers for myeloid cells of human HCC by single-cell RNA sequencing. a Violin plots showing the annotation 
of cell types according to canonical markers: PECAM1, CDH5 and ICAM2 for endothelial cells; ALB, TF and TTR for epithelial cells; CD4, CD8A 
and CD3D for lymphoid cells; CD68, CD163 and CD14 for myeloid cells; COL1A2, CDL3A1 and ACTA2 for stromal cells. b Heatmap showing 
the top 50 genes of Panmyeloid markers. DC, pDC, Kupffer and Macrophages were all highly expressed within the genes listed above. c Violin plots 
showing the myeloid scores among myeloid cell groups and other immune cells (**** means p < 0.0001).
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cells predominantly expressed CD5L and VCAM1. 
Notably, all Kupffer cell types exhibited elevated lev-
els of macrophage mannose receptor 1-like protein 
(MRC1 or CD206), a type I membrane receptor crucial 
for the endocytosis of glycoproteins by macrophages 
(Table S4).

Distinct Features of Spatially Heterogeneous 
Monocyte‑Derived Macrophages 
in Hepatocellular Carcinoma

We conducted an in-depth assessment of the spa-
tial distribution and distinct characteristics of three  

Fig. 3  Visualization of myeloid cells of human HCC by single-cell RNA sequencing. a UMAP of 23,010 myeloid cells from 70 samples showing 
the landscape of myeloid cells for human HCC consisting of 5 clusters for DCs, 6 clusters for monocyte-derived macrophages and 4 clusters for 
Kupffer cells. b UMAP of myeloid cells by 4 cohorts. c UMAP of myeloid cells by location in tumor and normal tissues. d UMAP of myeloid cells 
within the 70 samples. e Heatmap showing the top 5 differentially expressed genes of each cluster.
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broad categories of monocyte-derived macrophages in 
HCC. Our findings revealed a predominance of pro-tum-
origenic macrophages within tumor tissues, while pro-
inflammatory macrophages and myeloid-derived suppres-
sor cells (MDSCs) were more prevalent in tumor-adjacent 
tissues (Fig. 4b).

We conducted macrophage’s identification using 
specific gene expression and functional enrichment 
analysis. APOE + Macro1 cells were characterized by 
gene expressions primarily involved in antigen process-
ing and presentation via MHC class II molecules (e.g., 
HLA-DMB, HLA-DMA, HLA-DPA1, HLA-DRB1) 
and in regulating endocytosis (e.g., APOE, DAB2, 
TREM2, CD14) and T cell proliferation (Fig.  4c, 
Table S5). SPP1 + Macro2 cells exhibited high levels 
of secreted phosphoprotein 1 (SPP1) expression, a key 
component of the epithelial-mesenchymal transition 
(EMT) pathway, and participated in extracellular matrix 
receptor communication [34]. Besides SPP1, Macro2 

also expressed genes related to lipid localization (e.g., 
ANXA2, APOC1, CD36) and extracellular matrix 
(ECM) organization (e.g., MMP9, MMP12, CTSL) 
(Fig. 4c, Table S5).

CXCL10 + Macro4 demonstrated a diverse range 
of genes within the chemokine family (e.g., CXCL9, 
CXCL10, CXCL11, CXCL13), associated with posi-
tive responses to immune checkpoint blockade (ICB) in 
antitumor immunity [35]. Notably, immune checkpoints 
PD-1, PD-L1 (CD274), and CTLA-4 were all highly 
expressed in CXCL10 + Macro4. Functional enrich-
ment analysis suggested the association with T cell pro-
liferation, chemokine-mediated signal and lymphocyte 
chemotaxis (Fig. 4c, Table S5). Macro6, another subtype 
of pro-tumorigenic macrophages, exhibited the high-
est expression levels of Bcl2-associated athanogene 3 
(LAG3), a co-chaperone of the heat-shock protein (HSP) 
70, along with several other HSP family genes (e.g., 
HSPA1A, HSPA1B, HSPB1, HSPH1), associated with 

Fig. 4  Accessing monocyte-derived macrophage heterogeneity in human HCC. a RidgePlots showing expressions of pro-tumorigenic (TGFbβ1, 
VEGFα and PDGFβ) and pro-inflammatory (FCGR3A, IL12A and TNF) macrophages and MDSCs (THBS1, FCN1 and VCAN) of monocyte-
derived macrophages. b Fractions of monocyte-derived macrophage subpopulations in normal and tumor samples. c Bar plots showing the GO func-
tional analysis for DEGs of each macrophage group. d KM analysis showing each marker gene of subpopulations for survival of TCGA. e Fractions 
of monocyte-derived macrophage subpopulations based on the etiology of HCC. f Fractions of monocyte-derived macrophage subpopulations based 
on the tumor stage of HCC.
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cellular response to heat and regulation of angiogenesis 
(Fig. 4c, Table S5).

EREG + MDSCs (Macro3) were distinguished by 
high expression levels of THBS1, FCN1, VCAN, and 
EREG, indicating a heterogeneous population of imma-
ture myeloid cells with impaired antigen-presenting 

functions [15, 36]. The top markers of MDSCs, includ-
ing S100A8, S100A9, and S100A12, were involved in the 
nuclear factor-kappaB (NF-kappaB) signaling pathway, 
which plays a role in inflammation-induced HCC progres-
sion [37] and the formation of a neutrophil chemokine 
network with CXCL2 [38] (Fig. 4c, Table S5). Epiregulin 

Fig. 5  Accessing Kupffer cell heterogeneity in human HCC. a Violin Plots showing the expression of markers of Kupffer subgroups. b Fractions of 
Kupffer cell subpopulations in normal and tumor samples. c Bar plots showing the GO functional analysis for DEGs of each kupffer group. d KM 
analysis showing each marker gene of subpopulations for survival of TCGA. e Fractions of Kupffer cell subpopulations based on the etiology of 
HCC. f Fractions of Kupffer cell subpopulations based on the tumor stage of HCC.
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(EREG), the fourth most highly expressed MDSC marker, 
encodes a secreted peptide hormone of the epidermal 
growth factor (EGF) family, promoting HCC progres-
sion. The knockdown of EREG has been shown to sup-
press the growth of human hepatoma cells [39], suggest-
ing that EREG + MDSCs could be a potential target for 
HCC therapy. The top ten markers of pro-inflammatory 
macrophages (FCGR3A + Macro5) include genes such 
as FCN1, LST1, COTL1, S100A6, IFITM3, LYPD2, 
BCL2A1, TIMP1, LILRB2, and HSP90AA1. Functional 
enrichment analysis showed FCGR3A + Macro5 were 
involved of response to temperature, protein folding and 
regulation of inclusion body assembly (Fig. 4c, Table S5).

Our survival analysis of representative genes within 
each macrophage cluster revealed significant prognostic 
implications for HCC. High levels of APOE (Macro1) 
and CXCL10 (Macro4) expression were associated with 
enhanced patient survival, while high levels of SPP1 
(Macro2) and EREG (Macro3) correlated with poorer 
outcomes (Fig. 4d, Fig. S3). Further investigations into 
the differences among TAM classes relative to the under-
lying liver disease and presumed HCC etiology (Fig. 4e) 
indicated that Macro1 showed a non-viral aetiology, 
whereas Macro2 and Macro3 were associated with hepa-
titis B virus (HBV) infection. In contrast, Macro4 and 
Macro6 were more relevant to hepatitis C virus (HCV) 
infection. Additionally, our findings suggested that 
Macro4 and Macro6 were prevalent in early-stage HCC, 
whereas Macro1 and Macro2 were more common in 
advanced stages of the disease (Fig. 4f).

scRNAseq Characterization of Liver‑Resident 
Macrophages

Kupffer cells, the resident macrophages of the liver, 
are known for their self-renewing and non-migratory nature, 
playing a pivotal role in maintaining liver homeostasis 
[40]. Utilizing known markers, we identified two distinct 
subpopulations of Kupffer cells: MARCO + (3,201 cells 
in Kupffer1 and Kupffer2) and MARCO- (1,173 cells in 
Kupffer3 and Kupffer4) (Fig. 5a).

MARCO + Kupffer1 cells, predominantly found in 
tumor-adjacent tissues (Fig. 5b), exhibited gene expres-
sions associated with complement activation (e.g., 
CFD, CFP, C1QA, C1QB, C2), immune responses, and 
chemokine/cytokine metabolic processes (e.g., HMOX1, 
EGR1, IL18, TNF, IL6) (Fig. 5c, Table S6). This pro-
file is indicative of classical Kupffer cell functions. 

Additionally, the cholesteryl ester transfer protein (CETP) 
in these cells plays an immunological gatekeeping role 
by enhancing high-density lipoprotein (HDL) production, 
predominantly from Kupffer cells [41, 42]. The second 
group, MT1G + Kupffer2 cells, more prevalent in tumor 
tissues (Fig. 5b), express Metallothionein 1G (MT1G), 
known as a suppressor of HCC tumor growth [43]. Func-
tional analysis showed that MT1G + Kupffer2 was asso-
ciated with activation of immune response, phagocytosis 
and transition metal ion homeostasis (Fig. 5c, Table S6).

Conversely, MARCO- Kupffer cells, specifically 
Kupffer3, demonstrated an increased presence in tumor 
tissues. The top five markers in these cells included 
APOA2, AHSG, AKR1C2, CES1, and RBP4. Notably, 
AKR1C2, minimally expressed in other cells, is linked 
to HCC metastasis when combined with AEG-1 [44, 45]. 
Functional analysis showed the correlation with alcohol 
metabolic process, regulation of hemostasis and steroid 
metabolic process (Fig. 5c, Table S6). Kupffer4, while 
sharing gene expressions with other Kupffer cells, also 
expresses genes (APOA1, APOA3, FABP1, SLC27A5, 
PLTP) that potentially suppress HCC metastasis via the 
PPAR signaling pathway, which was associated with 
protein-lipid complex remodeling, lipid localization and 
lipid transport (Fig. 5c, Table S6).

We conducted a survival analysis of representative 
genes from each Kupffer cell cluster, which indicated that 
high expression of CETP and APOA1 was significantly 
associated with good outcome while highly expressed 
AKR1C2 was significantly linked with poor outcome 
(Fig. 5d). Further analysis elucidated the etiology of each 
Kupffer cell cluster, revealing that Kupffer1 and Kupffer4 
were associated with hepatitis B virus (HBV) infection, 
whereas Kupffer2 and Kupffer3 showed a predisposition 
to hepatitis C virus (HCV) infection (Fig. 5e). Regard-
ing tumor stages, Kupffer2 and Kupffer3 were identified 
in early-stage HCC, while Kupffer1 and Kupffer4 were 
found in advanced stages (Fig. 5f).

Panmyeloid markers also distinguish TAMs among 
ICC samples.

The specificity of these findings to HCC was 
initially unclear, as control lesions had not been  
analyzed. To address this, we examined an intrahepatic 
cholangiocarcinoma (ICC) cohort containing 8 samples. 
Post cell filtration and clustering, we obtained 32,172 
high-quality cells (Fig. 6a), with cell type annotations 
determined using canonical markers, including  
cholangiocyte, hepatocyte, malignant cell, endothelial 
cell, fibroblast, myeloid cell, T cell and B cell (Table S2; 
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Fig. 6b, c and Fig. S4). A total of 21 clusters, including 
5,161 myeloid cells, were identified across the 8 sam-
ples. After re-clustering all myeloid cells, we annotated 
DCs, Kupffer cells, and monocyte-derived macrophages 
(Fig. 6d). We conducted gene expression analysis for 
marker genes from HCC macrophages and found that 
macro6 from ICC showed high expression of APOE, 
CXCL9, FCGR3A and LAG3, macro1 highly expressed 
SPP1 and macro4 highly expressed EREG (Fig. 6e). To 
further assess the validity of Panmyeloid markers in dis-
tinguishing cellular profiles within ICC, we embarked 
on a myeloid score analysis. This investigation revealed 
that, in alignment with observations in HCC, Kupffer 
cells in ICC manifested higher scores when compared to 
macrophages and DCs. Moreover, across the spectrum 
of immune cells analyzed, including B cells and T cells, 

all myeloid cell groups in ICC consistently demonstrated 
significantly elevated myeloid scores (Fig. 6f). These 
findings corroborate the effectiveness of Panmyeloid 
markers in distinguishing myeloid cells from other 
immune cell types within the ICC environment, thus 
highlighting their potential applicability in furthering our 
understanding of hepatic diseases.

Cellular Communication Among  
TAMs and Other Cell Populations 
in Hepatocellular Carcinoma

The role of TAMs in HCC development and metas-
tasis is significantly influenced by their interactions with 
other cell populations within tumor tissues. To explore 

Fig. 6  Analysis and visualization for TAMs of human ICC by single-cell RNA sequencing. a Violin plots showed the cells expressed genes, unique 
molecular identifier (UMI) and mitochondrial counts for human ICC in 8 samples. b UMAP representation of the whole ICC as obtained from 
8 human samples using dotplot. Each dot represents a single cell. c UMAP showed the construction of ICC atlas. d UMAP representation of the 
myeloid cells as obtained from 8 human samples using dotplot. e Dot plots showed the expression of top genes for ICC (left) and HCC (right) mac-
rophages. f Violin plots showing the myeloid scores among myeloid cell groups and other immune cells (**** means p < 0.0001).
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Fig. 7  Intercellular communication among TAMs and T cells. a 
Dotplots showing the interactions among CXCL10 + macrophages, 
MT1G + Kupffer cells and T cells. b Violin plots showing the expres-
sion of chemokines and cytokines among TAMs and T cells. c Dot-
plots showing the interactions among MDSCs and T cells. d mIHC 
of MT1G + Kupffer cells-T cells (CD68, MARCO, CXCL12, CD3, 
CXCR4), CXCL10 + macrophages-Tregs (CD68, CXCL10, CD3, 
CD4, FOXP3 and CXCR3) and MDSCs-CD8 + T cells (CD11B, 
CD14, CD15, PD-L1, CD3 and CD8) in HCC tumor tissues.

◂

these intricate cellular communications, we conducted 
an intercellular analysis between TAMs (including M1, 
M2, MDSCs, and Kupffer cells) and other cell types. 
This approach enabled us to validate known mecha-
nisms and identify potential new signaling pathways 
(Table S7, Fig. S5A, B). Notably, MARCO + Kupffer 
cells (Kupffer_1), MARCO- Kupffer cells (Kupffer_2), 
and pro-tumorigenic macrophages (M2) demonstrated the 
highest capacities for input/output interactions, indicating 
their active roles in TAMs communication (Fig. S6A, B).

In the identified cellular signaling pathways, TAMs 
primarily served as ligands (Figs. S5A and S6C). Both 
MARCO-Kupffer and MARCO + Kupffer cells were par-
ticularly active in this aspect (Fig. S6B). They expressed 
ECM-receptors, including vitronectin (VTN), and inter-
acted with ITGAV + ITGB1 in fibroblasts and fibronec-
tin 1 (FN1), influenced by SDC1 and SDC4 in hepato-
cytes. Moreover, Kupffer cells secreted cytokine and 
chemokine ligands (CXCL12 and CXCL16), especially 
in the MARCO + subgroup. These ligands interacted with 
C-X-C motif chemokine receptors (CXCR4 and CXCR6) 
in lymphocytes (CD4T, CD8T, Treg, B, plasma cells) 
and NK cells, playing a pivotal role in tumor progression 
[46]. Furthermore, both MARCO- Kupffer and M2 mac-
rophages secreted macrophage migration inhibitory fac-
tors (MIF), targeting CD74 + CXCR4 and CD74 + CD44 
in lymphocytic cells [47]. M2 macrophages also exhibited 
strong MIF signals, while M1 and MDSCs were consid-
erably less active in this regard. Additionally, MARCO- 
Kupffer and M2 macrophages expressed secreted phos-
phoprotein 1 (SPP1), primarily activating CD44 in 
CD4 + T, Treg, and mast cells. All monocyte-derived 
macrophages (M1, M2, and MDSC) expressed Nicoti-
namide phosphoribosyltransferase (NAMPT), targeting 
INSR in endothelial cells, potentially mediating the NAD 
salvage pathway and thereby regulating the energy home-
ostasis of HCC [48].

In examining the effects of TAMs signaling pat-
terns (Fig. S6D), it was found that stromal (endothelial 
cells and fibroblasts) and epithelial (hepatocytes) cells 
express MIF, which targets all TAMs (CD74 + CXCR4, 

CD74 + CD44). Endothelial cells showed a particular 
responsiveness to amyloid precursor protein (APP), 
a cell membrane protein, and interacted with CD74 in 
TAMs. This interaction has been implicated in inhibit-
ing Abeta production [49], thereby influencing tumor 
growth and metastasis [50]. Lastly, communication was 
observed between TAMs and various histocompatibility 
complex class I (HLA-A, HLA-B, HLA-C, HLA-E) and 
class II (HLA-DPA1, HLA-DMA, HLA-DRA) molecules 
expressed in lymphocytes, stromal, and epithelial cells.

TAMs Communicate with T Cells via Distinct 
Signaling Pathways in Hepatocellular Carcinoma

In our detailed analysis, we identified a significant 
abundance of MT1G + Kupffer cells within tumor tissues, 
which demonstrated pronounced chemotactic activity. 
The most prominent cellular communication pathway 
uncovered was the CXCL12-CXCR4 axis. This path-
way was particularly notable in facilitating interactions 
between MT1G + Kupffer cells and T cells, as evidenced 
in Fig. 7a. Further gene expression analysis reinforced 
this observation, revealing high levels of CXCL12 expres-
sion in MT1G + Kupffer cells (Fig. 7b).

Similarly, our exploration into the role of 
CXCL10 + macrophages within HCC highlighted their 
substantial presence in tumor tissues. These macrophages 
actively secreted a diverse array of chemokines and 
cytokines, including CXCL1, CXCL9, CXCL10, and 
CXCL11, underscoring their pivotal role in HCC, espe-
cially in mediating communication with T cells. Notably, 
we discovered a unique signaling pathway facilitating 
communication between CXCL10 + macrophages and 
Tregs via the CXCL10/CXCL11-CXCR3 axis, distinct 
from interactions with other T cell subsets (Fig. 7a).

Gene expression profiles indicated elevated levels 
of CXCL9, CXCL10, and CXCL11 in CXCL10 + mac-
rophages, while Treg cells predominantly expressed 
CXCR3 and CXCR6, highlighting a specialized commu-
nication route (Fig. 7b). Additionally, our observations 
revealed a predominant localization of MDSCs in the 
vicinity of tumor tissues (Fig. 4b), with significant inter-
actions between MDSCs and T cells, particularly CD8 + T 
cells, through specialized pathways, including LGALS9-
CD45/CD44 and HLA-A-CD8A/CD8B (Fig. 7c).

To biologically validate these intricate interac-
tions, we utilized the multi-immunohistochemistry 
(mIHC) technique on HCC samples (n = 3), confirming 
the spatial distribution and intercellular communication 
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between Kupffer cells and T cells, CXCL10 + mac-
rophages and Tregs, and MDSCs and CD8 + T cells 
(Fig. 7d and Fig. S7).

DISCUSSION

In this report, we present a comprehensive refer-
ence atlas of TAMs at the single cell level, derived from 
17,932 TAMs within 70 human HCC samples. The identi-
fied gene expression patterns, termed Panmyeloid mark-
ers, were detected across all cohorts and most samples, 
significantly expanding the list of potential gene markers 
for myeloid cells. Specifically, we examined the cellular 
patterns of monocyte-derived macrophages and Kupffer 
cells in HCC, with a focus on their tissue locations. This 
work delineated the function and characteristics of two 
previously indistinguishable TAM populations in tumor 
tissues: CXCL10 + macrophages and MT1G + Kupffer 
cells, and explored the role of various TAM subsets 
within the complex cellular signaling networks among 
other immune cells. Notably, our findings indicate that 
CXCL10 + macrophages induce a transition via the 
CXCL10/CXCL11-CXCR3 signaling network.

A critical contribution of this study is the compre-
hensive characterization of single cell patterns of TAMs 
in HCC across three levels (Fig. 6b). To our knowledge, 
these levels have not been previously described and con-
sist of: 1) the identification of 284 Panmyeloid markers, 
2) a detailed description of six clusters for monocyte-
derived macrophages (Macro1-Macro6) and four for 
Kupffer cells (Kupffer1-Kupffer4), and 3) the identifica-
tion of two TAM clusters (CXCL10 + macrophages and 
MT1G + Kupffer cells), demonstrating significant cel-
lular communications with T cells. Panmyeloid markers 
are typically associated with specific TAM functions or, 
in particular, with monocyte-derived macrophages and 
Kupffer cells. These markers are involved not only in 
myeloid cell migration, differentiation, cytokine produc-
tion, and homeostasis, but also in pro-inflammatory or 
pro-tumorigenic activities. The functions of other genes 
from Panmyeloid markers are currently not well under-
stood, but future investigations in this area are expected 
to significantly enhance our understanding of TAM biol-
ogy in HCC.

Construction of the single-cell landscape of liver 
cirrhosis unveiled distinct populations of macrophages, 
notably MARCO + and TIMD4 + Kupffer cells, as 
well as TREM2 + CD9 + macrophages. These cells are 

characterized by high expression of key pro-fibrogenic 
markers including IL1B, SPP1, LGALS3, CCR2, and 
TNFSF12. Notably, these populations expand during 
liver fibrosis, originate from circulating monocytes,  
and exhibit pro-fibrogenic properties [51]. Further 
investigation revealed that TREM2 + macrophages 
play a critical role in HCC by suppressing CD8 + T  
cell infiltration, primarily through the secretion of 
Galectin-1 [52]. Our findings also highlighted the  
significant expression of TREM2 in APOE + Macro1 
cells, suggesting a potential mechanism for T cell 
communication (Fig. 4, Figs. S5 and S6). Additionally,  
SPP1, also known as osteopontin, has been identified  
as a crucial marker of TAMs in HCC [53, 54]. 
SPP1 + macrophages, in particular, are predominantly 
found in AFP-positive HCC, with their receptor,  
CD44, present on both T cells and tumor cells [55].  
The interaction between SPP1 + macrophages and 
fibroblasts is instrumental in forming a tumor immune 
barrier, which has significant implications for the  
efficacy of immunotherapy [56]. Furthermore, within 
the spectrum of pan-myeloid markers, SPP1 emerged 
as a top marker, notably upregulated. Macro2 cells, in 
particular, showed high levels of SPP1 expression. This 
expression plays a pivotal role in the EMT pathway and 
facilitates communication via the extracellular matrix 
receptor, underscoring its critical function in the disease 
pathology (Fig. 4, Table S5). Our integrated analysis 
revealed the existence of two novel TAM subpopulations 
in HCC tumors and adjacent tissues, characterized by 
relatively high levels of CXCL10 + macrophages and 
MT1G + Kupffer cells. These findings suggest their 
potential roles in the occurrence and development of 
HCC, notably effects initially described at the single 
cell level. Studies such as Yuan et al. [57] have demon-
strated that activated CD4 + T cells in HCCs stimulate 
CXCL10 production by macrophages, which then binds 
CXCR3 on B cells, enabling their transformation to IgG- 
producing plasma cells. This IgG production activates Fc 
receptors in macrophages to produce cytokines, reducing 
anti-tumor immune responses. Similarly, Liu et al. [58] 
reported that selective recruitment of CXCR3 + B cells 
bridges pro-inflammatory interleukin-17 responses 
with pro-tumorigenic macrophage polarization in the 
tumor milieu. Our current data expand the utnder-
standing of macrophage functions by demonstrat-
ing that CXCL10 + macrophages communicate with 
CXCR3 + Treg cells to induce downstream signaling 
pathways. The presence of CXCL12-CXCR4 signaling 
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pathways within cells in HCC has also been noted  
in several studies, such as the one by Chen et  al. 
[59], suggesting that these factors may be targets for  
inhibiting crosstalk among tumor cells, cancer-associated 
fibroblasts (CAFs), and TAMs. Our findings provide 
the first evidence indicating that MT1G + Kupffer cells 
communicate with T cells to inhibit tumor progression 
in HCC. MT1G, significantly downregulated in tumor 
tissues, is known to inhibit proliferation and enhance 
apoptosis of HCC cells [43]. Our data suggest that 
MT1G in Kupffer cells within tumor tissues may  
involve a mechanism that increases the stability of  
p53 by inhibiting MDM2 expression, broadening our 
understanding of tumor suppression factors.

However, our study has limitations. First, the 
construction of a comprehensive atlas of myeloid cells 
required a data integration technique, potentially intro-
ducing batch effects due to sample processing, library 
preparation, and sequencing. Despite efforts to minimize 
these effects, a potential bias remains, prompting the use 
of algorithms to reduce this influence. Moreover, part 
of samples was unknown viral status and tumor stage, 
and the TAM populations could be influenced by aetiol-
ogy and stage of liver disease. And if HCC samples were 
obtained from cirrhotic patients were unknown. Second, 
while we validated the existence of CXCL10 + mac-
rophages and MT1G + Kupffer cells at the single cell 
level, additional assays such as immunohistochemistry 
and immunofluorescence, as well as spatial transcrip-
tomes, were not included. Third, although our analyses 
of cellular communications indicate potential signaling 
pathways using specific marker gene expressions, func-
tional experiments are necessary to substantiate the exact 
pathways involved.

CONCLUSIONS

The establishment of transcriptomic profiles and 
the elucidation of cellular communications within the 
intricate microenvironment of human HCC are pivotal 
in understanding the underlying molecular mechanisms 
of this disease. Our comprehensive myeloid cell atlas 
serves as a foundational contribution to the field of HCC 
research. This atlas not only advances our understanding 
of the disease’s molecular landscape but also sheds light 
on the critical role of TAMs in HCC. The insights gained 
from this study underscore the importance of cellular 
interactions and gene expression patterns in deciphering 

the complex dynamics of the HCC microenvironment. 
Our findings pave the way for future research and poten-
tial therapeutic interventions targeting TAMs, offering 
new avenues to combat this challenging malignancy.

METHODS

Data Preparation
We identified 4 public scRNA-seq human HCC 

datasets using the 10X chromium single cell RNA 
seq platform. Processed data were downloaded from 
the Gene Expression Omnibus (GEO) repository 
(https:// www. ncbi. nlm. nih. gov/ geo/), and included 
GSE140228 [10], GSE125449 [12], GSE149614 [60] 
and GSE156625 [8]. We restricted the datasets including 
technique (10X Genomics), disease (HCC) and species 
(human). The stages of patients were classified according 
to the guidance of AJCC version 8. And we used integra-
tion function to remove batch effect. Detailed informa-
tion on these procedures is contained in Table S1. For the 
bulk RNA-seq data, we downloaded TCGA Liver Cancer 
(LIHC, N = 423) from the UCSC Xena database (https:// 
xenab rowser. net/ datap ages/), which included gene 
expressions and survival phenotypes. A downstream 
analysis was then performed on these data. To discuss 
whether the finding of HCC is unique, we acquired a 
public scRNA-seq human intrahepatic cholangiocarci-
noma (ICC) cohort dataset (GSE138709) using the 10X 
chromium single cell RNA seq platform.

Preprocessing and Integration of scRNA‑seq Data

The Seurat R package (version 3.2.0) [13], a tool for 
single cell genomics, was used to process the single cell 
RNA sequencing data. Identical exclusion criteria were 
employed for the 4 datasets and included cells with < 501 
expressed genes or > 25% mitochondrial counts. Based 
on this criteria, 135,900 high quality cells were used for 
downstream analysis.

For data integration, we used Seurat’s functions, includ-
ing FindIntegrationAnchors and IntegrateData to merge the 
datasets. Details regarding this technique are contained in 
the website (https:// satij alab. org/ seurat/ artic les/ integ ration_ 
intro ducti on. html). Cells were normalized and scaled with 
the default parameters and their highly variable features were 
determined using FindVariableFeatures function. PCA analy-
sis was then performed with the variable features that had 

https://www.ncbi.nlm.nih.gov/geo/
https://xenabrowser.net/datapages/
https://xenabrowser.net/datapages/
https://satijalab.org/seurat/articles/integration_introduction.html
https://satijalab.org/seurat/articles/integration_introduction.html
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been identified. Dimension reduction and clustering were con-
ducted using FindNeighbors (dims = 1:10) and FindClusters 
(resolution = 0.5) functions. Finally, a non-linear dimensional 
reduction (UMAP) was performed to assess and visualize the 
data.

Identification of Differentially Expressed Genes

FindMarkers and FindAllMarkers functions were 
used to locate differentially expressed features according 
to clusters, cell types and tissue locations. The threshold 
for logFC was 0.25 while the minimum fraction of genes 
detected in cells was 0.1, with default.

Cell Type Annotation

Cell types were annotated to known biological types 
with canonical marker genes (Table S2). Within the entire 
atlas, cells were annotated as immune (Myeloid cells, 
CD4 + T cells, CD8 + T cells, regulatory T (Treg), natural 
killer (NK) cells, B cells and Mast cells) or non-immune 
(Endothelial cells, Fibroblasts and Hepatocytes) pheno-
types. In addition, the SingleR package (version 1.2.4) 
was used to facilitate the identification of cell types.

Myeloid Score Analysis

For the gene set analysis, the ’AddModuleScore’ 
function from the Seurat package was employed. This 
process entailed using particular gene sets of interest. 
Subsequently, a score was calculated for every cell based 
on the expression levels of genes in each set, facilitating 
a comprehensive analysis of gene expression patterns at 
the cellular level.

Functional Enrichment Analysis

Following the annotation of each cell type, we con-
ducted functional enrichment analysis on genes expressed 
differentially across various clusters. This analysis, 
aimed at elucidating the biological processes and poten-
tial functions of distinct cells, was carried out utilizing 
the clusterProfiler package (version 4.6.2) [61] and the 
org.Hs.eg.db package (version 3.16.0) for Gene Ontol-
ogy (GO) and KEGG (Kyoto Encyclopedia of Genes and 
Genomes) analysis. The threshold for significance in both 
GO and KEGG analyses was set at a p-value of 0.05. 
The top terms were presented through either barplots or 

dotplots, providing a visual representation of the func-
tional enrichment.

Survival Analysis

A survival analysis was conducted from the survival 
data of TCGA LIHC. The survival (version 3.2.3) and 
survminer (version 0.4.8) R package with default param-
eters was used to assess levels of gene expression.

Copy Number Variation Analysis

To deduce copy number variations (CNVs) from 
scRNA-seq data, a method detailed in a previous publication 
[62] was utilized. The procedure was conducted employ-
ing the R code found at https:// github. com/ broad insti tute/ 
infer CNV, with the application of default settings. The  
approach began with the identification of likely nonmalignant 
cells, which included manually annotated immune cells (T 
cells, B cells, and myeloid cells) and stromal cells (endothelial 
cells and fibroblasts). The CNV estimates obtained from these 
cells served as the baseline for analysis. Reference groups were 
then adjusted based on the preliminary inferCNV outcomes. 
These adjustments informed further analysis rounds, facilitat-
ing a more precise and detailed CNV evaluation.

Cellular Communication Analysis

Cell to cell interactions were evaluated using the 
latest version of the CellChat package (version (1.1.2)) 
[63]. Three major signaling pathways were included: 
secreted signaling, extracellular matrix (ECM)-receptor 
and cellular contact. The majority of ligand-receptor 
interactions were mainly based on the Kyoto Encyclope-
dia of Genes and Genomes (KEGG) signaling pathway 
database and recent peer-reviewed experimental studies. 
The main steps for assessing intercellular communication 
consisted of: 1) Identification of differentially expressed 
signaling genes 2) Calculations of average ensemble 
expressions and 3) Calculations of intercellular commu-
nication probability.

Immunohistochemical Staining Analysis

Paraffin sections are routinely dewaxed to hydration, 
and washed with distilled water. Following incubation in 
3%H2O2 for 10 min, antibodies anti- CD14, CD68, CD4 

https://github.com/broadinstitute/inferCNV
https://github.com/broadinstitute/inferCNV
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and CD8 were added and incubated at 4 °C for overnight. 
The specimens were incubated with secondary antibodies at 
37°Cfor 1 h, followed by diaminobenzidine staining [64]. All 
samples were collected from patients who underwent liver 
transplantation, which were approved by the Ethics Commit-
tee of the Affiliated Hospital of Qingdao University.

Multiplex Immunofluorescence Staining

Briefly, slides were rehydrated with a series of graded 
ethanol solutions in deionized water. Antigen retrieval was 
performed, then slides were serially stained with the fol-
lowing antibodies: CD14, CD11b, PD-L1 and CD8. Subse-
quently, Opal IHC Detection Kit (Akoya Biosciences) was 
applied as a secondary label and antibody signals. Image 
acquisitions were performed using the Vectra Polaris mul-
tispectral imaging platform (Akoya Biosciences), with the 
entire slide image being scanned and 3–5 representative 
regions of interest chosen by the pathologist [65].

Statistical Analysis

We used Student’s t-test to compare gene expres-
sion level between tumor tissues and normal tissues. 
Kaplan–Meier analysis with the log-rank test was per-
formed to evaluate the OS of each group. All statisti-
cal analyses were performed using R software (version 
4.0.2) and its appropriate packages. P-values < 0.05 was 
considered statistically significant.
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