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Abstract—Diabetic kidney disease (DKD) is characterized by macrophage infiltration, 
which requires further investigation. This study aims to identify immune-related genes 
(IRGs) in macrophage and explore their potential as therapeutic targets. This study ana-
lyzed isolated glomerular cells from three diabetic mice and three control mice. A total of 
59 glomeruli from normal kidney samples and 66 from DKD samples were acquired from 
four kidney transcriptomic profiling datasets. Bioinformatics analysis was conducted using 
both single-cell RNA (scRNA) and bulk RNA sequencing data to investigate inflammatory 
responses in DKD. Additionally, the “AUCell” function was used to investigate statistically 
different gene sets. The significance of each interaction pair was determined by assigning 
a probability using “CellChat.” The study also analyzed the biological diagnostic impor-
tance of immune hub genes for DKD and validated the expression of these immune genes 
in mice models. The top 2000 highly variable genes (HVGs) were identified after data 
normalization. Subsequently, a total of eight clusters were identified. It is worth mention-
ing that macrophages showed the highest percentage increase among all cell types in the 
DKD group. Furthermore, the present study observed significant differences in gene sets 
related to inflammatory responses and complement pathways. The study also identified 
several receptor-ligand pairs and co-stimulatory interactions between endothelial cells and 
macrophages. Notably, SYK, ITGB2, FCER1G, and VAV1 were identified as immunologi-
cal markers of DKD with promising predictive ability. This study identified distinct cell 
clusters and four marker genes. SYK, ITGB2, FCER1G, and VAV1 may be important roles. 
Consequently, the present study extends our understanding regarding IRGs in DKD and 
provides a foundation for future investigations into the underlying mechanisms.
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INTRODUCTION

According to the International Diabetes Federation, 
it is estimated that the diabetic population will reach 784 
million by 2045, with a significant proportion (25–40%) 
developing diabetic kidney disease (DKD) during their 
lifetimes [1]. DKD is a significant public health concern 
as it is a major cause of impaired kidney function, pro-
teinuria, and the need for renal replacement therapy [2]. 
The pathological characteristics of DKD include thick-
ening of glomerular basement membrane, accumulation 
of mesangial matrix accumulation, and the presence of 
nodular glomerulosclerosis [3]. Despite the high preva-
lence of type 2 diabetes, renal biopsy is not routinely per-
formed in most cases, leading to a lack of understanding 
regarding the underlying mechanisms of DKD.

Transcriptomic analysis of renal tissue or isolated 
glomeruli has provided insights into the pathogenesis of 
DKD and identified potential biomarkers [4]. However, 
previous studies on renal single-cell RNA sequencing 
(scRNA-seq) have primarily focused on cells from the 
proximal or collecting tubules, with a smaller proportion 
of glomerular cells captured, resulting in limited informa-
tion on glomerular cells [5–7]. To overcome this limitation 
and obtain cell-specific gene expression information, Fu 
et al. performed scRNA-seq analysis on isolated glomeru-
lar cells from both DKD and control mice. Their findings 
revealed dynamic changes in gene expression within iso-
lated glomerular cells, which may help identify crucial 
factors contributing to the progression of DKD [8].

Diabetic kidney injury is characterized by the infiltra-
tion of monocyte and macrophage [9]. The existence of dis-
tinct macrophage phenotypes in the kidney, along with their 
ability to transition between pro- and anti-inflammatory  
phenotypes, adds complexity to the development of thera-
peutic targets [10]. Macrophages accumulate in the dia-
betic kidney and are strongly associated with serum creati-
nine levels, accumulation of interstitial myofibroblast, and 
scores of interstitial fibrosis, thereby necessitating further 
exploration of the role of macrophages in DKD [11]. Fu 
et al. conducted a study on the transcriptome profiles of 
macrophages in early DKD, emphasizing their dynamic 
phenotype. However, the study lacked further analysis of 
immunologically relevant biomarkers that could be valu-
able for diagnosis [12].

Based on the scRNA-Seq data analysis of isolated 
glomerular cells, this study provides valuable insights 
into cell-specific processes, such as cell-cell interactions 
[8]. The research identified specific cell clusters and 

inflammation-related genes (IRGs) associated with DKD, 
and further investigated glomerular cellular communi-
cation and potential therapeutic targets. Additionally, 
the study validated the expression patterns and poten-
tial regulatory mechanisms of IRGs in DKD using bulk 
RNA-seq data. The validation of the identified immune 
maker genes in mouse models emphasizes their potential 
contribution to the progression of DKD.

METHODS

Data Acquisition
ScRNA-seq data were obtained from the Gene 

Expression Omnibus (GEO) with GSE127235 as the 
accession number (https://​www.​ncbi.​nlm.​nih.​gov/​
geo/). In this study, glomerular cells were isolated from 
three streptozotocin-induced diabetic endothelial nitric 
oxide synthase (eNOS)-deficient (eNOS−/−) mice and 
three control eNOS−/− mice [8]. This data was gener-
ated using the Illumina NextSeq 500 platform at the 
Genomics Core Facility. Additionally, four kidney 
transcriptomic profiling datasets were collected from 
GEO, including GSE96804, GSE104948, GSE30122, 
and GSE30528. The GSE96804 dataset (GPL17586 
Affymetrix Human Transcriptome Array 2.0 platform) 
included 20 glomeruli from normal kidney samples and 
41 glomeruli from DKD samples [13]. Additionally, the 
GSE104948 dataset consisted of 7 glomeruli from DKD 
samples (GPL22945 Affymetrix Human Genome U133 
Plus 2.0 Array platform) [14]. The GSE30528 dataset 
had 13 glomeruli from normal kidneys and 9 from DKD 
samples, while the GSE30122 dataset included 26 glo-
meruli from normal kidneys and 9 from DKD samples 
(GPL571 Affymetrix Human Genome U133A 2.0 Array 
platform) [15].

Data Preprocessing

Principal component analysis (PCA) and uniform 
manifold approximation and projection (UMAP) analy-
sis were performed using the Seurat R package (version 
4.0.6). Cells with less than 50 genes or more than 7% 
mitochondrial genes were excluded from the analy-
sis. A total of 1600 filtered cells were included in the 
analysis after applying quality control filters. The gene 
expression data was normalized and scaled using the 

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
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“LogNormalize” method provided by the Seurat pack-
age. Subsequently, the “vst” method was used to identify 
2000 highly variable genes (HVGs) for each sample after 
data normalization.

Identify Marker Genes and Cell Clusters

To identify principal components (PCs), PCA was 
performed using the “RunPCA” function and 20 PCs 
were selected. Subsequently, the cells were then grouped 
into 8 different clusters with a resolution of 0.5 using 
the “FindNeighbors” and “FindClusters” functions. The 
UMAP were performed using the “RunUMAP” func-
tions. For each cluster, “FindAllMarkers” was used to 
identify differentially expressed genes (DEGs) with a 
|log2fold-change| (log2FC absolute value) threshold of 
0.5. The expression ratio of the cell cluster was set to ≥ 
0.25, and a significance level of P < 0.05 was used. To 
determine the cell type in each cluster, DEGs in each 
cluster were identified and manually checked using Cell-
marker (http://​biocc.​hrbmu.​edu.​cn/​CellM​arker/​index.​jsp) 
and previous studies.

Bulk Sequencing Data Processing

Batch calibration was conducted on four datasets 
(GSE 96804, GSE104948, GSE30122, and GSE30528) 
using the “sva” R package (version 3.42.0). Differential 
gene analysis was performed using the “limma” R pack-
age. Genes with adjusted P values < 0.05 and |log2FC|> 1 
were identified as DEGs. The “ggplot2” R package (version 
3.3.6) was used to generate the volcano and heat maps.

Protein‑Protein Interaction Network (PPIs) 
Network Construction

The STRING website (https://​string-​db.​org/) was 
used for the analysis of PPIs.

Weighted Gene Co‑Expression Network 
Analysis (WGCNA)

By using the “WGCNA” function, the gene expres-
sion patterns were analyzed, and the association between 
modules and specific phenotypes was investigated.

Recognition of Key Transcription Factors

The Animal TFDB 2.0 (http://​bioin​fo.​life.​hust.​edu.​cn/​
Anima​lTFDB2/​about.​shtml) was used to extract all identifi-
able transcription factors (TFs) associated with differential 
genes. To identify key transcription factors (TFs), we com-
pared the list of TFs with the 97 significant differentially 
expressed genes (DEGs) obtained from both macrophage 
cluster and bulk RNA-seq data. The transcriptional reg-
ulatory networks of these key TFs were visualized with 
Cytoscape software (version 3.9.1).

GO and KEGG Analysis

The bulk RNA-seq data was analyzed using a bioin-
formatic tool (https://​www.​xiant​ao.​love/​produ​cts) to inves-
tigate the enriched Gene Ontology (GO) terms and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathways. 
The selection of the top 10 pathways was based on the rank-
ing of P values.

AUCell Scoring for IRGs and for Target Gene Sets

A total of 2483 immune genes were identified 
from the ImmPort database (https://​www.​immpo​rt.​org/​
shared/​home). Pathway scoring for individual cells was 
conducted using the “UCell” and “irGSEA” R pack-
ages (https://​chuiq​in.​github.​io/​irGSEA/​index.​html). To 
estimate the proportion of highly expressed genes, gene 
expression rankings were calculated for each cell based 
on their expression profiles and the area under the curve 
(AUC) values of the IRGs. Cells with higher AUC val-
ues indicated a greater score of gene sets. Active cells 
were identified using an activity threshold. The “ggplot2” 
R package (Version 3.3.6) was used to visualize active 
clusters, with the AUC score for each cell being mapped 
to the UMAP. The expression of gene sets within each 
cell cluster was analyzed using the “irGSEA.heatmap” 
function. The upset graph displayed the number of gene 
sets with statistically significant differences for each cell 
cluster using the “irGSEA.upset” method. Furthermore, 
density scatter plots generated by the “irGSEA.density.
scatterplot” function were used to illustrate the spatial 
expression levels of specific gene sets.

http://biocc.hrbmu.edu.cn/CellMarker/index.jsp
https://string-db.org/
http://bioinfo.life.hust.edu.cn/AnimalTFDB2/about.shtml
http://bioinfo.life.hust.edu.cn/AnimalTFDB2/about.shtml
https://www.xiantao.love/products
https://www.immport.org/shared/home
https://www.immport.org/shared/home
https://chuiqin.github.io/irGSEA/index.html
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Cell‑cell Communication Analysis

The analysis of cell-cell communication was per-
formed using the CellChat R package (version 1.1.3). 
According to the CellChatDB database, the probabilities 
of secreted signaling, ECM-receptor, and cell-cell contact 
were obtained for different cell clusters. Overexpressed 
ligands or receptors within these clusters were identified. 
Subsequently, an interaction network was constructed 
using gene expression data. Ligand-receptor interaction 
pairs were identified whenever either the ligands or recep-
tors was found to be overexpressed.

Immune Cell Infiltration Estimation

Transcriptome data was utilized to quantify the 
infiltration levels of 22 distinct immune cells types using 
the CIBERSORT deconvolution algorithm. The Wilcox 
test was used to compare the differences between the 
two groups, and the outcomes were visualized using the 
“vioplot” R package. Finally, the “Corrplot” R package 
was used to assess the association between immune cells.

Animal Models

The animal experiments were conducted in accord-
ance with the protocols approved by the Animal Ethics 
Committee of Tianjin Medical University Chu Hsien-
I Memorial Hospital (Tianjin, China). Male wild-type 
C57BL/6 mice were obtained from Huafukang Animal 
Centre (Beijing, China). The mice were kept in a pathogen-
free facility at Chu Hsien-I Memorial Hospital.

In the WT-DM (wild-type diabetes mellitus) 
group, mice were fed an 8-week high-fat diet. Strep-
tozotocin (Sigma-Aldrich, St. Louis, MO, USA) was 
intraperitoneally injected at a dosage of 60 mg/kg over 
a period of 5 days. WT-NC (wild-type negative control) 
groups received citrate buffer as a vehicle control. Dia-
betes was confirmed by fasting blood glucose (FBG) 
levels exceeding 16.7 mmol/L. Prior to euthanasia, 24-h 
urine and blood samples were collected to analyze the 
metabolic biochemical indices of the mice, including 
blood lipids, liver function, kidney function, and 24-h 
urine protein. The mice were euthanized at 12 weeks 
post-induction of DM. Kidney tissues were harvested 
from anesthetized mice and perfused with PBS before 
further processing.

Real‑Time Quantitative Polymerase‑Chain 
Reaction (RT‑qPCR)

The total RNA from kidney tissue (0.10 g) was 
extracted using Trizol reagent (Solarbio, Beijing, China). 
Amplification of the target genes was performed using 
a SYBR green PCR kit (Toyobo, Japan) and an ABI 
Prism7300 fluorescent quantitative PCR instrument 
(ABI, USA). GAPDH was used as an internal control. 
The primer sequences of the target gene were as follows: 
VAV1: CGA​ACC​TTC​CTG​TCT​ACT​TGC​TGT​G (F), and 
CTT​CCT​CTG​CGG​TGT​CAT​CAA​TCT​G (R); FCER1G: 
TCT​CAG​CCG​TGA​TCT​TGT​TCT​TGC​ (F), and GGG​
TGG​TTT​CTC​ATG​CTT​CAG​AGT​C (R); ITGB2: TGT​
GCC​GAG​TGC​CTG​AAG​TTTG (F), and ATG​ACC​AGG​
AGG​AGG​ACA​CCA​ATC​ (R); SYK: GAA​GGC​ACA​
CCA​CTA​CAC​CATCG (F), and GAC​CGT​CTG​CTC​TGA​
TTC​ATC​TCT​G (R).

The 2-ΔΔCt method was used for semi-quantitative 
analysis of the mRNA expression of target genes.

Western Blot

Kidney tissues were added to RIPA lysate (Solar-
bio) and disrupted using ultrasound. After centrifu-
gation (14,000 g; 4 °C; 15 min), the supernatant was 
collected. Protein extracts were quantified by a BCA 
assay and separated on 12% SDS denatured polyacryla-
mide gels. The separated proteins were transferred 
onto a NC membrane and blocking in 5% skim milk in 
TBST. Hybridization was performed using antibodies 
against rabbit SYK (1/2000; ab155187; Abcam), rab-
bit VAV1 (1/1000; A15108; ABclonal), rabbit ITGB2 
(1/1000; A2173; ABclonal), rabbit FCER1G (1/1000; 
A12889; ABclonal), and mouse GAPDH (1/10000; 
AC033; ABclonal). GAPDH was used as the reference 
control. After incubation with a secondary antibody 
(1:3000–5000; zsbio), the protein was visualized using 
electrochemiluminescence (ECL).

Immunohistochemical Analyses

Immunohistochemical staining procedures were 
performed according to standard protocols on paraffin 
kidney sections. The kidney sections were subjected to 
incubation with primary antibodies, including rabbit SYK 
(1/200; ab155187; Abcam), rabbit VAV1 (1/100; A15108; 
ABclonal), rabbit ITGB2 (1/100; A2173; ABclonal), 
and rabbit FCER1G (1/100; A12889; ABclonal) at 4 °C 
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overnight. Subsequently, the sections were imaged using 
a light field microscope. To ensure unbiased selection, a 
blinded method was employed to randomly select three 
mice for each section.

Statistical Analyses

The statistical analysis was performed using R lan-
guage (version 4.1.2) and Graphpad Prism software (ver-
sion 8.0.1). Comparative analysis between groups was 
performed using Student’s t-test. A p-value less than 0.05 
was considered statistically significant, indicating a differ-
ence. To evaluate the predictive performance of the gene 
signature, time-dependent receiver operating characteristic 
(ROC) curves were generated using the “pROC” R package 
(version 1.18.0).

RESULTS

Single‑Cell Transcriptome Analysis Reveals 
the Heterogeneity in Diabetes Kidney Disease

The graphic abstract shows the work flow of the 
study. The scRNA-seq data of three kidneys from mice 
with DKD and three controls mice were obtained from the 
GSE127235 dataset. After rigorous preprocessing, quality 
control, and normalization of the raw data, 800 cells from 
each group were retained. The nCount_RNA exhibited a 
positive correlation with nFeature_RNA, with a correla-
tion coefficient of 0.66 (sFig. 1A, B). Subsequently, after 
normalizing the filtered scRNA-seq data, we selected the 
top 2000 HVGs. From these, we further identified the 
top 10 HVGs, which included MGP, CXCL13, IGHA, 
H2-Aa, CLIC3, H2-Ab1, IGKC, CCL2, CDKN1c, and 
KLK1 (sFig. 1C). The PCA analysis identified a total of 
twenty PCs with P values < 0.05 (sFig. 1D). Addition-
ally, a total of eight clusters were identified, and for each 
cluster, the top 10 DEGs were listed (sFig. 1E).

The cells were divided into eight clusters using 
cluster analysis (Fig.  1a). These clusters were then 
assigned to known cell lineages using marker genes or 
DEGs (Fig. 1c). The cell types were identified by compar-
ing the identified marker genes with published-type-spe-
cific markers. The identified cell clusters included tubular 
cells, endothelial cells, vascular endothelial cells, podo-
cytes, mesangial cells, macrophages, proliferating cells, 
and B cells (Fig. 1a). The distribution of these clusters is 
shown in Fig. 1b, while the proportions of each cluster are 
depicted in Fig. 1d. In the context of DKD, the proportion 

of macrophages was significantly higher compared to 
non-DKD (2% vs. 21%, P < 0.001), while mesangial cells 
(29% vs. 12%, P < 0.001), and podocytes (21% vs. 7%, P 
< 0.001) were significantly lower (Fig. 1e).

Macrophage sub-clusters were further identified 
using UMAP analysis, resulting in the identification 
of three clusters (sFig. 3A, B). Notably, the number 
of M2 macrophages was greater than that of M1 mac-
rophages, and all sub-clusters of macrophages increased 
in the DKD group. DEGs in macrophage sub-clusters 
were subjected to GO and KEGG analysis. According 
to sFig. 3C, cluster 0 (M1 macrophages) exhibited up-
regulated functions primarily associated with leukocyte 
adhesion and migration, cell proliferation, response to 
hypoxia, NIK/NF-kappaB, and Ras signaling pathway. 
Cluster 1 (M2 macrophages subtype I) showed mainly 
down-regulated functions, including phagocytosis, 
adhesion, apoptosis, and infection-related pathways. 
Cluster 2 (M2 macrophages subtype II) demonstrated 
higher activity compared to the other two clusters, with 
up-regulated functions related to tumor necrosis factor 
superfamily cytokine production and regulation, inflam-
matory response, migration, and adhesion.

AUCell Scoring of Cell Clusters in Diabetes 
Kidney Disease

According to the ImmPort database, a total of 
2483 IRGs were obtained. The expression levels of IRGs 
within each cell cluster were assessed (Fig. 1f). Nota-
bly, macrophages, tubular cells, mesangial cells, and 
other immune cells in yellow coloration exhibited higher 
activity of IRGs. In macrophage clusters derived from 
DKD, DEGs were analyzed using the GO and KEGG 
databases. The identified terms were mainly associated 
with responses such as antigen processing and presen-
tation, FcγR-mediated phagocytosis, and cell adhesion 
molecules (Fig. 1g, h).

We also utilized the “AUCell” function to exam-
ine if there were any significant differences in specific 
gene sets among cell clusters (Fig. 2a). Within the mac-
rophage cluster, we observed a significant upregulation 
in several gene sets, including MYC targets V1, reac-
tive oxygen species pathway, MYC targets V2, hypoxia 
cholesterol homeostasis, Mtorc1 signaling, E2F targets, 
PI3K AKT MTOR signaling, interferon gamma response, 
KRAS signaling UP, allograft rejection, TNFα signal-
ing via NF-κB, inflammatory response, IL6/JAK/STAT3 
signaling, and complement. To visually represent the 
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distribution of significantly enriched gene sets within 
each cell cluster, we created a density scatter plot where 
a higher intensity of yellow color indicates a higher 
enrichment score (Fig. 2c). Additionally, we provided 
the number of gene sets that exhibited statistically sig-
nificant differences within each cell cluster, as well as the 
intersections between them (Fig. 2b). Notably, podocytes 
displayed the highest number of differential gene sets.

Cell Communication Network Analysis 
in Diabetes Kidney Disease

To investigate the interactions among cell clus-
ters, we utilized the “CellPhoneDB” function to identify 
receptor-ligand pairs. These pairs are essential for cel-
lular communication, encompassing autocrine/paracrine 
signaling interactions, extracellular matrix (ECM) recep-
tor interactions, and cell-cell contact interactions, which 
collectively play a key role in coordination of various 
biological processes. Using “CellChat,” we calculated 
the probability and significance of each interaction pair. 
The empirical shuffling method was used to ascertain the 
ligand-receptor pairs that exhibited significantly specific-
ity toward certain cell types [16].

Through receptor-ligand interactions, immune cells 
closely interact with other cells (Fig. 3a, c, e). Autocrine/
paracrine signaling interactions involved ligand-receptor 
pairs such as TGFβ, IGF, CX3C, and complement sign-
aling pathway network (Fig. 3b). Cell-cell interactions 
involved ligand-receptor pairs including LAIR1, CADM, 
ICAM, and ITGAL-ITGB2 signaling pathway network 
(Fig.  3d). Furthermore, ECM receptor interactions 
involved ligand-receptor pairs such as tenascin, THBS, 
collagen, and APP signaling pathway network (Fig. 3f).

Co-stimulatory interactions between endothelial cells 
and macrophages have been extensively observed, leading 
to the identification of specific ligand-receptor pairs such 
as CX3C, complement, and LAIR1. This finding implies 
that chemokines play a crucial role in the immune micro-
environment and the regulation of macrophage infiltration 
in DKD. Additionally, the autocrine/paracrine signaling 
interaction network indicated the possibility of cross-talk 
among mesangial cells, endothelial cells, macrophages, 
and podocytes (Fig. 3a). It is worth noting that mesangial 
cells, endothelial cells, and macrophages have the potential 
to engage in cell-cell contact and ECM receptor interac-
tion networks (Fig. 3c, e). Among the autocrine/paracrine 
signaling interactions, endothelial cells exhibit the highest 
degree of interaction with other cell types, followed by 
mesangial cells and macrophages.

Validation of Immune‑Related Hub Genes 
and Immune Cell Infiltration Estimation 
in Bulk RNA Sequencing Data

To investigate the expression characteristics of glo-
meruli in patients with DKD, we conducted a comprehen-
sive analysis by integrating data sets from GSE96804, 
GSE104948, GSE30122, and GSE30528. This analysis 
included a total of 66 DKD patients and 59 controls 
(Fig.  4a, b). We identified 46 up-regulated and 163 
down-regulated DEGs (Fig. 4b). Furthermore, the top 10 
terms of GO and KEGG showed a significant association 
with immune responses, which aligns with the findings 
obtained from scRNA-seq analysis.

We further investigated the common IRGs present 
in glomeruli cells and macrophage clusters in DKD. A 
total of 97 IRGs were identified (Fig. 4h). Among these, 
the expression of the top 35 common IRGs was mainly 
observed in macrophage clusters (Fig. 4j). Additionally, 
we examined the transcription factors (TFs) associated 
with the expression of DEGs. Notably, the highly active 
TFs in DKD included neurofibromatosis type 1 (NF1), 

Fig. 1   Analysis of single-cell sequencing data in diabetic kidney dis-
ease. a Cell clusters were identified using UMAP analysis. Eight dif-
ferent cell types were assigned unique colors. b The UMAP projection 
of DKD and NC groups. c Dot plot of marker genes for each cell type 
clusters. Cell type identification was based on DEGs in each cluster and 
manually checked according to previous studies and the Cellmarker 
website. The intensity of color indicates average expression, while the 
size of dots represents percentage of cells expressing each gene. d The 
bar diagram shows the percentage of each cell cluster in DKD and NC 
groups. The numbers of cells in each cluster for DKD vs. NC are as fol-
lows: endothelial cells: 282 vs. 196; mesangial cells: 92 vs. 234; podo-
cytes: 53 vs.171; vascular endothelial cells: 116 vs. 100; macrophages: 
171 vs. 19; tubular cells: 60 vs. 60; proliferative cells: 5 vs. 20; B cells: 
20 vs. 0. e The dot diagram shows the percentage of each cell clusters 
in DKD and NC groups. The macrophage clusters show an increase in 
the DKD group. * means P < 0.05, ** means P < 0.01, and *** means 
P < 0.001. f IRG scores were calculated for cell clusters in DKD. The 
threshold is chosen as 0.25. The UMAP analysis displays the activity of 
IRGs in each cell cluster. Overall, macrophages express a higher num-
ber of IRG genes compared to other cell clusters. g The GO analysis 
was performed on DEGs in macrophage clusters from DKD. h The 
KEGG analysis was performed on DEGs in macrophage clusters from 
DKD. UMAP, uniform manifold approximation and projection; DKD, 
diabetic kidney disease; DEGs, differentially expressed genes; IRGs, 
immune-related genes; GO, Gene Ontology; KEGG, Kyoto Encyclope-
dia of Genes and Genomes; BP, biological process; CC, cell compo-
nent; MF, molecular function.

◂
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Fig. 2   Gene set enrichment analysis of all cell clusters. a Heatmap of gene set expression in all cell clusters. The heat map illustrates whether spe-
cific gene sets exhibit statistically significantly significant differences in each cell clusters. Squares in blue indicate no statistical difference, while 
squares in red indicate a statistical difference. * means P < 0.05, ** means P < 0.01, *** means P < 0.001, and **** means P < 0.0001. The clus-
tering tree on the left represents the similarity of expression patterns of different gene sets in cell clusters. The bars above represent the different cell 
clusters. The red bars indicate up-regulated differential gene sets, while blue bars represent down-regulated differential gene sets, respectively. b The 
number of significant enrichment pathways of cell clusters. The bars on the left represented the number of significant enrichment pathways in each 
cell clusters. The upper bar graph shows the number of cell clusters that gene sets were significantly enriched, while the bottom of graph represents 
the intersections between the cell clusters. c Cell clusters were identified using UMAP analysis. Eight different cell types were assigned unique 
colors. d Significantly enriched pathways in the macrophage cluster were displayed by UMAP analysis. These pathways include MYC targets V1, 
MYC targets V2, reactive oxygen species pathway, hypoxia cholesterol homeostasis, Mtorc1 signaling, E2F targets, PI3K/AKT/MTOR signaling, 
TNF-α signaling via NF-κB, interferon gamma response, KRAS signaling UP, allograft rejection, inflammatory response, IL6 JAK STAT3 signal-
ing, and complement.
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Fig. 3   Analysis of cell communication network in diabetes kidney disease. a The secreted signaling interaction network between cell clusters. The 
thickness of the connecting arm represents the number of interactions. b The common ligand-receptor pairs in autocrine/paracrine signaling inter-
actions. The common ligand-receptor pairs involved in autocrine/paracrine signaling interactions include TGF-β, IGF, CX3C, and Complement 
signaling pathway network. c The cell-cell interaction network between cell clusters. The thickness of the connecting arm represents the number 
of interactions. d The common ligand-receptor pairs in cell-cell interactions. The common cell-cell interactions include tenascin, THBS, collagen, 
and APP signaling pathway network. e The extracellular matrix receptor interaction network between cell clusters. f The common ligand-receptor 
pairs in extracellular matrix receptor interactions. The common extracellular matrix receptors in secreted signaling are LAIR1, CADM, ICAM, and 
ITGAL-ITGB2 signaling pathway network.
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nuclear factor kappa-B (NF-κB), heat shock transcription 
factor 2 (HSF2), nuclear factor kappa-B p65 (NF-κB65), 
P300, leukemia inhibitory factor (HLF), and TATA-box 
binding protein (TBP). Furthermore, Fig. 4i illustrates 
the highly up- and down-regulated genes (|logFC|> 1).

The application of the WGCNA allowed for the 
identification of DEGs and their integration into distinct 
modules (sFig. 2A, B). A total of nine merged modules 
were successfully identified, with six of these modules 
demonstrating a significant association with DKD. 
Notably, the black module was predominantly associated 
with immune response, T cell activation, and leukocyte-
mediated immunity.

To further elucidate the immune micro-environment 
in DKD, we conducted an analysis using the CIBERSORT 
classification to identify specific immune cell types infil-
trating the glomerular tissue. Among the 22 immune cell 
types, our findings revealed significantly elevated levels 
of B cells (P = 0.014), dendritic cells (P = 0.001), rest-
ing state mast cells (P = 0.004), and M2 macrophages (P 
< 0.001) in DKD (Fig. 4c, g). Additionally, we explored 
the associations between infiltrating immune cells and 
observed a positive correlation between resting mast cells, 
memory B cells, dendritic cells, and M2 macrophages. 
Conversely, we observed a negative correlation between 
naive B cells, neutrophils, activated mast cells, and M2 
macrophages (Fig. 4f).

Based on the analysis of the PPI network, it was 
observed that DEGs show strong interconnections 
(Fig.  5a). Hub genes, including SYK, LYN, ITGB2, 
FCER1G, VAV1, FGR, PIK3R1, HCK, PTK2, and 
LCP2, were identified due to their high number of nodes. 
To assess the diagnostic significance of these immune 
hub genes in relation to DKD, ROC curves were used 
(Fig. 5b). The results in Fig. 5b indicate that SYK, ITGB2, 
FCER1G, and VAV1 have AUC values of 0.777, 0.712, 
0.703, and 0.742, respectively. This suggests that these 
four hub genes could serve as novel immunological mark-
ers for DKD, exhibiting favorable predictive capabilities.

Hub Gene Expression Validation in Diabetic 
Mouse Model

In the control group of mice, the kidneys exhibited 
a well-organized appearance, with intact glomeruli and 
normal tubules, as confirmed by H&E staining (Fig. 6a). 
On the other hand, the DT-DM group of mice showed 
signs of renal injury. Specifically, the proximal tubular 
lumen in the DT-DM group appeared enlarged, with 

noticeable epithelial vacuolization, lighter cytoplasmic 
staining, tubular cell atrophy, and a reduction in tubular 
epithelial cells. Additionally, there was a decrease in the 
number of glomeruli, an increase in mesangial matrix, 
and thickening of the basement membrane (Fig. 6c).

Based on the qRT-PCR results, it was observed 
that the expression levels of SYK, ITGB2, FCER1G, 
and VAV1 were significantly higher in the kidney tissues 
of the WT-DM group compared to the WT-NC group 
(Fig. 6b). Immunohistochemical staining revealed higher 
expression levels of SYK, ITGB2, FCER1G, and VAV1 
in the kidney tissues of the DM group when compared 
to the control group. Furthermore, Western blot analysis 
demonstrated a significant increase in the expression of 
SYK, ITGB2, FCER1G, and VAV1 proteins in kidney 
tissues from the DM groups.

DISCUSSION

In patients with diabetes, the presence of hypergly-
cemia and dyslipidemia activates the immune system. 
This activation triggers the release of inflammatory medi-
ators by endothelial cells and podocytes, attracting mono-
cytes/macrophages. This sets off an inflammatory cas-
cade, leading to structural alterations in the kidneys and 
the development of tubulointerstitial fibrosis [17]. Inflam-
mation plays a crucial role in the progression and onset 
of DKD, suggesting that targeting the immune system 
may be a more effective strategy than solely managing 
blood glucose levels or suppressing the renal-angiotensin  
system [18].

Macrophage infiltration in the glomeruli and 
interstitium of renal biopsies in DKD is a commonly 
observed phenomenon [19]. However, understanding of 
mechanisms by which macrophages migrate and home 
remains limited. Previous studies have indicated that 
renal parenchymal cells secrete monocyte chemotactic 
protein-1 (MCP-1) and macrophage colony-stimulating 
factor 1 (M-CSF-1) to stimulate macrophage migration 
within the vascular endothelium and kidney [20, 21]. 
The continuous activation of inflammatory cytokines/
chemokines, which aid in tissue repair, leads to exces-
sive deposition of extracellular matrix and the develop-
ment of renal fibrosis [19].

The functional characteristics of macrophages can 
significantly vary depending on the micro-environment 
[22]. Macrophages in the tissue micro-environment can 
be classified as either classically activated (M1) and 
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Fig. 4   Validation of immune-related hub genes and estimation of immune cell infiltration in bulk RNA sequencing data. a The heatmap of DEGs 
from 66 DKD patients and 59 controls. The dataset used for this analysis included GSE96804, GSE104948, GSE30122, and GSE30528. b The vol-
cano plot of DEGs. Genes with an adjusted P value < 0.05 and |logFC|> 1 were considered significant. Up-regulated genes represent in red, while 
down-regulated genes are shown in green. c Identification of specific immune cell types infiltrating in the glomerular tissue. d The top 10 terms from 
the GO analysis of DEGs. e The top 10 terms from the KEGG analysis of DEGs. f Association between infiltrating immune cells. g Proportion of 
macrophages marked by red boxes was significantly higher in the DKD group. h The Venn plot showing the common IRGs in DKD glomeruli cells 
and macrophage clusters. i Highly active TFs in DKD associated with the expression of common IRGs, including NF1, NF-κB, HSF2, NF-κB65, 
P300, HLF, and TBP. j Dot plot of expression of the top 35 common IRGs in the scRNA-seq dataset. The expression of these 35 IRGs was mainly 
active in macrophage clusters. DKD, diabetic kidney disease; DEGs, differentially expressed genes; IRGs, immune-related genes; GO, Gene Ontol-
ogy; KEGG, Kyoto Encyclopedia of Genes and Genomes; TFs, transcription factors; NF1, neurofibromatosis type 1; NF-κB, nuclear factor kappa-B; 
HSF2, heat shock transcription factor 2; NF-κB65, nuclear factor kappa-B p65; HLF, leukemia inhibitory factor; TBP, TATA-box binding protein.
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alternatively activated macrophages (M2) [23]. The 
accumulation of macrophages in the diabetic kidney is 
closely associated with the proliferation of interstitial 
myofibroblasts. However, the specific mechanisms by 
which subcluster of macrophages interact with the micro- 
environment remain unclear and require further investiga-
tion at the individual cell level. Therefore, the identifica-
tion of effective approaches to prevent or treat fibrotic 
CKD poses a formidable challenge [24].

In this study, we successfully identified IRGs in 
DKD that could potentially be targeted for immuno-
therapy. To illustrate the immune cell composition and 
expression patterns of IRGs in glomerular tissue of 
DKD, we analyzed scRNA-seq data. Our analysis identi-
fied eight distinct clusters of cells, with a significantly 
higher proportion of macrophages observed in the DKD 
group compared to the control group. In order to gain 
deeper understanding of the immune micro-environment 

Fig. 5   The PPI network analysis identified hub gene from the DEGs. a The PPI network of DEGs. It revealed that SYK, LYN, ITGB2, FCER1G, 
VAV1, FGR, PIK3R1, HCK, PTK2, and LCP2 had the highest degree of connectivity and were identified as hub genes. b ROC curves were gener-
ated to assess the diagnostic potential of the hub genes for DKD. The AUC values of SYK, ITGB2, FCER1G, VAV1, LYN, PIK3R1, HCK, PTK2, 
and LCP2 are 0.777, 0.712, 0.703, 0.742, 0.581, 0.507, 0.558, 0.559, and 0.590, respectively. PPI, protein-protein interaction; DEGs, differentially 
expressed genes; ROC, receiver operating characteristic; DKD, diabetic kidney disease.
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Fig. 6   Validation of hub gene expression in diabetic mouse model. a Kidney tissue samples from the WT-DM and WT-NC groups were stained 
with H&E. b mRNA expression levels of SYK, ITGB2, FCER1G, and VAV1 in kidney tissues from WT-DM and WT-NC group. c Protein expres-
sion levels of SYK, ITGB2, FCER1G, and VAV1 in kidney tissues from WT-DM and WT-NC groups. d Immunohistochemical staining was per-
formed to assess the expression levels of SYK, ITGB2, FCER1G, and VAV1 in the kidney tissues.
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in DKD, we verified our findings using bulk RNA-seq 
data to identify specific immune cell types that infiltrate 
the kidney. Our findings also indicated the presence and 
activation of macrophages in the renal tissue of DKD. 
Additionally, we calculated IRG scores, which revealed 
that cells with higher scores were predominantly mac-
rophages, tubular cells, and other immune cells. Further-
more, we investigated whether specific gene sets exhibited 
significantly different across the identified cell clusters. 
There was a notable increase in the expression of gene 
sets related to inflammatory responses and complement 
pathways in macrophages. Additionally, the identification 
of receptor-ligand pairs and the widespread recognition of 
co-stimulatory interactions between endothelial cells and 
macrophages suggest that chemokines play a key role in 
regulating macrophage infiltration in the immune micro-
environment of DKD.

A total of 46 up-regulated and 163 down-regulated 
DEGs were identified in the glomerulus-derived bulk 
RNA-seq data, using a cutoff value of adjusted P < 0.05 
and |logFC|> 1. The GO terms associated with the bulk 
RNA-seq data exhibited similarities to those observed in 
the scRNA-seq data. Furthermore, an investigation into 
the co-expression patterns of IRGs in DKD revealed that 
the expression of the first 35 common IRGs was notably 
active within macrophage clusters.

We have also identified a total of seven highly active 
TFs in DKD, namely, NF1, NF-κB, HSF2, NF-κB65, 
P300, HLF, and TBP. The receptor activator of NF-κB 
and its ligands belong to the tumor necrosis factor and 
its receptor superfamily. Activation of NF-κB facilitates 
the expression of immunoinflammatory factors and the 
recruitment of immune cell [17, 25, 26]. A previous study 
has demonstrated that downregulation of NF-κB65 effec-
tively prevented inflammation-induced kidney damage 
[27]. Additionally, the histone acetyltransferase p300 has 
been found to promote collagen activation and contribute 
to tubulointerstitial fibrosis in DKD [28]. However, fur-
ther investigation is needed to determine the association 
between the other four TFs (NF1, HSF2, HLF, and TBP) 
and DKD. These TFs have the potential to significantly 
impact macrophage activation and localized kidney infil-
tration. Furthermore, the black module identified through 
WGCNA is predominantly associated with immune 
response and cytokine regulation.

By utilizing a PPI network and conducting ROC 
curve analysis, this study successfully identified several 
key genes (SYK, ITGB2, FCER1G, and VAV1) that 
have significant diagnostic predictive value for DKD. To 

validate the expression of these genes, a mouse model of 
DKD was established. Through RT-qPCR, Western blot, 
and immunohistochemistry, it was confirmed that SYK, 
ITGB2, FCER1G, and VAV1 were significantly upregu-
lated in diabetic mice. These findings not only enhance 
our understanding of the underlying molecular mecha-
nisms of DKD but also provide potential therapeutic tar-
gets for the treatment of DKD.

Splenic tyrosine kinase (SYK) is a non-receptor 
cytoplasmic enzyme primarily expressed on mononu-
clear phagocytes (MNPs) and B cells. It plays a crucial 
role in regulating inflammatory responses, maintaining 
immune homeostasis, and controlling macrophage and 
lymphocyte infiltration. Consequently, SYK serves as a 
significant immune signaling molecule and a potential 
therapeutic target [29]. Previous research has suggested 
that the SYK/JNK/NLRP3 signaling pathway may be 
involved in the pathogenesis of DKD [30]. Another study 
has demonstrated that SYK activates the TGF-β1/Smad3 
signaling pathway, while miR-136 inhibits renal tubular 
epithelial cell fibrosis by downregulation of SYK [31]. 
Additionally, SYK can activate the ERK and NF-kB path-
ways and upregulate the transcription of TGF-β, thereby 
aggravating renal tubular injury [32]. Other studies have 
reported that high glucose prompts a swift activation of 
SYK, subsequently activating the NF-κB pathway in glo-
merular cells. Conversely, the absence of SYK reversed 
this effect [33, 34]. As a result, SYK may play a role in 
chronic renal inflammation, tissue remodeling, and the 
progression of DKD.

While previous articles have confirmed the presence 
of VAV guanine nucleotide exchange factor 1 (VAV1) [35] 
and Fc epsilon receptor Ig (FCER1G) [36], additional vali-
dation is necessary to establish their role in the progression 
of DKD. Notably, FCER1G has been demonstrated to be a 
crucial gene implicated in cancer immune infiltration and 
micro-environment [37, 38]. In a study by Chun Chou et 
al., it was observed that FCER1G-positive innate-like T 
cells exhibit significant cytotoxic potential, suggesting a 
potential new form of immune response induced by tumors 
[37]. VAV1, which acts as a guanine nucleotide exchange 
factor for Rho family guanosine triphosphatases, has been 
found to be essential for JNK activation [39]. Furthermore, 
VAV1 mutations have been implicated in the malignant 
transformation of T cells in vivo [40]. Additionally, VAV1 
serves as a mediator for the transduction of the CD226 sign-
aling pathway in macrophages [41]. Based on the expres-
sion of VAV1 and FCER1G and their involvement in innate 
immune signaling, it was hypothesized that these factors 



241Immune-Related Markers in Macrophages of Diabetic Kidney Disease

could also impact chronic renal inflammation and tissue 
remodeling. However, the association between VAV1 and 
FCER1G and DKD remains poorly supported by evidence.

Several studies have identified ITGB2 as a potential 
biomarker for DKD [42–45]. However, there is currently 
a lack of experimental validation. Furthermore, ITGB2 
has been demonstrated to contribute to the understanding 
of the relationship between CD8+ T cells and the key 
pathogenesis of diabetic retinopathy [46]. MRTF-A has 
also been implicated in the regulation of macrophage-
endothelial cell adhesion in macrophages by activating 
ITGB2 transcription, and it is involved in the pathogen-
esis of myocardial hypertrophy [47]. Moreover, the inte-
grin ITGAM-ITGB2/Mac-1 in macrophages plays a role 
in modulating LC3-associated phagocytosis [48]. In this 
study, we also identified the involvement of the signal-
ing pathways of ICAM-1 and ITGAM-ITGB2 in cellu-
lar interactions that condition macrophage adhesion and 
phagocytosis. However, the available evidence regarding 
the function of ITGB2 in the macrophages of the local 
immune micro-environment in DKD and its regulation 
of phagocytosis remains limited.

There is growing evidence suggesting the involve-
ment of the complement system in the progression of 
DKD [17]. Strong correlations have been observed 
between the levels of urinary complement activation 
products and renal tubular interstitial inflammation and 
injury [49]. Our study also identified a potential key role 
of the complement system; however, further elucidation 
through more precise study methods is needed.

This study employed bioinformatics technology to 
analyze immune-related biomarkers in macrophage clus-
ters in DKD. By effectively identifying the most relevant 
gene for experimental validation, this approach reduces 
the time and cost associated with biological experiments. 
Consequently, this study enhances our understanding of 
the pathogenesis of macrophages in DKD and contrib-
utes to the development of potential therapeutic interven-
tions. Ultimately, the findings of this study provide valu-
able guidance for the diagnosis and treatment of DKD. 
The present study has certain limitations. ScRNA-seq, 
although an advanced technique, is not exempted from 
shortcomings, such as sequencing coverage bias and low 
capture efficiency. Moreover, the data in this study were 
obtained from publicly available datasets, so any flaws 
in the study design were inherent to the original study. 
Therefore, it is essential to validate the current findings 

through extensive in vitro/in vivo experiments and large 
cohorts to ensure reliable conclusions. Additionally, the 
sample size used in this study is relatively small. Future 
research endeavors should aim to increase the dataset by 
incorporating and analyzing a larger number of clinical 
samples to further validate these outcomes. Moreover, 
additional investigation is warranted to ascertain the 
potential correlation between the expression of immune-
related hub genes and the severity of the disease.

CONCLUSION

In conclusion, this present study utilized scRNA-
seq and bulk-seq data to conduct bioinformatics analy-
sis, revealing the role of macrophages in kidney inflam-
mation associated with DKD. These findings not only 
enhance our understanding of the significant contribu-
tion of macrophages to the progression of the DKD 
but also provide potential therapeutic targets for the 
treatment of DKD. Notably, macrophages showed the 
highest increase among all cell types in DKD tissues, 
suggesting their crucial role. Additionally, we success-
fully established a mice model of DKD and observed 
upregulation of macrophage-specific IRGs (SYK, 
ITGB2, FCER1G, and VAV1). These findings highlight 
the significance of macrophages and their marker genes 
as local immune factors in DKD. Overall, the present 
study expands our understanding of immune homeosta-
sis in DKD and provides a foundation for future inves-
tigations into the underlying mechanisms.
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