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Abstract—Evodiamine, an alkaloid component in the fruit of Evodia, has been shown to 
have biological functions such as antioxidant and anti-inflammatory. But whether evo-
diamine plays an improvement role on mastitis has not been studied. To investigate the 
effect and mechanism of evodiamine on lipopolysaccharide (LPS)-induced mastitis was the 
purpose of this study. In animal experiments, the mouse mastitis model was established by 
injecting LPS into the canals of the mammary gland. The results showed that evodiamine 
could significantly relieve the pathological injury of breast tissue and the production of 
pro-inflammatory cytokines and inhibit the activation of inflammation-related pathways 
such as AKT, NF-κB p65, ERK1/2, p38, and JNK. In cell experiments, the mouse mam-
mary epithelial cells (mMECs) were incubated with evodiamine for 1 h and then stimulated 
with LPS. Next, pro-inflammatory mediators and inflammation-related signal pathways 
were detected. As expected, our results showed that evodiamine notably ameliorated the 
inflammatory reaction and inhibit the activation of related signaling pathways of mMECs. 
All the results suggested that evodiamine inhibited inflammation by inhibiting the phos-
phorylation of AKT, NF-κBp65, ERK1/2, p38, and JNK thus the LPS-induced mastitis was 
ameliorated. These findings suggest that evodiamine maybe a potential drug for mastitis 
because of its anti-inflammatory effects.
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INTRODUCTION

In the dairy industry, cow mastitis is a significant 
disease with complex etiology and frequent occurrence, 
which affects the production and quality of dairy prod-
ucts [1]. After the occurrence of mastitis, the number of 
somatic cells and pH of milk are significantly changed, 
which reduces the yield and quality of milk. The eco-
nomic loss caused by mastitis is the first among all 
kinds of diseases in dairy cows. There are many factors 
that cause inflammation in the animal body, such as 
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atmospheric NH3 can cause jejunal fibrosis [2], hydro-
gen sulfide of air can aggravate inflammatory injury 
in trachea of chickens [3], and excess Li causes oxida-
tive damage to promote the occurrence of inflamma-
tory reactions in the carp kidney [4]. Mastitis is mainly 
caused by pathogenic microorganisms, especially gram-
negative bacteria [5, 6]. After bacterial infection, a large 
amount of endotoxin can cause a strong immunogenic 
response in the mammary gland [7, 8]. The main com-
ponent of gram-negative bacteria is lipopolysaccharide 
(LPS) [9], so LPS is considered an important factor 
in the establishment of animal model of inflammation 
[10–12]. Previous studies have shown that LPS bind to 
toll-like receptor 4 (TLR4) and activate multiple sig-
nal pathways such as nuclear factor-kappa B (NF-κB) 
and mitogen-activated protein kinase (MAPK) in in 
mammary epithelial cells [13]. This immune activity 
of mammary epithelial cells can promote the release of 
pro-inflammatory cytokines such as IL-1β and TNF-α, 
and the production of cyclooxygenase-2 (COX-2) and 
inducible nitric oxide synthase (INOS), which obvi-
ously expand the inflammatory response and promote 
the aggravation of inflammation [14, 15].

In clinical application, the main treatment for 
mastitis is using of antibiotics, but this cannot effec-
tively control the process of inflammation [16]. Recent 
studies have shown that the combined use of antibiot-
ics and natural anti-inflammatory drugs can effectively 
alleviate the further development of mastitis [17, 18]. 
Compared with antibiotics, natural products often have 
strong anti-inflammatory functions meanwhile do not 
cause antibiotic residues and drug-resistant bacteria in 
milk, and no harmful residues into the food chain and 
affect human health [18, 19]. Consequently, the use of 
natural products in the treatment of mastitis is becom-
ing increasingly widespread, and the search for new and 
effective natural anti-inflammatory drugs is the current 
hot spot in the treatment of dairy cow mastitis.

Evodiamine is an alkaloid component in the fruit 
of Evodia. Modern pharmacological studies have shown 
that a variety of biological activities of evodiamine 
play an important role in cardiovascular [20–22] and 
intestinal [23–25] diseases. In addition, evodiamine 
also has anti-tumor [26–28], hypoglycemic [29] and 
immunomodulatory [30] effects. However, how will it 
of evodiamine in mastitis has not been reported. There-
fore, we constructed mastitis model in vivo and vitro by 
LPS to explore the protective effect and mechanism of 
evodiamine on mastitis.

MATERIALS AND METHODS

Animals
BALB/c mice are experimental animals used in 

this experiment; all experimental animals came from 
the Experimental Animal Center of Bethune Medical 
College, Jilin University (Jilin, China). All experimen-
tal animals and their operations were according to the 
guidelines that were formulated by the Jilin University 
Institutional Animal Care and Use Committee (approved 
on 27 February 2015, Protocol No. 2015047). During 
the animal study, the 8/9-week-old mice were randomly 
divided into the individually ventilated cages according 
to the combination of two females and a male, and were 
given sufficient food and water at 25 ± 1 °C. Until the 
females were pregnant, each male was removed.

Group Design and Construction of Mastitis 
Model

Evodiamine was taken from Shanghai Yuan Ye 
Bio-Technology Co. Ltd. (Shanghai, China) and have a 
purity of more than 98%. On the 5th and 7th days after 
childbirth, the mice were assigned to 5 groups stochas-
tically: NT group (n = 6), evodiamine (50 mg/kg/day) 
group (n = 6), LPS group (n = 6) (dissolved in phosphate 
buffer (PBS)) (Sigma-Aldrich, St. Louis, Missouri, USA), 
LPS + evodiamine (50 mg/kg/day) group (n = 6), and 
LPS + dexamethasone (5 mg/kg/day) group (n = 6). The 
drug treatment group was given evodiamine (dissolved 
in normal saline). After separating experimental mice 
and young mice, they were fed with evodiamine or intra-
peritoneal injection of dexamethasone, and dexametha-
sone was used as a positive control [31, 32]. Evodiamine 
and LPS + evodiamine group were fed with evodiamine, 
and LPS + dexamethasone group was intraperitoneally 
injected with 0.1 mL dexamethasone. One hour later, 
the mice in LPS group, LPS + evodiamine group, and 
LPS + dexamethasone group were anesthetized and disin-
fected the surrounding skin of fourth pair of nipples with 
alcohol, and the nipples were removed at the 1 mm at the 
end of the milk duct to expose the milk duct. Ten micro-
grams of 0.2 mg/mL LPS was injected into each nipple 
catheter. After LPS injection 12 h, evodiamine was given 
to the mice in the evodiamine and LPS + evodiamine 
group. After another 12 h, the mice were sacrificed, and 
the mammary glands were collected.
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Histopathological Examination of Mammary 
Glands

After the mammary glands of all experimental mice 
were separated and collected, an appropriate amount of 
mammary gland tissue was fixed, dehydrated, and trans-
parent, and then embedded into paraffin blocks. Then, the 
paraffin blocks were fixed on the slicer, and 5 μm slices 
were cut, then dewaxed, hematoxylin–eosin stained, and 
observed under an optical microscope.

Tissue Homogenates and MPO Assay

A small piece of mammary gland was weighed 
and homogenized with hepes-free acid (HEPES) added 
in a ratio of 1:4. After centrifugation at 13,000 rpm for 
30 min, the supernatant was collected for enzyme-linked 
immunosorbent assay (ELISA), and then the precipitate 
was homogenized with cetyltrimethylammonium chloride 
(CTAC). After centrifugation at 13,000 rpm for 30 min, 
the supernatant was diluted 10 times and reacted with a 
substrate containing TMB 3 mM, resorcin 6 mM, and 3% 
 H2O2. The reaction was terminated with 2 M  H2SO4, and 
finally, the OD value was measured at 450 mm.

ELISA

After getting the liquid supernatant collected for 
the first time in the MPO experiment, the levels of pro-
inflammatory factors TNF- α and IL-1 β in mammary 
glands were detected as suggested by mouse ELISA kits 
(Biolegend, San Diego, CA, USA). First, the 96-well 
plate was coated with primary antibody at 4 °C over-
night, washed with washing solution 4 times and then 
sealed with sample diluent at room temperature for 1 h, 

then washed the plate 4 times, added the sample to be 
tested, and shaken at room temperature. After 2 h, the 
plate was washed with washing solution, diluted avidin-
horseradish peroxidase (HRP) solution was added, and 
TMB substrate color developing solution was added after 
shaking at room temperature for 30 min. After the color 
was developed, the reaction was terminated with 2 M 
 H2SO4. Finally, the OD value was measured at 450 mm.

Cell Culture

The mouse mammary epithelial cells (mMECs) 
were acquired from the American Type Culture Col-
lection (ATCC, ATCC® CRL-3063™, Rockville, MD, 
USA). They were cultured in different size cell culture 
plate (Life Science, Oneonta, NY, USA) The cell culture 
medium we used is Dulbecco’s modified Eagle medium 
(DMEM) (Gibco, Grand Island, NY 14,072, USA) (Clark 
Bioscience, Richmond, VA, USA) and it is containing 
10% fetal bovine serum (FBS) (Clark Bioscience, Rich-
mond, VA, USA). The mMECs are cultured in a humidi-
fied incubator at 37  °C containing 5%  CO2, and the 
medium is changed every 2 days.

Cell Activity Assay

The cell viability assay of evodiamine in mMECs 
was detected by CCK-8 assay (Saint-Bio, Shanghai, 
China). The cells with 100 mL per well were divided 
into 8 groups to be added to the 96-well plate. The cells 
were treated with evodiamine in different concentrations 
(2.5, 5, 10, 20, 50, 100 mM) for 24 h. Then, 10 µL CCK-8 
was added to each well, and the absorbance peak was 
detected at 450 mm.

Cell Experimental Design

When mMECs grow to 80% in the Petri dish, they are 
randomly divided into different groups: NT group, 10 mM 
evodiamine group, LPS group, and LPS + evodiamine 
(5 mM, 10 mM) treatment groups. When the cells grew to 
a density of about 80%, the serum-free medium was used 
instead of the serum-containing medium. Four hours later, 
different concentrations of evodiamine were respectively 
added to the Petri dish of 10 mM evodiamine group and 
LPS + evodiamine (5 mM, 10 mM) groups. One hour later, 
the cells were stimulated with LPS (1 μg/mL) equally in 
LPS group and LPS + evodiamine (5 mM, 10 mM) groups. 
Then, after 4 h, the cells were collected.

Table 1  Primers used for real-time PCR

Gene Sequence

β-actin
TNF-α
IL-1β
INOS
COX-2

F:5′-GTC AGG TCA TCA CTA TCG GCAAT-3′
R:5′-AGA GGT CTT TAC GGA TGT CAA CGT -3′
F:5′-CCA CGC TCT TCT GTC TAC TG-3′
R:5′-CCA CGC TCT TCT GTC TAC TG-3′
F:5′-TGT GAT GTT CCC ATT AGA C-3′
R:5′-AAT ACC ACT TGT TGG CTT A-3′
F:5′-GAA CTG TAG CAC AGC ACA GGA AAT -3′
R:5′-CGT ACC GGA TGA GCT GTG AAT-3′
F:5′-CGT ACC GGA TGA GCT GTG AAT-3′
R:5′-CCA GCA CTT CAC CCA TCA GTT-3′
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Real‑Time PCR

The mRNA expression levels of IL-1β and TNF-
α in mMECs were quantitatively detected by real-time 
PCR. After the cells were fully lysed with TRIzol (Inv-
itrogen, Carlsbad, CA, USA), the total RNA of the cells 
was extracted [33]. Then, the reverse-transcribed (RT) 
sequence was synthesized by reverse transcription of 
2 μg total RNA using the PrimeScript™ Kit (TaKaRa, 
Kyoto, Japan). RT-PCR analysis of gene expression was 
performed on the CFX96 system (Bio-Rad, Hercules, 
CA, USA) using cDNA and SYBR® Green Premix Ex 
Taq™ (TaKaRa, Kyoto, Japan) with the recommendation 
of manufacturer. The mRNA expression of TNF-α IL-1β, 

COX-2, and iNOS were normalized to with the mRNA 
expression of β-actin. The primer sequences are shown 
in Table 1.

Western Blot Analysis

Mammary tissues or mMECs have been lysed  
with a lysis pad. (Beyotime, Shanghai, China) by radio 
immunoprecipitation assay (RIPA). After centrifuga-
tion, the supernatant was collected to separate total pro-
tein, and BCA Protein Assay Kit (Beyotime, Shanghai, 
China) was used to determine the protein concentration. 
Through 10% sodium dodecyl sulfate–polyacrylamide gel 
electrophoresis (SDS-PAGE),the protein was separated  

Fig. 1  Evodiamine improves LPS-induced mastitis in mice. All mice were randomly divided into 5 groups: NT (no-treatment) group, evodi-
amine group, LPS group, LPS + evodiamine group, and LPS + dexamethasone (DXMS) group (n = 6). a The pictures and HE staining of the 
mammary tissues in different groups. b Histopathological score of mammary tissues. c Effect of evodiamine on MPO activity in mammary 
tissues. The values were presented as the means ± SEM of six independent experiments (n = 6). #p < 0.05 vs. NT group; ***p < 0.001 vs. LPS 
group
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Fig. 2  Evodiamine reduces inflammation in LPS-Induced mouse mastitis. The secretions of IL-1β a and TNF-α b in the homogenate of mouse 
mammary glands were detected by ELISA. The protein levels of COX-2 c, d and iNOS c, e were measured by Western blot and the expression 
of densitometry quantitation with β-actin as an internal control. Data are presented as mean ± SEM (n = 3). #p < 0.05 vs. NT group; *p < 0.05, 
**p < 0.01, ***p < 0.001 vs. LPS group
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and then transferred to PVDF (Millipore, Darmstadt, 
Germany) membrane [34]. After sealed with 5% skim 
milk for 2 h, the PVDF membranes were incubated with 
a primary antibody (AKT (1:1000), phosphor-AKT 
(1:1000), ERK1/2 (1:1000), phospho-ERK1/2 (1:1000), 
JNK (1:1000), phosphor-JNK (1:1000), p38 (1:1000). 
phospho-p38 (1:1000), iNOS (1:1000), NF-κB p65 
(1:1000), phospho-NF-κB p65 (1:1000), COX-2 (1:500), 
β-actin (1:5000) (Cell Signaling Technology, Beverly, 
MA, USA)) were incubated in 4 °C overnight [35]. Then, 
the PVDF membrane bound by antibody and protein was 
washed with Tris buffer saline Tween-20 (TBST) solution 
for 5 times, each time for 10 min, and then incubated with 
secondary antibody goat anti-rabbit antibody (1:6000) or 
goat anti-mouse antibody (1:6000) (Santa Cruz, Califor-
nia, USA) at 25 °C for 1 h, and then washed with TBST 
solution for 10 min for 5 times. Based on the manufactur-
er’s instructions, the specific protein strips were obtained 
using the Enhanced Chemiluminescence Detection Kit 
(Beyotime, Shanghai, China).

Statistical Analysis

A software called GraphPad Prism7 (Manufacturer, 
La Jolla, CA, USA) was used to process all experimental 
data. The experimental animals were randomly divided 
into 5 groups. In animal experiments, histological analy-
sis was carried out by blinded manner. All data are rep-
resented by an average of means ± SEM, as shown in the 
figure legends. The differences between groups were com-
pared by using one-way analysis of variance (# significant 
compared with NT group and * significant compared with 
LPS group, *p < 0.05, **p < 0.01, ***p < 0.001).

RESULTS

Evodiamine Improves LPS‑Induced Mastitis 
in Mice

To explore the effect of evodiamine on mastitis 
mice, mouse mammary gland tissues from various treat-
ment groups were collected for the following experiments. 

First of all, when the samples were collected, we found 
that evodiamine significantly reduced the redness and 
swelling of breast tissue caused by LPS (Fig. 1a). The 
HE staining results indicated that there were no abnormal 
histopathological changes in NT (no-treatment) group 
and evodiamine group, but there were congestion and 
swelling of mammary tissues acini and a large number 
of neutrophils infiltration in LPS group. Evodiamine and 
dexamethasone (DXMS) could dramatically alleviate the 
histopathological changes in mammary tissues induced 
by LPS (Fig. 1a, b). Myeloperoxidase (MPO) is a sign 
of inflammatory cell infiltration [36]. The detection of 
MPO activity in mammary tissues showed that the MPO 
activity in breast tissue increased significantly after LPS 
induction. However, evodiamine and DXMS significantly 
reduced MPO activity (Fig. 1c). Moreover, the above 
effects of evodiamine were more obvious than those of 
DXMS.

Evodiamine Reduces Inflammation 
in LPS‑Induced Mouse Mastitis

Pro-inflammatory mediators, such as IL-1 β, TNF- 
α, COX-2, and iNOS play may major roles in the inflam-
mation process [37]. The ELISA was used to detect the 
production of proinflammatory cytokines (IL-1 β and 
TNF-α) and the Western blot was used to detect the 
protein levels of proinflammatory enzymes (COX-2 and 
iNOS) in mammary gland. The results showed that the 
levels of IL-1β, TNF-α, COX-2, and iNOS protein in 
mammary tissues of LPS group were significantly higher 
than those in the NT group (Fig. 2a–e). Compared with 
the LPS group, the expression of pro-inflammatory 
mediators in LPS + evodiamine group decreased sig-
nificantly. These results indicated that evodiamine can 
inhibit expression of pro-inflammatory mediators in 
LPS-induced mastitis mice.

Evodiamine Decreases NF‑κB and MAPK 
Signaling Pathways Phosphorylation 
in LPS‑Induced Mouse Mastitis

The expression of pro-inflammatory mediators 
is closely related to the activation of the NF-κB sign-
aling pathway. In order to investigate the regulatory 
effect and anti-inflammatory mechanism of evodiamine 
in mammary tissues, the NF-κB and AKT activation 
(upstream kinase of NF-κB) were tested. The results 

Fig. 3  Evodiamine decreases NF-κB and MAPK signaling pathways 
phosphorylation in LPS-induced mouse mastitis. The protein lev-
els of p-AKT a, b, p-NF-κB p65 a, c, p-ERK1/2 a, d, p-p38 a, e and 
p-JNK a, f in the mammary tissues were measured by Western blot. 
Data were presented as mean ± SEM (n = 3). #p < 0.05 vs. NT group; 
*p < 0.05, **p < 0.01, ***p < 0.001 vs. LPS group

◂
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of western blot showed that the LPS-induced phos-
phorylation of NF-κB p65 and AKT were obviously 
inhibited by evodiamine (Fig. 3a–c). The MAPK sign-
aling pathway is also important in the occurrence and 
development of inflammation. Therefore, we detected 
the effects of evodiamine on ERK1/2, p38, and JNK 
phosphorylation. Similarly, the results showed that the 
evodiamine significantly inhibited LPS-induced phos-
phorylation of ERK1/2, p38 and JNK in the mammary 
tissues (Fig. 3a, d–f).

Effect of Evodiamine on mMECs Viability

To test whether evodiamine has toxicity to 
mMECs, different concentrations of evodiamine were 
used to stimulate mMECs for 24 h. The cytotoxicity 
of evodiamine on mMECs was analyzed by CCK-8 
assay. As shown in Fig.  4b, the evodiamine is not 
toxic to mMECs at concentrations below 20 μM. So, 
a concentration of 5, 10 µM were chosen for the next 
experiments.

Evodiamine Alleviates LPS‑Induced 
Inflammatory Response in mMECs

Since mMECs is the sentinel cell in the mam-
mary, it first recognizes pathogen-associated molecu-
lar patterns, such as LPS, in the early stage of mastitis. 
LPS-stimulated mMECs were used as an inflammatory 

cell model of mastitis. After mMECs was stimulated 
by LPS, the results showed that the mRNA levels of 
IL-1 β (Fig. 5b), TNF-α (Fig. 5c), COX-2 (Fig. 5d), 
and iNOS (Fig. 5e) increased significantly, and evodi-
amine (5, 10 μM) inhibited this response. Compared 
with NT group, iNOS (Fig. 6a, b) and COX-2 (Fig. 6a, 
c) protein level in LPS group significantly increased, 
and evodiamine (5, 10 μM) significantly inhibited this 
reaction.

Evodiamine Reduces NF‑κB and MAPK 
Signaling Pathways Phosphorylation 
in LPS‑Stimulated mMECs

In the model of LPS-induced mouse mastitis, we 
found that evodiamine could significantly inhibit the acti-
vation of AKT, NF-κB p65, ERK1/2, p38, and JNK in 
mammary tissue. We detect the effect of evodiamine (5, 
10 μM) on the phosphorylation of AKT, NF-κB p65, and 
MAPK signaling pathways in LPS-stimulated mMECs 
by western blot to determine whether the effect of evo-
diamine on mastitis is linked to these signaling path-
ways; the results have shown that phosphorylation rates 
of AKT (Fig. 7a, b), NF-κB p65 (Fig. 7a, c), ERK1/2 
(Fig. 7a, d), p38 (Fig. 7a, e), and JNK (Fig. 7a, f) were 
significantly increased in LPS group. As predicted, evo-
diamine (5, 10 μ M) could significantly inhibit this effect 
(Fig. 7).

Fig. 4  Effect of evodiamine on mMECs viability. a Chemical structure of evodiamine. b Effects of evodiamine on the cell viability of mMECs 
cultured with different concentrations of evodiamine (1.25, 2.5, 5, 10, and 20 µM). mMECs viability were determined by CCK-8 assay. Data are pre-
sented as mean ± SEM (n = 6). #p < 0.05 vs. NT group
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Fig. 5  Evodiamine alleviates expression of pro-inflammatory mediators in LPS-induced mMECs. The mRNA levels of IL-1β a, TNF-α b, COX-2 c, 
and iNOS d in the mMECs including NT group, evodiamine group, LPS group, and LPS + evodiamine (5, 10 µM) group were measured by real-time 
PCR. Data are presented as mean ± SEM (n = 3). #p < 0.05 vs. NT group; **p < 0.01, ***p < 0.001 vs. LPS group

Fig. 6  Evodiamine alleviates protein levels of COX-2 and iNOS in LPS-induced mMECs. The protein levels of COX-2 (a, b) and iNOS (a, c) were 
measured by Western blot and the expression of densitometry quantitation with β-actin as an internal control. Data are presented as mean ± SEM 
(n = 3). #p < 0.05 vs. NT group; **p < 0.01 vs. LPS group.
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DISCUSSION

Evodiamine is the main alkaloid component of 
Evodia. Previous research has proven that evodiamine 
plays an important role in anti-inflammation and anti-
infection [38]. This study in vivo revealed that evo-
diamine could inhibit the pathological changes in the 
mammary gland of LPS-induced mastitis by inhibit-
ing the phosphorylation of AKT, NF-κB p65, and 
MAPK signal pathways, which further inhibiting the 
production of pro-inflammatory mediators. The results 
in vitro also showed that evodiamine could inhibited 
the inflammatory response and related signal pathways 
of mMECs.

Obvious pathological changes occurred in mam-
mary gland tissue in LPS-induced mice mastitis. In this 
experiment, HE staining results showed that there had 
serious inflammatory reaction in LPS-induced mastitis 
included breast tissue wall obvious hyperplasia, breast 
acini hyperemia and edema, and lots of inflammatory 
cell infiltration, which is consistent with the phenom-
enon obtained by Gu et  al. [39]. When treated with 
50 mg/kg evodiamine, the number of inflammatory cells 
decreased and the state of the breast was basically nor-
mal. This shows that evodiamine can effectively reduce 
the inflammatory damage of breast tissue. After inflam-
mation occurs, immune cells including neutrophils and 
monocytes [40, 41] recruit at the inflammatory site and 
release MPO, a defense enzyme with pro-oxidative 
which has pro-inflammatory properties [42, 43]. MPO 
is a feasible marker and an important therapeutic target 
for a variety of inflammatory diseases [44], including 
crescentic glomerulonephritis [45] and acute pneumonia 
[46]. In this study, the activity of MPO in evodiamine 
group was significantly lower than that in LPS group, 
which confirmed the decrease of inflammatory cell infil-
tration in mammary gland, indicating that evodiamine 
has a certain positive effect in LPS-induced mice mas-
titis. This may be associated to the inhibition of evodi-
amine on the excessive liberation of inflammatory fac-
tors induced by LPS.

Pro-inflammatory cytokines cause the release of 
other vasodilation-inducing chemicals and thus increas-
ing the recruitment rate of inflammatory cells at the 
inflammatory site [47, 48]. It has been demonstrated 
that proinflammatory cytokines TNF-α and IL-1β play 
an important role in various types of inflammatory 
responses [49], including mastitis [50]. Among them, 
TNF-α can stimulate the expression of iNOS in immune 
cells to increase the secretion of nitric oxide (NO) in the 
body [51]. And TNF-α promotes the release of related 
prostaglandins by stimulating the expression of COX-
2 in inflammatory cells [52]. Studies have shown that 
vasodilation during inflammationn is mainly mediated 
by nitric oxide (NO) and vasodilating prostaglandins 
[53]. Therefore, iNOS and COX-2 also play key role 
in LPS-induced mastitis model [31, 32]. In this study, 
we found that evodiamine can significantly reduce the 
release of TNF-α, IL-1 β, iNOS, and COX-2 in vivo and 
in vitro, and has a significant inhibitory effect on LPS-
induced mastitis.

In inflammatory response, there are a lot of sig-
nal pathways involved. Some studies have shown that 
LPS binds to TLR4 and activates nuclear NF-κB and 
MAPKs through signal transduction, ultimately leading 
to increased transcription of pro-inflammatory cytokines 
such as TNF-α and IL-1β [54, 55]. Normally, NF-κB is 
located in the cytoplasm, until LPS induces activation 
of upstream kinase AKT resulting in phosphorylation of 
NF-κB p65, which can then be transferred to the nucleus 
and modulates transcription of pro-inflammatory media-
tors [56]. MAPK signaling pathways, including ERK, p38, 
and JNK subfamilies, regulate the expression of a variety 
of inflammatory factors and they have been identified as 
potential treatment targets of anti-inflammatory [57]. Pre-
vious studies have shown that evodiamine can alleviate 
severe pneumonia by inhibiting NF-κB and MAPK signal-
ing pathways [58]. To determine if the anti-inflammatory 
effect of evodiamine in mastitis is linked to the NF-κB and 
MAPK signaling pathways, we detected the effects of evo-
diamine on AKT and NF-κB p65 and p38, ERK1/2, and 
JNK phosphorylation. Results in vivo and in vitro showed 
that LPS could significantly enhance the phosphorylation 
of AKT and NF-κB and the activation of MAPK signal 
pathways, which could be inhibited by evodiamine. These 
results suggest that the anti-inflammatory effect of evodi-
amine in mastitis is at least partially obtained by inhibi-
tion the phosphorylation of the signaling pathways AKT/
NF-κB, ERK1/2, p38, and JNK.

Fig. 7  Evodiamine on reduces AKT, NF-κB, and MAPK signaling 
pathways phosphorylation in LPS-stimulated mMECs. The phos-
phorylation of p-AKT a, b, p-NF-κB p65 a, c, p-ERK1/2 a, d, p-p38 
a, e, and p-JNK a, f were measured by western blot. Data were pre-
sented as mean ± SEM (n = 3). #p < 0.05 vs. NT group; **p < 0.01 and 
****p < 0.001 vs. LPS group

◂
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To sum up, this study shows that evodiamine 
inhibits the production of pro-inflammatory mediator 
by down-regulating the phosphorylation of AKT/NF-κB 
p65 and MAPK signaling pathways in LPS-induced mas-
titis mice and mMECs. The results of this study provide 
a theoretical basis for the application of evodiamine in 
the treatment of mastitis, and provide a research direc-
tion for the role of evodiamine in other similar diseases.
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