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The NLRP3 Inflammasome and Its Role in Sepsis
Development

Lucinéia Gainski Danielski,1 Amanda Della Giustina,1 Sandra Bonfante,1 Tatiana Barichello,2,3

and Fabricia Petronilho 1,4

Abstract— The pathophysiology of sepsis is extremely complex. During this disease, the
exacerbation of the inflammatory response causes oxidative stress, alterations in mitochon-
drial energy dynamics, and multiple organ failure. Some studies have highlighted the impor-
tant role of the NLRP3 inflammasome in sepsis. This inflammasome is a macromolecular
protein complex that finely regulates the activation of caspase-1 and the production and
secretion of potent pro-inflammatory cytokines such as IL-1β and IL-18. In this review, we
elucidate evidences to understand the connection between sepsis development and the
NLRP3 inflammasome, the most widely investigated member of this class of receptor.
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INTRODUCTION

Sepsis is a syndrome characterized by pathophysio-
logic and biochemical alterations caused by an infectious
insult. These abnormalities are related to an exacerbated
systemic inflammation, and they manifest as life-
threatening clinical conditions [1] that may lead to multiple

organ dysfunction [2] and a mortality rate of approximately
60% [3].

The initial stage of sepsis pathophysiology involves
the production of signaling molecules responsible for
recruiting immune cells, such as the pathogen-associated
molecular patterns (PAMPs) and the damage-associated
molecular patterns (DAMPs) and their interaction with
germline-encoded receptors called pattern recognition re-
ceptors (PRRs) [4]. The involvement of Toll-like receptor-
4 (TLR-4) in sepsis is well described [5–7]; however,
another class of receptor has drawn attention in recent
years: the nucleotide-binding and oligomerization domain
(NOD)-like receptor (NLR) class, specifically the pyrin
domain-containing 3 (NLRP3) member. NLRP3, along
with other structures, generate a complex called
inflammasome that can convert pro-inflammatory pro-
caspases into their mature form, thus inducing the release
of important pro-inflammatory cytokines [8, 9].

The NLRP3/caspase-1/IL-1 axis has emerged as a
critical signaling pathway of the innate immune system
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and the progression of inflammation. There are important
evidences regarding the involvement of NLRP3
inflammasome in different inflammatory diseases, such
as cerebral ischemia [10], Parkinson’s and Alzheimer’s
disease [11], inflammatory bowel disease [12], and athero-
sclerosis [13].

The connection of these diseases with bacterial sepsis
occurs as follows: activation of Toll-like receptors by the
presence of DAMPs and PAMPs, characterizing step 1 of
the inflammasome activation and generation of ROS by
phagocytic cells and mitochondrial damage activate the
step 2 [14]. However, the connection of NLRP3 to the
development of sepsis and organ dysfunction requires fur-
ther investigation, and in this review, we elucidate evi-
dences that lead the connection between sepsis develop-
ment and the NLRP3 inflammasome, the most widely
investigated member of this class of receptor.

NLRP3 INFLAMMASOME

The innate immune system has been recognized as the
primary line of defense to fight back invading pathogens
and maintain homeostasis [15]. Components of pathogens,
injured tissue, and cells may release pathogen-associated
molecular patterns (PAMPs) and damage-associated mo-
lecular patterns (DAMPS) that will be recognized by pat-
tern recognition receptors (PRRs) and stimulate immune
responses, and among these receptors, pyrin domain-
containing 3 (NLRP3) is under intense investigation [16]
as NLRs may form protein complexes cal led
inflammasomes [17].

The NLRP3 is a group of high-molecular–weight
cytosolic protein complex formed to mediate host immune
responses to several DAMPs and PAMPs. This complex
consists of three main parts: (a) a sensor/receptor protein of
cytosolic location that serves as a platform for complex
formation, for example, NLRP3; (b) an ASC (apoptosis-
associated speck-like protein containing a CARD) adapter
protein; and (c) an effector protein, pro-caspase-1 [9, 18,
19].

NLRP3 inflammasome activation requires two steps.
The first one is called priming and consists in the expres-
sion of NLRP3 and pro-IL-1b through the stimulation of
NF-kB in response to microbial molecules, such as TLR
ligands or endogenous cytokines, e.g., tumor necrosis fac-
tor alpha (TNF-a). The second step is the activation phase
in which an increase in extracellular adenosine triphos-
phate (ATP), extracellular osmolarity or pH alterations,
β-amyloid fibers and degradation of extracellular matrix

components, increase in potassium efflux, generation of
mitochondrial reactive species, and lysosomal destabiliza-
tion and leakage of cathepsin B trigger NLRP3 assembly
and activation [20–22].

After conformational activation, NLRP3 interacts
with the ASC adapter protein and induces the aggregation
of ASC into a large cytosolic protein speck. Then, ASC
specks generate a platform for recruitment of pro-caspase-1
monomers, which promotes its self-cleavage and activa-
tion. Consequently, active caspase-1 stimulates the cleav-
age of pro-IL-1b and pro-IL-18 into mature IL-1b and IL-
18, thus promoting inflammatory responses [23, 24]. Ac-
tive caspase-1 also cleaves gasdermin D to free its N-
terminal domain and induce the formation of pores at the
membrane, leading to a pro-inflammatory form of cell
death called pyroptosis [19], and this process is called
canonical NLPR3 inflammasome activation. In addition,
recent evidences point to another process named nonca-
nonical inflammasome activation, in which LPS derived
from Gram-negative bacteria stimulates caspase-11, and
this induces pyroptosis as well as caspase-1-dependent
maturation and production of IL-1β and IL-18 [25, 26].

NLRP3 AND SEPSIS: ROLE ON INFLAMMATION

Considering that the immune system is the first one>
affected in sepsis and the key signaling role played by
NLRP3, different approaches have been studied to modu-
late this inflammasome in sepsis (Fig. 1) [27]. Biglycan is a
stationary component of the extracellular matrix (ECM)
found in most tissues under normal conditions, but it can
become an endogenous ligand for TLR4 in macrophages
after releasing from activated macrophages or the ECM
during tissue damage. In this sense, biglycan can activate
the NLRP3 inflammasome and elevate IL-1β levels in
macrophages, without the need for costimulatory factors
[28].

Follistatin-like protein 1 (FSTL-1) is a secreted gly-
coprotein formed mainly by mesenchymal cells, and it is
overexpressed in several inflammatory conditions charac-
terized by elevated IL-1β. Chaly and colleagues (2014)
proposed that FSTL-1 can access the intracellular space of
cells that do not normally express this protein, such as
monocytes/macrophages, and then FSTL-1 enters in the
mitochondria, where it may improve ATP production,
which is an important stimulus to activate NLRP3
inflammasome. Also, FSTL-1 can increase NLRP3 and
pro-caspase-1 expression [29].
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Sestrins (Sesn) are proteins that shield cells exposed
to a variety of environmental stresses, including oxidative
stress and DNA damage, maintain metabolic homeostasis,
and induce autophagy under conditions of genotoxic stress
[30]. Bone marrow-derived macrophages (BMDMs) of
Sesn2 knockout mice exhibited defective mitophagy after
immune stimulation, leading to hyperactivation of the
NLRP3 inflammasome and increased mortality after sepsis
[31].

Animals with genetic suppression for NLRP3 showed
decreased autophagy in neutrophils along with increased
phagocytosis and clearance of bacteria and improved sur-
vival [32]. In addition, genetic deficiency of NLRP3 in-
duced the synthesis of lipoxin B4, a lipid mediator typical-
ly involved in the resolution of inflammation, in septic
mice, and in macrophages stimulated with LPS and ATP
[33]. On the other hand, in neonatal sepsis, the inhibition of
caspase-1 and caspase-11 rather than NLRP3 blockade
increased survival and decreased cytokine levels, as

well as elevated the recruitment of macrophages and peri-
toneal neutrophils, associated with increased phagocytosis
[34].

NLRP3 inflammasome seems to be inhibited by some
substances. The administration of nitric oxide (NO) derived
from iNOS may reduce the activation of NLRP3 due to a
mitochondrial stabilization process, whereas it does not im-
pact the TLR/NF-κB signaling pathways [35]. Dimethyl
sulfoxide (DMSO) displayed ability to attenuate IL-1 matu-
ration, caspase-1 activity, and ASC pyroptosome formation
via NLRP3 inflammasome activator [36].

The extract of Syneilesis palmata (SP), a traditional
Korean therapeutic herb widely used to treat pain or arthri-
tis, also attenuated IL-1β secretion via the inhibition of
NLRP3 inflammasome activation induced bymonosodium
urate, ATP, and nigericin. Further, SP ameliorated the
severity of NLRP3 inflammasome-mediated symptoms in
LPS-induced endotoxin and Escherichia coli-induced sep-
sis mouse models [37].

Fig. 1. Effects of different substances on the immune system after sepsis. Several events and triggers are required for the activation of NLRP3. Like PAMPs,
biglycan is an endogenous ligand for TLR4 and P2X7 receptor, activating the transcription of genes encoding NLRP3-forming proteins, or potassium efflux,
one of the signals required for NLRP3 activation. Alpha-linolenic acid can reduce the expression of NLRP3, caspase-1, pro-IL-1β, and pro-IL-18. Dimethyl
sulfoxide (DMSO) blocks ASC formation and caspase-1 formation. Follistatin-like protein 1 (FSTL-1) can activate the conversion of pro-caspase-1 into its
mature form. Reactive species generated by mitochondria are triggers that activate NLRP3 inflammasome, whereas nitric oxide (NO) and sestrins seem to
reduce this activation signal. Once activated, the NLRP3 inflammasome leads to the cleavage of pro-IL-1β and pro-IL-18 to their active form and causes
pyroptosis.
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Alpha-linoleic acid metabolites also seemed to exert
anti-inflammatory role by preventing the activation of
NLRP3 inflammasome both in LPS-challenged RAW
264.7 cells and mouse peritoneal macrophages, as well as
by the induction of apoptosis and inhibition of autophagy
in the LPS-challenged macrophage [38]. In vitro tests with
different macrophage lineages proved that apigenin, a nat-
ural flavonoid present in fruits and vegetables, may prevent
LPS-induced IL-1β production by blocking caspase-1 ac-
tivation through the disruption of the NLRP3
inflammasome assembly [39].

NLRP3 and Sepsis: Effects on the Mitochondrial
Energetic Response

Mitochondrial energy dysfunction plays an important
role in the pathogenesis of sepsis, especially by the ability
to increase mitochondrial ROS production [40]. Evidence
suggests that mitochondrial uncoupling proteins (UCPs), a
superfamily of mitochondrial anion carrier proteins, are
related to NLRP3 activation. Mitochondrial uncoupling
protein-2 (UCP2) has been involved in numerous physio-
pathological conditions including metabolic disorders, in-
flammation, ischemic shock, cancer, and aging, even being
pointed as a possible central modulator in metabolic pro-
cesses[41]. In macrophages, UCP2 deficiency suppressed
NLRP3 expression, the data suggest that UCP2 regulates
NLRP3-mediated caspase-1 activation through fatty acid
synthase (FASN)-mediated lipid synthesis. The study fur-
ther demonstrated that regulation of downstream AKT and
p38 MAPK activation by FASN is critical for NLRP3
expression and caspase-1 activation [42].

Mitochondrial damage was associated with inflam-
mation through of NLRP3 activation. Excessive or
susta ined calcium (Ca2+) uptake can lead to
mitochondrial damage characterized by increased
production of ROS, mitochondrial permeability
transition, and eventually rupture of the mitochondria. In
addition, mitochondria have a principal role in regulating
Ca2+ levels by taking Ca2+ that is released from the
endoplasmic reticulum, causing elevation of their levels
within mitochondria [43]. With the production of ROS,
lysosomes can rupture, structures that function as Ca2+

deposits, and this Ca2+ mobilization in turn leads to the
activation of NLRP3 [44].

In other hand, autophagy is a degradation system of
cytoplasmic constituents that involves sequestration of cel-
lular components, fusion to lysosomes, degradation of the
cellular materials by hydrolytic enzymes, and reutilization
of degradation products [45]. Evidence suggests that

autophagy negatively regulates NLRP3 activation
[45, 46]. A hypothesis suggests that inflammasomes or
pro-IL-1β molecules are degraded by autophagosomes
[43, 47], and the second hypothesis proposes that
mitochondria-selective autophagy, termed mitophagy,
eliminates dysfunctional/damaged mitochondria, avoiding
the cytoplasm release of inflammasome activation DAMPs
like ROS and thus preventing activation of NLRP3
inflammasome [48]. The ROS formation are critical events
associated with NLRP3 inflammasome activation. Howev-
er, the mitochondrial dysfunction and inflammasome acti-
vation and their contribution to the pathogenesis of sepsis
thus remain incompletely understood.

NLRP3 and Sepsis: Effects on the Cardiovascular
System

The in vitro stimulation of cardiac fibroblasts with
LPS elevates the expression of NLRP3 and caspase-1, and
this alteration is reverted by the administration of
glyburide, a NLRP3 inhibitor [49]. NLRP3 knockout ani-
mals showed reduced myocardial damage when treated
with melatonin [50]. Cortistatin, a neuropeptide and an
immunomodulatory factor, demonstrated an interesting
ability to inhibit NF-kB and NLRP3 activity, prevent the
production and release of pro IL-1β, and attenuate sepsis-
associated myocardial injury [51]. A recent study demon-
strated that NLRP3 is activated in platelets of septic ro-
dents, and it is associated with inflammation, endothelial
permeability, and multiple organ injury [52].

NLRP3 and Sepsis: Effects on the Gastrointestinal
System

Recent studies have shown the inflammatory effects
of NLRP3 inflammasome on the gastrointestinal system.
The hepatic levels of NLRP3 as well as proteins related to
pyrocytosis seem to increase as sepsis evolves, thus
inhibiting these proteins and blocking NLRP3 activation
can alleviate acute liver injury induced by sepsis and may
increase survival [53]. In fact, silencing NLRP3 gene 48 h
prior to sepsis induction improved hyperbileacidemia and
reduced cytokine levels, neutrophil infiltration, and mac-
rophages pyrocytosis in hepatic tissue [54]. Of note, bile
acids are recognized as a class of DAMPS that synergize
with ATP in activating the NLRP3 inflammasome in a
Ca2+ influx-dependent manner; however, bile acids are
also ligands of the farnesoid X receptor (FXR), and, once
stimulated, FXR seems to physically interact with NLRP3
inflammasome components to repress NLRP3 activation
[55].
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With regard to treatment options, mice subjected to
LPS-induced acute liver injury and treated with bone
marrow mesenchymal stem cells showed reduced levels
of NLRP3, ASC, and caspase-1 as a result of prostaglandin
E2 (PGE2) secretion and enhanced IL-10 levels [56].
The oral administration of Cinnamomum osmophloeum
essential oil to mice before LPS injection reduced plasma
levels of IL-1β and IL-18 and diminished the expression
of ASC, caspase-1, and NLRP3 in the intestinal mucosa
[57].

NLRP3 and Sepsis: Effects on the Renal System

A few studies have demonstrated the effects of
NLRP3 modulation on kidney disease caused by sep-
sis. The viability of mitochondria is mainly sustained
by sirtuin 3 (SIRT3), a member of NAD+-dependent
deacetylases family, and its overexpression in renal
t i s sue improves mi tochondr ia l dynamics by
decreasing reactive species. In this sense, Zhao and
colleagues (2016) [58] demonstrated that sepsis in-
duced a higher upregulation of NLRP3 inflammasome
in SIRT3 knockout rats than in wild type animals, and
this was reversed by an antioxidant treatment.

Wang and colleagues (2015) [59] tested the effects of
carbon monoxide (CO) on rats with sepsis-induced acute
kidney failure. Their results indicated a decrease in serum
creatinine and urea levels and reduced apoptotic and his-
tological scores, followed by diminished NLRP3 expres-
sion and higher survival rate.

Hyperin, a flavonoid substance found in Ericaceae,
Guttifera, and Celastraceae plants, was tested in mice sub-
jected to LPS-induce acute kidney injury. Hyperin treat-
ment significantly inhibited TNF-α, IL-6, and IL-1β pro-
duction through modulation of TLR4 expression and NF-
κB activation. In addition, hyperin treatment blocked LPS-
induced NLRP3 signaling pathway in a dose-dependent
manner [60].

NLRP3 and Sepsis: Effects on the Respiratory System

Septic patients can have their respiratory function
severely compromised due to increased neutrophil in-
filtration, edema formation, and elevated levels of IL-
1β and IL-18 in the lung tissue, and the heme
oxygenase-1 (HO-1) enzyme seems to be protective
due to its anti-inflammatory features. The administra-
tion of hemin, a HO-1 inducer, downregulated the
expression for NLRP3, ASC, and caspase-1 and the
activity of NF-κB and NLRP3 inflammasome [61].

The study of different medicinal plants and their
products to treat or prevent respiratory damage is increas-
ing. In a recent research, cinnamaldehyde, a phenolic com-
pound of Cinnamon species, was able to reduce the ex-
pression of NLRP3 and IL-1β in vitro and in the lungs of
LPS-injected mice [62]. Another study demonstrated pro-
tective effects of dihydromyricetin, an isolated substance
from the tender stem and leaves of the Ampelopsis
grossedentata species, against CLP-induced acute lung
injury by inhibiting NLRP3 inflammasome activation and
subsequent pyroptosis [63].

NLRP3 and Sepsis: Effects on the Central Nervous
System

Resveratrol, a phenolic compound found in
grapes, significantly inhibited NLRP3 expression
and IL-1β cleavage in the hippocampus of mice
subjected to a sepsis-associated encephalopathy mod-
el, while treating BV2 cell lines with resveratrol
prevents ATP induced NLRP3 activation and IL-1β
cleavage [64]. Recently, Fu and colleagues (2019)
[65] demonstrated that inhibiting the formation of
NLRP3 inflammasome may positively contribute to
the reduction of neurological and cognitive impair-
ment of septic animals. The authors suggested that
the NLRP3/caspase-1 pathway-induced pyroptosis
mediates cognitive deficits, at least in mice. Howev-
er, further studies are crucial to elucidate the poten-
tial effects of inflammasome inhibitors on cognitive
damage after sepsis.

CONCLUSION

The evidences presented here demonstrated that
NLRP3 inflammasome activation may induce important al-
terations in different systems affected by sepsis. So far, the
mechanistic evaluations indicate that inhibiting the assembly
and activation of this inflammasome could prevent the in-
flammatory response normally visualized in sepsis. Still,
further studies are necessary to demonstrate the detailed
influence exerted by the NLPR3 inflammasome on sepsis
pathophysiology and to design new treatment approaches.
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