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MMP-9 Inhibition Suppresses Interferon-γ-Induced
CXCL10 Production in Human Salivary Gland Ductal
Cells
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Abstract— Gene expression profiling of lip salivary gland (LSG) has shown that C-X-C
motif chemokine 10 (CXCL10) andmatrixmetalloproteinase 9 (MMP9) expression is upregulated
in primary Sjögren’s syndrome (pSS) patients. Although CXCL10 and MMP-9 are both associ-
ated with pSS pathogenesis, the potential relationship between these two factors has not been
investigated. In this study, we used LSG sections from pSS patients and human salivary gland cell
lines to investigate the relationship betweenCXCL10 andMMP-9. Immunofluorescence analyses
revealed that CXCL10 andMMP-9 were co-expressed in the LSG of pSS patients, particularly in
expanded ductal cells. Furthermore, RT-qPCR analyses on human salivary gland ductal NS-SV-
DC cells confirmed that CXCL10 expression was induced by interferon (IFN)-γ, whereas that of
MMP9 was stimulated by IFN-α, tumor necrosis factor-α, and interleukin-1β. Remarkably,
MMP-9 inhibition in IFN-γ-stimulatedNS-SV-DC cells significantly decreasedCXCL10mRNA
and secreted protein levels. Further analyses established that MMP-9 inhibition in IFN-γ-
stimulated NS-SV-DC cells decreased STAT1 phosphorylation and hence suppressed IFN-γ
signaling. Collectively, these results suggest that in addition to its reported role in the destruction
of acinar structures, MMP-9 is involved in the IFN-γ-induced production of CXCL10 in pSS
lesions. We believe that our findings open the door to the development of novel treatments for
pSS, based on the modulation of MMP-9 activity.
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INTRODUCTION

Sjögren’s syndrome (SS), one of the most common
autoimmune diseases [1, 2], is characterized by the destruction
of the acinar structure by infiltrating mononuclear cells in the
salivary and lacrimal glands [3–5]. Activated T and B cells
constitute the majority of the infiltrating mononuclear cells in
the lip salivary gland (LSG), while professional antigen-
presenting cells, such as macrophages and dendritic cells
(DCs), are correlated with the severity of the SS lesions [4,
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5]. The mechanisms underlying the variability of glandular
infiltration in SS salivary glands remain unclear. However,
accumulating evidence indicates that several chemokines con-
tribute to thedevelopment andprogressionofSS lesions [6–9].

C-X-C motif chemokine 10 (CXCL10) is a CXC che-
mokine induced by interferon (IFN)-γ and is produced by
diverse cell types, including peripheral blood mononuclear
cells, fibroblasts, and endothelial cells, during Th1-type im-
mune responses [10]. Its cognate receptor C-X-C motif che-
mokine receptor 3 (CXCR3) is expressed on a wide range of
cells of the innate immune system, including DCs, natural
killer cells, natural killer Tcells, neutrophils, andmacrophages
[11–14].Therefore, thesedifferent cell types shouldbe suscep-
tible toCXCL10-mediated chemotaxis. Notably, gene expres-
sionprofilingofLSG in control subjects andprimarySS (pSS)
patients has demonstrated that CXCL10 is upregulated in the
latter [15]. Furthermore, CXCL10 is involved in the accumu-
lationof infiltratingTcells in thesalivaryglandsofpSSpatients
[7]. More recently, we reported that CXCL10 is secreted by
ductal cells and induces CXCR3+ macrophage migration into
the salivary glands of pSS patients [9].

Matrix metalloproteinases (MMPs) comprise a growing
family of endopeptidases that can degrade extracellularmatrix
components, including collagens, elastin, laminins, and fibro-
nectin, and thereby facilitate cell migration and tissue remod-
eling [16]. Importantly, the formation of normal acinar struc-
tures in the salivary glands depends on the integrity of the
extracellular matrix, including the basement membrane [17,
18].As is thecase forCXCL10,MMP9 isover-expressed in the
LSG of pSS patients [19]. Furthermore, previous studies sug-
gest that increased MMP-9 activity and expression enhances
the destruction of the basement membrane, which leads to the
destruction of the acinar structures in SS salivary glands [20,
21].Of note, recent studies also indicate thatMMP-9 is impor-
tant for the release of cytokines/chemokines [22, 23].

Collectively, these data support the notion that
CXCL10 and MMP-9 both play roles in the pathogenesis
of SS. However, the potential relationship betweenCXCL10
andMMP-9 has not been investigated. In this study, we used
both LSG sections from pSS patients and human salivary
gland cell lines to investigate the impact of MMP-9 activity
on the production of CXCL10 in the salivary gland.

MATERIALS AND METHODS

Patients

Six female patients with pSS (mean age 64.2 ±
13.9 years) and three healthy female subjects (mean age

60.3 ± 4.2 years) were enrolled in this study. All individual
participants included in the study were treated at
Tokushima University Hospital between 2011 and 2016.
The six pSS patients satisfied the revised JapaneseMinistry
of Health criteria for the diagnosis of SS [24] and the
American College of Rheumatology classification criteria
for SS [25]. The diagnosis of SS was based on the presence
of two or more of the following clinicopathologic findings:
lymphocytic infiltration of the salivary or lacrimal glands,
dysfunction of salivary secretion, keratoconjunctivitis
sicca, and presence of anti-Sjögren syndrome antigen A
or B autoantibodies. The healthy subjects had experienced
subjective symptoms of oral dryness but met none of the
criteria for the diagnosis of SS.

Immunofluorescence Staining

Formalin-fixed paraffin-embedded LSG sections
from pSS patients and healthy subjects were deparaffinized
in xylene and rehydrated with graded ethanol (100%, 95%,
70%, and 50%). Antigen retrieval was performed by mi-
crowave treatment using a citrated-based antigen
unmasking solution (Vector Laboratories, Burlingame,
CA, USA) according to the manufacturer’s recommenda-
tions. Endogenous biotin was blocked using the Blocking
One reagent (Nacalai Tesque, Kyoto, Japan) according to
the manufacturer’s recommendations. Sections were then
incubated overnight at 4 °C with rabbit polyclonal anti-
human CXCL10 (Abcam, Cambridge, UK) and mouse
monoclonal anti-human MMP-9 (Abcam) primary anti-
bodies diluted 1:100 in PBS. After three washes with
phosphate-buffered saline (PBS), the sections were incu-
bated for 1 h at room temperature (RT) with goat anti-
mouse IgG (H + L) conjugated to Alexa Fluor 488 second-
ary antibodies (Invitrogen, Carlsbad, CA, USA) diluted
1:200 in PBS. Next, the sections were washed in PBS
and incubated for 1 h at RT with goat anti-rabbit IgG
(H + L) conjugated to Alexa Fluor 568 secondary antibod-
ies (Invitrogen) diluted 1:200. Finally, the nuclei were
counterstained using 4′,6-diamidino-2-phenylindole
(DAPI). The sections were observed using a Nikon A1
laser scanning confocal microscope (Nikon, Tokyo, Ja-
pan), and images were acquired using the NIS-Elements
C Software (Nikon).

Cell Culture

The detailed characteristics of the immortalized nor-
mal human salivary gland ductal (NS-SV-DC) and acinar
(NS-SV-AC) cell lines have been described elsewhere [26].
Both cell lines were cultured in keratinocyte serum-free
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medium (Gibco, Gaithersburg, MD, USA) in an incubator
at 37 °Cwith a humidified atmosphere containing 5%CO2.

Reagents

Recombinant human IFN-α, IFN-γ, tumor necrosis
factor (TNF)-α, and interleukin (IL)-1β were purchased
from R&D Systems (Minneapolis, MN, USA). The MMP-
9 inhibitor I was purchased from Merck (Darmstadt,
Germany).

Real-Time Quantitative Reverse Transcription-
Polymerase Chain Reaction

NS-SV-DC and NS-SV-AC cells were treated for 6,
12, or 24 h with 1000 IU/mL IFN-α, 10 ng/mL IFN-γ,
10 ng/mL TNF-α, and 1 ng/mL IL-1β. Where indicated,
NS-SV-DC cells were treated for 6, 12, or 24 h with 10 ng/
mL IFN-γ in the presence or absence of 5 μM MMP-9
inhibitor. Total RNAwas isolated using the TRIzol reagent
(Life Technologies, Carlsbad, CA, USA) according to the
manufacturer’s recommendations. Then, total RNA was
converted into cDNA using the PrimeScript RT reagent
Kit (TaKaRa, Kusatsu, Japan) according to the manufac-
turer’s recommendations. The mRNA levels of MMP9,
CXCL10, IFN-γ receptor 1 (IFNGR1), IFNGR2, and
GAPDH were analyzed using corresponding Assays-on-
Demand Gene Expression Products (Applied Biosystems,
Tokyo, Japan) and the TaqMan Universal PCRMaster Mix
(Applied Biosystems) with an ABI Prism 7000 Sequence
Detection System (Applied Biosystems), according to the
manufacturer’s recommendations. The thermal cycler con-
ditions were 95 °C for 10 min, followed by 40 cycles of
95 °C for 5 s and 60 °C for 30 s. Gene expression data were
analyzed using the 2−ΔΔCT method of the Sequence
Detection System software version 1 (Applied
Biosystems). The relative quantification (RQ) of the fold
change in gene expression was calculated using the formu-
la RQ = 2−ΔΔCT and normalized using GAPDH as an
internal reference. The relative mRNA levels are
expressed as fold increase compared to the GAPDH
mRNA level.

Reverse Transcription-Polymerase Chain Reaction

Specific custom sense and anti-sense primers for
IFNGR1 (5′-GCTGTATGCCGAGATGGAAAA-3′ and
5′-AGGAAAATGGCTGGTATGACG-3′), IFNGR2 (5′-
CGACAGTAAATGGTTCACGGC-3′ and 5′-TGGA
CATAATAACAAAAAAAGGC-3′), and GAPDH (5′-
ACGCATTTGGCTGTATTGGG-3 ′ and 5 ′-TGAT

TTTGGAGGGATCTCGC-3′) were synthesized by Sigma
(Deisenhofen, Germany). RT-PCR reactions were per-
formed on a LifeECO Thermal Cycler (Nippon Genetics,
Tokyo, Japan) using the Ex Taq DNA Polymerase
(TaKaRa) according to the manufacturer’s recommenda-
tions. The thermal cycler conditions were 30 cycles of
98 °C for 10 s, 55 °C for 30 s, and 72 °C for 1 min.
Amplification products were separated by 1.5% agarose
gel electrophoresis and visualized after ethidium bromide
staining using a FAS-III gel imaging system (TOYOBO,
Osaka, Japan).

Enzyme-Linked Immunosorbent Assay

NS-SV-DC cells were incubated for 6, 12, or 24 h
with 10 ng/mL IFN-γ in the presence or absence of 5 μM
MMP-9 inhibitor. The supernatants were collected, and the
secreted CXCL10 protein levels were analyzed using a
human CXCL10 ELISA kit (R&D Systems) according to
the manufacturer’s recommendations. The absorbance at
450 nm was measured using a Multiskan JX microplate
reader (Thermo Fisher Scientific, Waltham, MA, USA),
and CXCL10 protein levels were determined using a stan-
dard curve.

Protein Isolation and Western Blot Analysis

NS-SV-DC cells were treated for 5, 30, 60, or 120min
with 10 ng/mL IFN-γ in the presence or absence of 5 μM
MMP-9 inhibitor. Whole-cell lysates were prepared using
the M-PERMammalian Protein Extraction Reagent (Ther-
mo Scientific) and Halt Protease Inhibitor Cocktail (Ther-
mo Scientific) according to the manufacturer’s recommen-
dations. Whole-cell lysate proteins (20 μg) were separated
by electrophoresis using 10% sodium dodecyl sulfate
(SDS)-polyacrylamide gels (Bio-Rad, Hercules, CA,
USA) and then transferred onto nitrocellulose membranes.
The membranes were blocked with 3% bovine serum
albumin in Tris-buffered saline containing 0.1% Tween
20 (TBS-T) and incubated for 1 h at RT with anti-STAT1,
anti-phospho-STAT1, anti-JAK2, anti-phospho-JAK2, and
anti-β-actin primary antibodies (all from Cell Signaling
Technology, Beverly, MA, USA) diluted 1:1000 in Can
Get Signal Solution 1 (TOYOBO). After several washes
with TBS-T, the membranes were incubated for 1 h at RT
with appropriate secondary antibodies (Cell Signaling
Technology) diluted 1:1000 in Can Get Signal Solution 2
(TOYOBO). The immune complexes were visualized
using an ECL Western Blotting Detection Reagent (GE
Healthcare, Buckinghamshire, UK). Densitometric analy-
sis was performed using an Amersham Imager 600 (GE
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Healthcare) to determine the relative intensity of the im-
mune complexes, using β-actin as an internal reference.

Statistical Analyses

All statistical analyses were performed using the
SPSS Statistics version 15.0 software (IBM, Armonk,
NY, USA). The data were analyzed using the non-
parametric two-tailed Mann-Whitney U test, and statistical
significance was defined as a p value < 0.05.

RESULTS

Expression of CXCL10 and MMP-9 in Lip Salivary
Gland Sections from Sjögren’s Syndrome Patients

To assess the relationship between CXCL10 and
MMP-9, we first used immunofluorescence staining to
examine the expression level and localization of CXCL10
and MMP-9 in the LSG. Strikingly, CXCL10 and MMP-9
exhibited intense staining in the expanded ductal cells of
pSS patients (Fig. 1a) compared to those of healthy sub-
jects (Fig. 1b), which indicated increased expression of
both proteins. Furthermore, inflammatory cells were de-
tectable around the ductal structures of the salivary glands
that showed CXCL10 andMMP-9 co-expression (Fig. 1a).
The infiltrating inflammatory cells in the LSG of pSS
patients did not show positive staining for CXCL10 or
MMP-9 (Fig. 1a).

MMP-9 Expression Following IFN-α, IFN-γ, TNF-α,
or IL-1β Stimulation of NS-SV-DC or NS-SV-AC Cells

We have previously examined whether IFN-α, IFN-
γ, TNF-α, and IL-1β could regulate the expression of
CXCL10 mRNA in NS-SV-DC and NS-SV-AC cells [8].
According to our observation, IFN-γ-stimulated ductal
cells were mainly responsible for CXCL10 overproduction
in the salivary glands of pSS patients [8]. Therefore, to
explore further the relationship between CXCL10 and
MMP-9, we set out to identify factors that could regulate
MMP-9 expression in human salivary gland cell lines. To
this end, NS-SV-DC and NS-SV-AC cells were treated
with IFN-α, IFN-γ, TNF-α, or IL-1β and MMP9 mRNA
levels were examined by RT-qPCR. Remarkably, MMP9
expression in NS-SV-DC cells increased in response to
IFN-α, TNF-α, and IL-1β stimulation but not following
IFN-γ treatment (Fig. 2). In contrast, we could only detect
a marginal increase inMMP9mRNA levels in NS-SC-AC

cells treated with IFN-γ, which suggested thatMMP-9 was
mainly produced by salivary gland ductal cells.

Effects of MMP-9 Inhibition on CXCL10 Expression
and Secretion in IFN-γ-Stimulated NS-SV-DC Cells

Next, we conducted RT-qPCR analyses to explore the
potential involvement of MMP-9 in the regulation of
CXCL10 expression. Remarkably, treatment with an
MMP-9 inhibitor significantly decreased CXCL10 mRNA
levels (p < 0.05) in IFN-γ-stimulated NS-SV-DC cells
(Fig. 3), which suggested that MMP-9 activity was re-
quired for IFN-γ-induced CXCL10 expression.

To evaluate further the effects of MMP-9 inhibition,
we performed an ELISA to measure secreted CXCL10 in
the supernatants of NS-SV-DC cells treated with IFN-γ in
the presence or absence of MMP-9 inhibitor. As anticipat-
ed, CXCL10 secretion by IFN-γ-stimulated NS-SV-DC
was massively increased after 24 h (Fig. 4). In contrast,
MMP-9 inhibition resulted in a significant decrease in the
production of CXCL10 after 24 h (p < 0.05), which indi-
cated that MMP-9 activity supported IFN-γ-induced
CXCL10 secretion by salivary gland ductal cells.

Effects of MMP-9 Inhibition on IFN-γ Receptor Ex-
pression in NS-SV-DC Cells

Since MMP-9 inhibition suppressed CXCL10 both at
the mRNA and protein levels, we hypothesized that the
MMP-9 inhibitor could affect the IFN-γ receptors
(IFNGRs). IFNGRs consist of two subunits: IFNGR1 (also
known as the IFN-γ receptor α chain) and IFNGR2 (also
known as the IFN-γ receptor β chain) [27]. We first used
RT-PCR to examine the expression of IFNGR1 and
IFNGR2 in NS-SV-DC cells and found no perceptible
difference in the mRNA levels following IFN-γ stimula-
tion and MMP-9 inhibition (Fig. 5a). Further analyses
using RT-qPCR confirmed this observation (Fig. 5b),
which indicated that MMP-9 inhibition did not significant-
ly affect the mRNA levels of IFNGR1 and IFNGR2.

Effects of MMP-9 Inhibition on the IFN-γ Signaling
Pathway in NS-SV-DC Cells

We previously reported that IFN-γ stimulated the
production of CXCL10 via the JAK2/STAT1 signaling
pathway [8]. To dissect the molecular mechanisms un-
derlying the effects of MMP-9 inhibition, we thus per-
formed western blot analyses to assess the expression
levels of STAT1 and JAK2 and their phosphorylation,
which denote STAT1 and JAK2 activation. We did not
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Fig. 1. Histological analysis of LSG sections from pSS patients and healthy subjects. Representative images (from 3 to 5 samples) showing immunoflu-
orescence staining for CXCL10 (green) and MMP-9 (red) in pSS patients (a) and healthy subjects (b). Nuclei (blue) were counterstained with DAPI.
Arrowheads indicate inflammatory cells. Scale bars = 100 μm.
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examine JAK1 since our previous report suggested that
it was not expressed in NS-SV-DC cells [8]. Whether
cells were treated or not with the MMP-9 inhibitor, we
did not observe any changes in JAK2 levels and phos-
phorylation upon IFN-γ stimulation (Fig. 6a). In

striking contrast, we found that STAT1 phosphorylation
was both delayed and reduced following MMP-9 inhi-
bition in IFN-γ-stimulated NS-SV-DC cells (Fig. 6),
which indicated that MMP-9 activity was involved in
STAT1-mediated IFN-γ signaling.
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DISCUSSION

Although previous studies reported that CXCL10 and
MMP9 were both upregulated in the LSG of pSS patients
[15, 19] and MMP-9 was important for the release of
cytokines/chemokines [22, 23], there is, to the best of our
knowledge, no study investigating the potential relation-
ship between CXCL10 and MMP-9 in SS. Therefore, in
this study, we investigated the functional relationship be-
tween CXCL10 andMMP-9 using LSG sections from pSS
patients and human salivary gland cell lines.

SS is a chronic autoimmune disease characterized by
the destruction of the salivary and lacrimal glands [1–3].
Histologically, pSS patients exhibit selective and progres-
sive destruction of the acinar structures in the LSG, which
is concomitant with the infiltration of various mononuclear
cells, including T and B cells, DCs, and macrophages [4,
5]. Although the underlying molecular mechanisms lead-
ing to mononuclear cell infiltration in the salivary glands of
pSS patients remain elusive, accumulating evidence indi-
cates that the cytokines-chemokine-driven network is one
of the key processes in the autoimmune response associat-
ed with pSS [6–9, 28].

In particular, CXCL10 overexpression has been ob-
served in the ductal epithelium of the LSG of pSS patients
[7, 9]. Importantly, this increased production of CXCL10
by the ductal epithelium regulated immune responses
through the recruitment of CXCR3+ mononuclear cells,
including T cells, DCs, and macrophages [7, 9]. The

involvement of MMP-9 in the pathogenesis of pSS derives
from the observation that increasedMMP-9 expression and
activity results in the disruption of the basement mem-
brane, which in turn leads to the destruction of the acinar
structures in SS salivary glands [22, 23].

Our immunofluorescence analyses in LSG sections
from pSS patients showed that CXCL10 and MMP-9 were
strongly co-expressed in expanded ductal cells, which was
associated with the presence of infiltrating immune cells
around these expanded ductal cells. In contrast, CXCL10
and MMP-9 expression was not detected in acinar cells
(Fig. 1). A previous study reported that CXCL10 increases
MMP-9 secretion from monocytes and neutrophils but not
from lymphocytes in patients with bullous pemphigoid, the
most common autoimmune subepidermal blistering dis-
ease [29]. In contrast, our findings suggested that most of
the infiltrating immune cells were negative for MMP-9
staining. However, recent studies highlighted the role of
MMP-9 in the release of cytokines/chemokines [22, 23].
Since we observed numerous infiltrating immune cells
around the ductal structures that co-expressed CXCL10
andMMP-9, we speculated that MMP-9 could be involved
in the secretion of CXCL10 by ductal cells and therefore
sought to identify the factors that could regulate MMP-9
expression in human salivary gland ductal and acinar cells.

The promoter region of the human MMP9 gene in-
cludes two AP-1 binding sites, as well as NF-κB, SP-1, GT
box, and PEA3 elements [30], which mediate transcrip-
tional regulation by various factors, such as TNF-α, IL-1β,
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Fig. 4. Effect of MMP-9 inhibition on CXCL10 secretion by the IFN-γ-stimulated NS-SV-DC cells. Histogram showing the concentration of CXCL10
measured by ELISA in the supernatants of NS-SV-DC cells treated for 6, 12, or 24 h with 10 ng/mL IFN-γ in the presence or absence of 5 μM MMP-9
inhibitor. Where indicated, cells were cultured in the absence of treatment (control) or with the MMP-9 inhibitor alone (MMP-9 inhibitor). Data are mean
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PMA, v-src, ras, and LPS. Furthermore, IFN-γ has been
shown to suppress MMP9 expression through the inhibi-
tion of transcription factors, including STAT-1α, CREB,
and AP-1 [30, 31]. While our RT-qPCR data showing that
MMP9 expression did not increase in IFN-γ stimulated
NS-SV-DC ductal cells are consistent with these reports,
we also found thatMMP9 expression was markedly higher
in the NS-SV-DC ductal cell line than in the NS-SV-AC
acinar cell line. Moreover, we demonstrated that MMP9
expression in NS-SV-DC cells increased following IFN-α,
TNF-α, or IL-1β stimulation, providing new insight into
the regulation of MMP-9 in the salivary glands.

MMPs are known to cleave severa l pro-
inflammatory chemokines, thereby modulating their

function and having an impact on the inflammatory
process [22, 28]. Importantly, MMP-2 and MMP-9 can
cleave CXCL10, which reduces its chemotactic poten-
tial through the removal of N-terminal residues [32].
Here, we demonstrated that inhibition of MMP-9 activ-
ity suppressed IFN-γ-induced CXCL10 at both mRNA
and secreted protein levels. Although we expected
MMP-9 to be involved in CXCL10 secretion by NS-
SV-DC ductal cells, the observation that MMP-9 inhi-
bition affected CXCL10 mRNA transcription was sur-
prising. Indeed, our data on IFN-γ signaling established
that MMP-9 was not only involved in the cleavage of
CXCL10 but also in the activation of STAT1, which is
known to mediate IFN-γ-induced CXCL10 expression.
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Based on the evidence available, the progression of
pSS is proposed to take place in three phases. The first
phase corresponds to a preexisting condition characterized
by genetic susceptibility factors. The second is a
lymphocyte-independent phase that occurs following the
release of antigens by necrotic and apoptotic cells or viral
trigger, which elicit an innate immune response with cyto-
kine production. The third phase is a tissue-specific immu-
nological attack by activated T and B cells, and their
products, against corresponding self-antigens, which leads
to autoimmune exocrinopathy [19, 33]. In the second and
third phases, salivary gland cells, particularly ductal cells,
likely produce CXCL10 and MMP-9. Collectively, our
findings support the notion that MMP-9 could promote
the secretion of CXCL10 by ductal cells in SS salivary
glands via IFN-γ signaling and the activation of STAT1.

In conclusion, this study provides new insight
into the underlying molecular mechanisms of SS by
demonstrating that MMP-9 inhibition could suppress
CXCL10 expression in human salivary gland ductal
cells via a decrease in STAT1 phosphorylation and,
therefore, IFN-γ signaling. We would like to propose

that in addition to its role in the destruction of acinar
structures through the degradation of the basement
membrane, MMP-9 also contributes to the pathogene-
sis of pSS by supporting the IFN-γ-induced produc-
tion of CXCL10 in pSS lesions. Therefore, we believe
that our data provide a strong theoretical basis for the
development of novel approaches for the treatment of
pSS, based on the modulation of MMP-9 activity.
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Fig. 6. Effects of MMP-9 inhibition on IFN-γ-induced STAT1 and JAK2 phosphorylation in NS-SV-DC cells. a Representative western blot showing
STAT1, JAK2, phosphorylated-STAT1 (p-STAT1), and phosphorylated-JAK2 (p-JAK2) protein levels in NS-SV-DC cells treated for 5, 30, 60, or 120 min
with 10 ng/mL IFN-γ in the presence or absence of 5 μMMMP-9 inhibitor. β-actin was used as a loading control. bHistogram showing the relative STAT1
phosphorylation levels as determined by densitometric analysis of the western blot presented in panel a. The intensity of the p-STAT1 band was normalized to
the intensity of the corresponding STAT1 and β-actin bands.
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