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Differential Regulation of IL-1β and IL-6 Release in Murine
Macrophages
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Abstract—Asbestos and silica (exogenous danger) and adenosine triphosphate (ATP, endog-
enous danger-signaling molecule) synergistically increase IL-1β release from endotoxin-
primed macrophage, which is mediated by NOD-like receptor protein 3 (NLRP3)
inflammasome. However, the conversion of pro-IL-1β to its active form seems to depend
on the macrophage cell types. In the present study, bone marrow-derived macrophages
(BMM) and three murine macrophage cell lines, J774.1, J774A.1, and RAW264.7 were
exposed to ATP or fibrous titanium dioxide (FTiO2) in the presence or absence of lipopoly-
saccharide (LPS), and the concentrations of IL-1β and IL-6 in both cell lysates and in the
culture media were measured by immunoblotting to differentiate active form of IL-1β from
pro-IL-1β. IL-1β release was synergistically increased when the cells were exposed to both
LPS and ATP or FTiO2, while IL-6 was readily released by LPS alone. IL-1β released into the
culture medium was pro-IL-1β in J774.1 and RAW264.7, and most of the pro-IL-1β
remained inside the cells. In contrast, the active form of IL-1β was released together with
pro-IL-1β from J774A.1 and BMM after the co-stimulation. J774A.1 and BMM express
apoptosis-associated speck-like protein contains a carboxyl-terminal CARD (ASC) while
J774.1 and RAW264.7 do not or only faintly express ASC, and accordingly, caspase-1, which
converts pro-IL-1β to its active form, is activated only in J774A.1 and BMM. Collectively,
the canonical inflammasome pathway is not activated in J774.1 and RAW264.7, and the
apparent synergistical increase of IL-1β in the culture medium mostly reflects the leakage of
pro-IL-1β from these cells.
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INTRODUCTION

Alveolar macrophages are host defense cells against
both inhaled environmental particulate substances and micro-
organisms. Endotoxin is an outer membrane component of
gram-negative bacteria and is ubiquitous even in the atmo-
sphere [1]. Several lines of evidence indicate that particulate
substances synergistically enhance inflammatory responses of
macrophages to endotoxin [2]. However, the synergistic
mechanism was not well understood until recently.

Over the last decade, inflammasome studies have
shed light on the synergistic effects of particulate
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substances and endotoxin on macrophage-mediated in-
flammatory responses. Compared to non-exposed cells,
lipopolysaccharide (LPS)-primed mouse bone marrow-
derived macrophages (BMM), human monocyte-derived
macrophages, and THP-1 cells (a human leukemic mono-
cyte cell line) release much more IL-1β when exposed to
particulate substances such as asbestos, silica, and
monosodium urate but not when exposed to diesel exhaust
particulates or cigarette smoke extract [3]. In the canonical
inflammasome pathway, LPS increases intracellular pro-
IL-1β via the NF-κB pathway, and fibrous or crystalline
particles injure the lysosomal membrane, thereby inducing
the formation of an apoptosis-associated speck-like protein
containing a carboxyl-terminal CARD (ASC) speckle and
activating pro-caspase-1. Finally, mature IL-1β (17 kDa) is
processed from pro-IL-1β by cleaved and active caspase-1
[4, 5].

However, there are contradictory data regarding the
canonical inflammasome pathway from both cell biologi-
cal and toxicological points of view. Mature IL-1β is
released after cleavage by caspase-1 although IL-1β lacks
the amino-acid sequence that would direct it to the Golgi
apparatus, an organelle that mediates protein secretion [6].
Nano-TiO2 and nano-SiO2, but not nano-ZnO, activated
the NLR pyrin domain containing three (NLRP3)
inflammasomes that lead to IL-1β release [7]. Fumed
(non-crystalline) silica particles induced almost the same
IL-1β response as crystalline silica in RAW264.7 and rat
lung primary macrophages, suggesting that crystallinity
may not be a major factor for induction of the
inflammasome [2]. Exposure to 20- and 1000-nm latex
beads resulted in IL-1β release, but 200-nm beads did
not induce IL-1β production. IL-1β production induced
by 20-nm latex beads was mediated via cathepsin B leak-
age from ruptured phagolysosomes, and IL-1β production
by 1000-nm latex beads depended on ROS production in
LPS-primed (co-exposed) mouse BMM [8].

It has been reported that various particulate sub-
stances such as silver nanoparticles [9], asbestos, and
multi-walled carbon nanotubes [10] activate caspase-1
and increase IL-1β production in LPS-primed THP-1 cells.
It is of interest to note that long fibrous TiO2 (FTiO2) but
not spherical or short TiO2 induced canonical
inflammasome responses such as IL-1β and IL-18 produc-
tion in mouse alveolar macrophages in a manner very
similar to asbestos or silica when co-stimulated with LPS
[11]. The authors reported that the same effects were ob-
served in THP-1 human macrophages, but not in RAW or
MH-S murine macrophages. Pro-IL-1β was the predomi-
nant form of extracellular IL-1β in cultured macrophages,

whereas monocytes preferentially released the 17-kDa ma-
ture IL-1β when human alveolar macrophages and autol-
ogous peripheral blood monocytes were stimulated with
LPS [12]. Moreover, differential patterns of IL-1 produc-
tion and secretion were observed between bone marrow-
derived dendritic cells (BMDC) and BMM; BMM were
more sensitive to LPS than BMDC and produced IL-1β
intracellularly, whereas BMDC readily secreted IL-1β
[13]. The active form of caspase-1 and mature IL-1β
(17 kDa) was not formed following stimulation of LPS-
primed RAW264.7 cells with ATP because this cell line,
which has functional P2X7 purinergic receptors, lacks
ASC. In contrast, J774A.1 cells and mouse peritoneal
macrophages responded to ATP via the inflammasome
pathway. There may be an as-yet-undiscovered mechanism
leading to the release of pro-IL-1β, because pro-IL-1βwas
released into the culture medium in ATP-stimulated
RAW264.7 cells [14].

Those previous reports suggest a large difference in
IL-1β production among innate immune cells and led us to
investigate whether co-exposure of BMM or murine mac-
rophage cell lines such as J774.1, J774A.1, and RAW264.7
to LPS and fibrous TiO2 or ATP causes canonical
inflammasome activation and enhances IL-1β release.
We report that the IL-1β-release patterns in J774.1 and
RAW264.7 murine cell lines are different from those in
BMM and J774A.1 cells. We also report that an increase in
pro-IL-1βmessenger RNA and a leakage of pro-IL-1β are
responsible for an apparent synergistic increase in IL-1β
release in J774.1 cells following co-stimulation with LPS
and FTiO2 or ATP.

MATERIALS AND METHODS

Chemicals

The following chemicals were used: WST-8 Cell
Counting kit (Dojindo, Osaka, Japan); caspase-1 fluo-
rometric assay kits, z-VAD-FMK and z-YVAD-FMK
(BioVision, Milpitas, CA); NuPAGE® and LDS (lithium
dodecyl sulfate) sample buffer, iBlot® polyvinylidene
difluoride (PVDF), Opti-MEMculture medium (Life Tech-
nology-Invitrogen, Carlsbad, CA); radio immunoprecipi-
tation assay (RIPA) buffer with protease inhibitors, anti-
caspase-1 p10 antibody (M-20), and POD-conjugated anti-
mouse or rabbit IgG (Santa Cruz Biotechnology, Santa
Cruz, CA); phosphatase inhibitor cocktail (Thermo Fischer
Scientific, Waltham, MA); PureLink RNA mini kit with
Trizol and DNase I (Life Technology-Ambion, Austin,
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TX); POD-conjugated anti-GAPDH antibody (MBL, Na-
goya, Japan); anti-IL-1β (rabbit mAb, D3H1Z), anti-IL-6
(rabbit mAb, D5W4V), anti-ASC (rabbit mAb, D2W8U),
and anti-NLPR3 antibodies (rabbit mAb, D4D8T) (Cell
Signaling Technology, Danvers, MA); ECL prime western
detection reagent (HE Healthcare, Buckinghamshire, UK);
PVDF blocking reagent and Can-Get-Signal™
(TOYOBO, Osaka, Japan); PrimeScript™ RT reagent kit
and SYBR® Premix Ex Taq™ II (TaKaRa, Tokyo, Japan);
M-CSF (Wako, Osaka, Japan); adenosine and adenosine
5′-triphosphate (ATP) disodium salt (Sigma, St. Louis,
MO). Other common buffers and reagents were of analyt-
ical or biochemical grade.

Particulate Substances

Fibrous titanium dioxide (FTiO2, #TO1) was obtained
from the Japan Fibrous Material Research Association
(JFMRA, Tokyo, Japan). The nominal average length and
width of FTiO2 were 2.1 and 0.14 μm, respectively.
Tricalcium phosphate (TCP, <100 nm) was purchased from
Sigma-Aldrich (St. Louis, MO). These particles were heat-
treated (250 °C, 2 h) in an electric furnace to remove
potentially contaminating endotoxin and were suspended
in PBS or culture medium by sonication before use.

Cells

J774.1 (RBC0434), J774A.1 (JCRB9108), and
RAW264.7 murine macrophages (TIB-71) were obtained
from the RIKEN Institute (Tsukuba, Japan), NIBIOHN
(Tokyo, Japan), and the ATCC (Manassas, VA), respec-
tively. Unless otherwise specified, J774.1 and J774A.1
cells were cultured in RPIM1640 and RAW264.7 cells in
Dulbecco’s modified Eagle medium (DMEM) containing
10% FBS, 100 U/mL penicillin, and 100 μg/mL strepto-
mycin. BMM were obtained from male-specific pathogen-
free C57BL/6-J mice. The mice were purchased from SLC
Japan (Shizuoka, Japan). At the age of 6 weeks, the ani-
mals were injected (i.p.) with an anesthetic combination of
0.75 mg/kg medetomidine hydrochloride, 4.0 mg/kg mid-
azolam, and 5.0 mg/kg butorphanol tartrate and were ex-
sanguinated from the abdominal aorta under anesthesia.
One right femoral bone was obtained from each of five
animals. The bone marrow was flushed out by phosphate
buffered saline (PBS), and the cells were cultured in com-
plete RPMI1640 culture medium containing 10 ng/mL M-
CSF. The medium was changed on days 3 and 5. After
7 days of culture, the cells were used for experiments as
BMM. These procedures were approved by the Animal

Care and Use Committee of the National Institute for
Environmental Studies (NIES).

Cell Viability

J774.1, J774A.1, or RAW264.7 cells were suspended
in complete RPMI1640 medium at a density of
0.15 × 106 cells/mL and a 100-μL aliquot was placed in
a 96-well culture dish. The cells were pre-cultured for 24 h
prior to exposure to test particles or chemicals. The cells
were washed twice with Hank’s balanced salt solution
(HBSS), and the number of viable cells was evaluated by
a modified MTT assay method using the WST-8 Cell
Counting kit. The reaction was stopped by adding one
tenth volume of 0.1 mol/L HCl solution after the develop-
ment of chromophore. The O.D. at 450 nm was measured
using a microplate reader (POLARstar OPTIMA, BMG
Labtech, Offenburg, Germany).

Measurement of Caspase-1 Activity

J774.1 cells cultured in a 12-well culture dish were
exposed to 100 μg/mL of FTiO2, 100 ng/mL of LPS, or
both for 24 h. The cells were then lysed with 80 μL of lysis
buffer, and the lysate was centrifuged at 9000×g for 10 min
at 4 °C. A 40-μL aliquot of the supernatant was mixed and
incubated with the substrate at 37 °C with intermittent
vortexing for 1 h. The fluorescence intensity (Ex:
410 nm, Em: 520 nm) was measured using a microplate
reader.

Cytokine Array

The culture medium obtained from J774.1 cells was
centrifuged at 600×g for 10 min at 4 °C, and the superna-
tant was collected. Concentrations of cytokines in the
culture medium were measured using an antibody array
(Proteome Profiler, Mouse cytokine array, R&D, Minne-
apolis, MN) according to the manufacturer’s instructions.
The array membrane was illuminated with ECL, and cyto-
kine levels were quantified using a chemiluminescence
densitometer (Lumino Imaging Analyzer, FAS-1100,
TOYOBO, Osaka, Japan).

Quantitative IL-1β Measurement

Concentrations of IL-1β in the culture medium were
measured using amouse IL-1βELISA kit (Thermo Fischer
Scientific) according to the manufacturer’s instructions.
The recovery of IL-1β from the culture medium was also
measured using mouse recombinant IL-1β that was includ-
ed in the kit as a standard.
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Immunoblot Analysis

Cell monolayers were rinsed twice with PBS and
lysed on ice for 10 min with cold RIPA lysis buffer
(1 × TBS, 1% Nonidet P-40, 0.5% sodium deoxycholate,
and 0.1% SDS) containing protease and phosphatase in-
hibitor cocktails. Each lysate was transferred to a conical
tube and centrifuged at 9000×g for 5 min at 4 °C. Aliquots
of the supernatant were mixed with LDS sample buffer
(1 × TBS, 10% glycerol, 0.015% EDTA, 50 mMDTT, and
2% LDS) and heated at 95 °C for 5 min. Proteins were
separated on 4–12% gels by SDS-PAGE and then
electroblotted onto a PVDF membrane. The membrane
was blocked with a non-protein blocking agent and reacted
with primary antibody for 1 h. Primary (1:200–500 dilu-
tion) and secondary (1:2000 dilution) antibodies were dis-
solved in Can-Get-Signal® solution. The antibodies were
removed by incubating each membrane in stripping buffer
containing 2% SDS and 100 mM 2-mercaptoethanol at
56 °C for 15 min, and the membrane was re-probed with
anti-GAPDH antibody to normalize the protein loading
level. The culture medium was first centrifuged at 120 g
for 5 min to remove cell debris, and the clear supernatant
was concentrated 50 times before SDS-PAGE electropho-
resis by ultrafiltration using an Amicon Ultra (MW 3000,
Millipore, Cork, Ireland).

Quantitative Real Time Reverse Transcriptase-
Polymerase Chain Reaction (RT-PCR)

IL-1β and IL-6 mRNA levels in J774.1 cells were
measured using a thermal cycler (TP800, Takara Bio, Otsu,
Japan) adopting the ΔΔCt method. Briefly, total RNAwas
extracted from the cells using the PureLink RNA Mini kit
with Trizol and on-column DNase-treatment. Complemen-
tary DNAwas prepared using a PrimeScript RT reagent kit.
PCR reactions were performed using SYBR Premix Ex
Taq II and the following gene specific primers:

& IL-1β forward, 5 ′ -CCAGCTTCAAATCT
CACAGCAG-3′

& IL-1β reverse, 5′-CTTCTTTGGGTATTGCTTGG
GATC-3′

& IL-6 forward, 5′-TCCAGTTGCCTTCTTGGGAC-
3′

& IL-6 reverse, 5′-GTACTCCAGAAGACCAGAGG
-3′

& Gapdh forward, 5′- AACGACCCCTTCATTGAC-
3′

& Gapdh reverse, 5 ′- TCCACGACATACTC
AGCAC-3′

Statistical Analyses

Data are presented as means ± SEM.One-way or two-
way ANOVA was applied first and, when significant dif-
ferences were observed, Tukey’s post-hoc comparison was
made. Probability values less than 0.05 were accepted as
indicative of statistical significance.

RESULTS FIRST, WE INVESTIGATED
INFLAMMATORY RESPONSES OF THREE MURINE
MACROPHAGE CELL LINES TO ATPAFTER PRE-
STIMULATION WITH LPS. J774A.1, J774.1, AND
RAW264.7 CELLS WERE EXPOSED TO ATP, LPS,
AND LPS PLUS ATP, AND THE AMOUNTS OF IL-1Β,
IL-6, AND CASPASE-1 IN BOTH THE CELL LYSATE
AND CULTURE MEDIUM WERE MEASURED BY
IMMUNOBLOTANALYSES (FIG. 1). ATP CAUSED
ACUTE CYTOTOXIC EFFECTS ON THESE MACRO-
PHAGES AT THE CONCENTRATION OF 2 MM OR
HIGHER, WHILE 2–5 MM ADENOSINE WAS NOT
CYTOTOXIC (FIG. 1C). J774A.1 CELLS SEEMED TO
RESPOND TO LPS WITH ATP IN THE CANONICAL
INFLAMMASOME PATHWAY, SINCE PRO-
CASPASE-1 (45 KDA) WAS CONVERTED TO THE
ACTIVE FORM (10 KDA), AND THE CLEAVED AND
ACTIVE FORM OF IL-1Β (17 KDA) WAS RELEASED
IN TO THE CULTURE MEDIUM (FIG. 1A). IN CON-
TRAST, NEITHER PRO-CASPASE-1 NOR PRO-IL-1Β
(31 KDA) WAS CLEAVED IN J774.1 AND RAW264.7
CELLS, AND MOST PRO-CASPASE-1 AND PRO-IL-
1Β REMAINED INSIDE THE CELLS (FIG. 1B). THE
HIGH INTENSIFICATION DETECTED A PUTATIVE
PROCESSED IL-1ΒAT 21KDA INTHECELL LYSATE
OF RAW264.7 CELLS (SUPPLEMENTARY FIG. 1).
HOWEVER, ITS MOLECULARWEIGHT WAS DIF-
FERENT FROM THE ACTIVE FORM OF IL-1Β
(17 KDA). IL-6 WAS RELEASED IN RESPONSE TO
LPS ALONE, AND ATPAPPEARED TO DECREASE
THE PRODUCTION OF IL-6 IN ALLTHE THREE
CELLTYPES.

In the canonical inflammasome pathway, ASC and
NLRP3 are required to activate caspase-1. ASC was
expressed in BMM and J774A.1, while ASC was not
expressed in RAW264.7 and was only faintly expressed
in J774.1 cells. NLRP3 was expressed almost equally in all
four cell types (Fig. 2a). Both the active form of caspase-1
and the active form of IL-1β were released into the culture
medium when LPS-primed BMM was stimulated with
ATP as was observed in J774A.1 cells (Fig. 2b). It should
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be noted that most IL-1β released in the culture medium
was an active form (17 kDa) in BMM (Fig. 2b), while a
larger amount of pro-IL-1β was released than the active
form of IL-1β in the culture medium in J774A.1 cells (Fig.
1a). The canonical inflammasome pathway appeared to be
activated when ATP was replaced with FTiO2 (Fig. 2b).

Next, we investigated synergistic effects of LPS and
FTiO2 on J774.1 and RAW264.7 cells to see how these
cells release inflammatory cytokines without the NLRP3
inflammasome activation. When the cells were co-
stimulated with LPS and FTiO2, a remarkable IL-1β re-
lease was observed only at cytotoxic concentration of
FTiO2 (100 μg/mL, Fig. 3a, b). The release of IL-1β in
the culture medium was more efficient when the cells were
pre-treated with FTiO2 and then stimulated with LPS than

when the cells were stimulated with LPS first and then
treated with FTiO2 (Fig. 3c, d).

IL-1β and IL-6 mRNA levels were measured in
J774.1 cells after exposure to saline (control), LPS, or
FTiO2 alone, and the co-exposure to LPS and FTiO2.
Both IL-1β and IL-6 mRNA levels of LPS-exposed
cells were further increased by co-exposure to FTiO2

(Fig. 4). Figure 5 shows results with immunoblot anal-
yses of IL-1β, IL-6, and caspase-1 in both the cell
lysate and culture medium of J774.1 cells following
exposure to LPS or LPS plus FTiO2. IL-6 was not
retained in the cells and was released in the culture
medium. Both protein and mRNA levels of IL-6 were
increased by LPS and further increased by co-
stimulation of LPS and FTiO2. Pro-IL-1β was not
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visible in neither the cell lysate nor culture medium of J774.1 andRAW264.7 cell. (c) J774.1 (open column), J774A.1 (crosshatched column), and RAW264.7
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cleaved by co-stimulation of LPS and FTiO2 and most
of pro-IL-1β remained inside the cells. The released
active form of IL-1β was neither absorbed by the cells
nor adsorbed by FTiO2 (Supplementary Fig. 2). FTiO2

appeared to decrease the LPS-induced intracellular pro-
IL-1β slightly and increase the pro-IL-1β release in the
culture medium, while the mRNA level was further
increased by co-exposure with FTiO2. Pro-caspase-1
was not activated by co-stimulation with LPS plus
FTiO2 and remained inside the cells. A cytokine array
analysis also indicated that the IL-1β release in the
culture medium was synergistically increased by co-
exposure to LPS and FTiO2 while the synergistic effect
of IL-6 release was not observed in J774.1 cells
(Supplementary Fig. 3). TCP was not cytotoxic over
the concentration range from 100 to 500 μg/mL, and
the LPS-induced IL-1β release was only slightly in-
creased by TCP (Supplementary Fig. 4). Caspase-1
activity within the cells was slightly decreased rather
than increased following exposure to either FTiO2,

LPS, or both in J774.1 (Fig. 6a), suggesting that
caspase-1 was not involved in IL-1β release following
exposure to either FTiO2 or LPS. Treatment of the cells
with either a pan-caspase (z-VAD-FMK) or a caspase-1
inhibitor (z-YVAD-FMK) reduced the IL-1β concen-
tration in the culture medium of J774.1 cells (Fig. 6b),
suggesting that caspase-1 may be involved in the IL-
1β release although the active form of caspase-1 was
not detected by immunoblot analysis.

Finally, we measured of IL-1β, IL-6, and caspase-1 in
both the cell lysate and culture medium of RAW264.7 cells
following exposure to LPS or LPS plus FTiO2 by immu-
noblot analysis. The induction and the cell lysate/culture
medium distribution patterns of IL-1β, IL-6, and caspase-1
following exposure to LPS or LPS plus FTiO2 in
RAW264.7 cells were close to those in J774.1 cells (Fig.
7). These results suggest that the active form of IL-1β is
not formed without a sufficient amount of ASC because of
the lack of caspase-1 activation, and the concentration of
IL-1β in the culture medium measured by ELISA or the
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0

10

20

30

40

50

60

70)tC∆∆(
oitar

noitcudnI

(a)

*

*

0

100

200

300

400

500

600

In
du

c�
on

 ra
�o

 (∆
∆C

t) (b) #

Fig. 4. Changes in mRNA levels of IL-1β (a) and IL-6 (b) following exposure of J774.1 cells to either 100 μg/mL of FTiO2, 100 ng/mL of LPS, or both for
12 h. Each mRNA level was normalized by that of GAPDH. Data are presented as means ± SEM (N = 3). Asterisks indicate significantly different from the
other groups. Number sign indicates significantly different from the control and FTiO2 groups.

1939Differential Regulation of IL-1β and IL-6 Release in Murine Macrophages



0.0

2.0

4.0

6.0

8.0

Pr
o-

ca
sp

as
e-

1/
GA

PD
H

(-)

* *

0.E+00

1.E+04

2.E+04

3.E+04

Pr
o-

ca
sp

as
e-

1

*
*

Cell lysate Medium

20
30
40
50

GAPDH

Cont LPS

LPS+

FTiO
2

Cont LPS

LPS+

FTiO
2

Cell lysate Medium

kDa M
ar

ke
r

20
30
40

GAPDH

20
30
40

IL-6

GAPDH

Caspase-1
(pro)

Caspase-1
(cleaved)

IL-1β

(pro)

IL-1β

(cleaved) 0.E+00
6.E+02
1.E+03
2.E+03
2.E+03
3.E+03

Pr
o-

IL
-1

β

#*
#

0.0

0.2

0.4

0.6

0.8

1.0

Pr
o-

IL
-1

β
/

GA
PD

H
(-)

0.0
0.2
0.4
0.6
0.8
1.0
1.2

IL
-6

/G
AP

DH
(-) #

#

#

0.E+00
1.E+05
2.E+05
3.E+05
4.E+05

IL
-6

#

Fig. 5. Immunoblot analysis for the detection of IL-1β, IL-6, and caspase-1 in J774.1 cells. The cells were exposed to either 100μg/mL of FTiO2, 100 ng/mL
of LPS, or both for 16 h. Prior to analysis, the culture medium (5 mL) was centrifuged to remove cell debris, and the supernatant was concentrated 50 times.
The mature IL-1β (17 kDa) and the cleaved caspase-1 (10 kDa) were not visible. Quantification of the blots is shown on the right in which data are presented
as means ± SEM (N = 3). Asterisks indicate significantly different from the control. Number signs indicate significantly different from both the control and
LPS groups (Tukey’s post-hoc test).

0

20

40

60

80

100

120

Control FTiO2 LPS FTiO2
+ LPS

F
lu

o
r
e

s
c
e

n
c
e

 (
%

 o
f 

c
o

n
tr

o
l)

(a)
#

* *

(b)
*

*

0

100

200

300

400

500

600

700

C
o

n
c
e

n
tr

a
ti
o

n
 o

f 
IL

-
1

β

(
p

g
/ 

m
L

)

Fig. 6. Effect of LPS and/or FTiO2 stimulation on caspase-1 activity within J774.1 cells (a), and the effect of caspase inhibitors on IL-1β release from LPS
plus FTiO2-stimulated J774.1 cells (b). (a) J774.1 cells were treatedwith either 100μg/mL of FTiO2, 100 ng/mLof LPS, or both for 24 h, followingwhich the
cells were lysed and centrifuged, and caspase-1 activity in the supernatant wasmeasured. (b) J774.1 cells were treatedwith 100μg/mLFTiO2 plus 100 ng/mL
LPS in the presence or absence of 2 μM z-VAD-FMK (V) or 10 μM z-YVAD-FMK (Y) for 24 h following which IL-1β in the culture medium was assayed
using ELISA. Data are presented asmeans ± SEM (N = 4).Asterisks indicate significantly different from control.Number sign indicates significantly different
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cytokine array may reflect that of pro-IL-1β rather than the
active form of IL-1β when J774.1 and RAW264.7 are
used. It should be noted that induction of pro-IL-1β by
LPS was faster than that of IL-6 in RAW264.7 cells.

DISCUSSION

In the canonical NLRP3 inflammasome pathway, pro-
IL-1β is first produced via NF-κB activation that is in-
duced by LPS or pathogen-associated molecular patterns
(PAMPs). Subsequently, asbestos and crystalline silica de-
stabilize lysosomes and lead to the activation of caspase-1,
and the following processing of pro-IL-1β into its active
form. Finally, mature IL-1β is released from macrophages.
It is also known that extracellular ATP transmits a danger
signal through the purinergic P2X7 receptor and activates
caspase-1 [13, 15]. Activated macrophages release ASC
specks (1–3 μm) that act as an endogenous danger signal
and amplify inflammatory signals to the surrounding cells.
Extracellular ASC specks are able to recruit and activate
both pro-caspase-1 and pro-IL-1β [4, 16]. However,

neither pro-caspase-1 nor pro-IL-1β was cleaved into its
active form in J774.1 and RAW264.7 cells in response to
co-exposure to LPS and ATP or FTiO2. In contrast to these
murine macrophage cell lines, mature IL-1β was released
from J774A.1 cells and BMM via the canonical
inflammasome pathway in the current study. These results
indicate that both J774.1 and RAW264.7 lack the canonical
inflammasome pathway, which is consistent with the re-
sults of a previous study that active forms of caspase-1 and
mature IL-1β (17 kDa) were not formed following stimu-
lation of LPS-primed RAW264.7 cells with ATP [14].
Indeed, ASC was not expressed in RAW264.7 cells and
was only faintly expressed in J774.1 cells as determined by
immunoblot analysis in the present study (Fig. 2a). It has
been reported that gram-positive bacteria but not gram-
negative bacteria rapidly activate caspase-1 in mouse pri-
mary macrophages and RAW264.7 cells [5], suggesting
that activation of caspase-1 is not exclusively carried out
via the canonical inflammasome pathway in macrophages.

We previously reported that the cytotoxicity of FTiO2

was much higher than that of spherical TiO2, and that
Krox-20 mRNA, which is increased rapidly in response
to cellular adhesion to the plastic dish surface, was upreg-
ulated in response to FTiO2 in rat macrophages [17, 18].
High aspect ratio zeolites were also reported to be cytotox-
ic [19]. Fibrous and refractory particles are recognized as
danger signals by macrophages probably through incom-
plete phagocytosis that is also called Bfrustrated
phagocytosis^ [20] or through subsequent damage to lyso-
somes [3]. The present study showed that, among 40
common cytokines tested, only the IL-1β level was syner-
gistically increased in the culture medium of J774.1 cells
following co-exposure to LPS and a cytotoxic concentra-
tion of FTiO2 (Supplementary Fig. 3). Most extracellular
pro-IL-1β was released from damaged cells as the IL-1β
release was observed only at cytotoxic concentrations of
ATP and FTiO2. However, the co-exposure to TCP slightly
increased the LPS-inducible IL-1β (pro-IL-1β) release at
non-toxic concentrations (Supplementary Fig. 4), suggest-
ing that cell damage is not requisite for a slight increase in
the IL-1β release.

It has been reported that the IL-1β level in bron-
choalveolar lavage fluid was not increased by inhala-
tional exposure to SiO2 or TiO2. However, alveolar
mac rophages ob t a i ned f rom ra t s t ha t we r e
intratracheally instilled with those particles produced
a significantly higher amount of IL-1β when stimulat-
ed with LPS and, in this ex vivo experiment, SiO2 was
more potent than TiO2 [21, 22]. Since an antibody
raised against mature IL-1β also naturally reacts with
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the culture supernatant was concentrated 50 times using an ultrafiltration
membrane (MW, 3000). The cells were lysed with 100-μL RIPA buffer.
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pro-IL-1β, the IL-1β measured using ELISA and the
membrane array reflect both mature and pro-IL-1β in
either in vitro or in vivo experiments. The present study
suggest that it is important to measure pro-IL-1β and
the active form of IL-1β separately in order to evaluate
the inflammatory responses elicited by particulate sub-
stances and chemicals that act as danger signals in
phagocytic cells. Contrary to IL-1β, extracellular IL-6
measured by ELISA and membrane array assays ap-
peared to directly reflect inflammatory responses of
murine macrophage cell lines and BMM (Figs. 1, 2,
5, and 7).

In conclusion, an active form of IL-1β was released
into the culture medium of J774A.1 cells and BMM via the
canonical inflammasome pathway, while only pro-IL-1β
was released from J774.1 and RAW264.7 cells in response
to co-exposure to LPS and FTiO2 or ATP. IL-6 was re-
leased into the culture medium readily after production in
response to LPS alone in all these cells. The present study
warns that measurement of IL-1β by ELISA, and mem-
brane array analyses are not appropriate to evaluate the
active form of IL-1β.
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