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The Fatty Acid Amide Hydrolase Inhibitor URB937
Ameliorates Radiation-Induced Lung Injury in a Mouse Model

Rui Li,1 Guo Chen,2 Lin Zhou,1 He Xu,1 Fei Tang,1 Jie Lan,1 Ruizhan Tong,1 Lei Deng,1

Jianxin Xue,1,3 and You Lu1,3

Abstract—Radiation-induced lung injury (RILI) is a potentially life-threatening complication of radiotherapy.
In the current study, we examined the potential protective effects of URB937, an inhibitor of fatty acid amide
hydrolase using amousemodel of RILI. Briefly,maleC57BL/6mice received 16Gy irradiation to the thoracic
region and then intraperitoneal injection of either URB937 (1mg/kg) or vehicle every 2 days for 30 days. The
extent of the lung injury was evaluated histologically at the end of the drug treatment as well as 3months after
the cessation of the treatment. The data showed URB937 attenuated radiation-induced lung injury and
increased endocannabinoid concentration in lung tissue. Treatment with URB937 decreased leukocyte
migration and inflammatory cytokines in bronchoalveolar lavage fluid and plasma at day 30. Histopatholog-
ical examination revealed URB937 could restore lung structure and restrain inflammatory cell and fibroblast
accumulation caused by irradiation in lung tissue. URB937 also decreased radiation-induced pro-inflamma-
tory (e.g., interleukin-1β, interleukin-6, tumor necrosis factor-α) and pro-fibrotic cytokines (e.g., transforming
growth factor-β1) level in lung tissue, as well as lipid peroxidation in the lungs.Mouse survival examined in a
separate group of experimental subjects indicated that URB937 could prolong animal survival. Experiments
using a mouse bearing Lewis lung carcinoma cells showed that URB937 does not affect irradiation-induced
inhibition of tumor growth. These results suggest that inhibiting fatty acid amide hydrolase could ameliorate
RILI without compromising the efficacy of irradiation on tumor control.
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INTRODUCTION

Irradiation is a major treatment modality for thoracic
cancer but could damage healthy tissue through complex
mechanisms that include reactive oxygen species (ROS),
excessive inflammation, and fibrosis. Radiation-induced
lung injury (RILI) is a major concern in the use of thoracic
radiation [1, 2].

Acute RILI, typically manifesting as pneumonitis
at 1–6 months after thoracic radiation [3], occurs in
9.4~28% of the patients receiving stereotactic thoracic
irradiation [4]. Pulmonary fibrosis is the key feature of
chronic RILI and evolves during a longer period of
time [5, 6]. Exposure of lung tissue to irradiation leads
to lung structure destruction, alveolar edema, fibroblast
proliferation, and collagen deposition [7]. Ionizing ra-
diation continuously induces inflammatory cascade and
the resulting free radicals further promote activation of
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fibroblasts in proliferation [8]. Previous studies have
demonstrated that RILI could be alleviated by blocking
ROS, pro-inflammatory cytokines, e.g., tumor necrosis
factor-α (TNF-α), interleukin-1β (IL-1β) and
interleukin-6 (IL-6), as well as the pro-fibrotic cytokine
transforming growth factor β1 (TGF-β1) [9, 10]. New
strategies are needed to attenuate/prevent inflammatory
and fibrosis without affecting the efficacy of radiotherapy.

Endocannabinoids (e.g., anandamide [AEA] and 2-
arachidonoyl glycerol [2-AG]) are endogenous lipid-
signaling molecules in many cells in a variety of tissues.
Endocannabinoids have a broad range of biological prop-
er t ies that resemble the act ion of Δ -9- te t ra-
hydroxycannabinol [11]. Endocannabinoids have been
shown to protect the heart from ischemia–reperfusion in-
jury [12] and reduce the level of biomarkers for inflamma-
tion and fibrosis in pancreatic stellate cells [13]. Accumu-
lating evidence suggests that increasing endocannabinoids,
by inhibiting fatty acid amide hydrolase (FAAH), could
inhibit tumor angiogenesis and decrease cancer cell migra-
tion [14–16].

We hypothesized that URB937 could attenuate RILI
by suppressing pulmonary inflammation and lung fibrosis
cascades, without affecting the efficacy of irradiation on
tumor control. In the current study, we used a mouse model
to examine whether URB937, a potent and selective
peripherally-acting FAAH inhibitor [17], could attenuate
RILI. Potential effects on tumor growth were also
examined.

MATERIAL AND METHODS

Experimental Procedures

Adult male specific-pathogen-free C57BL/6J mice
(8 weeks of age; from the Center of Experimental
Animals, the Academy of Military Medical Sciences,
Beijing, China) were maintained under a 12 h light/
dark cycle with unlimited access to food and water. All
animal experiments were performed in accordance with
the guidelines set by the Care and Use of Laboratory
Animals published by the US National Institutes of
Health, and approved by the Animal Care and Use
Committee of Sichuan University.

Mice received a single dose of X-ray irradiation
(16Gy; 297.43 cGy/min) to the whole thorax under intra-
peritoneal (ip.) pentobarbital anesthesia (40 mg/kg). The
head, abdomen, and extremities were shielded with lead
strips. Starting from 2 h after the irradiation, mouse

received ip. injection of URB937 (1 mg/kg in 1:4
DMSO/PEG300; synthesized and characterized in our
lab; chemical structure shown in Fig.1d, synthetic route
shown in supplementary Fig.1) or vehicle, once every
2 days for 30 days. A group of mice receiving anesthesia
but no irradiation was included as an additional control. At
the end of the treatment, mice were sacrificed for histolog-
ical examination. A separate group of mice was sacrificed
3 months after the cessation of the drug treatment to
evaluate the extent of fibrosis. Mouse survival was moni-
tored in a separate group of mice. In the survival experi-
ments, mice were euthanized when losing 20%
bodyweight compared to the baseline.

Malondialdehyde

Plasma malondialdehyde (MDA) concentration was
determined using a commercial kit (Nanjing Jiancheng
Bio-engineering Institute) based on thiobarbituric acid
reactivity.

RNA Isolation and Real-Time PCR

Total RNAwas extracted from the lungs, and reverse
transcribed to cDNA using MMLV reverse transcriptase
(Invitrogen). Primer sequence is listed in supplementary
Fig. 2. Real-time quantitative PCR was carried out using
the SYBR Premix Ex Taq™ II real-time PCR kit (Takara).
Results were normalized against the internal GAPDH con-
trol. All experiments were performed in triplicate.

Histological Evaluation

Removed lungs were perfused routinely and im-
mersed in 4% paraformaldehyde for 24 h, dehydrated
through grade series of ethanol, and embedded in paraffin.
Sections (4 μm) were stained with hematoxylin and eosin
(H&E) or Masson’s triple stain and examined under a light
microscope (Olympus CX41RF) [18, 19]. The extent of
fibrosis was assessed by evaluating the thickness of alve-
olar and bronchiolar walls, as previously reported [20].

Bronchoalveolar Lavage Fluid Analysis

This set of experiments was conducted in a separate
group of mice. Briefly, upon sacrifice of the mice, a small
plastic tube was inserted into the trachea. The preparation
was irrigated with 1-ml physiological saline for 3 times.
The bronchoalveolar lavage fluid (BALF) was centrifuged
at 400 g for 15 min. The pellet was suspended in 0.5 ml 1%
glacial acetate to dissolve red blood cells and then
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subjected to Wright-Giemsa staining. Inflammatory cells
were counted by smear microscope.

Western Blot Analysis

Tissue samples were homogenized as previously de-
scribed [3]. Samples containing equal amount of proteins
were separated by 10% SDS-PAGE and transferred onto a
PVDF membrane (Millipore). After blocking with 5%
skimmilk for 1 h, membranes were incubated with a rabbit
TGF-β1 antibody (1:500, Cell Signaling Technology)
overnight at 4 °C. After extensive washing, membranes
were incubated with HRP-conjugated anti-rabbit second-
ary antibody (1:5000, Santa Cruz) before visualization
using an enhanced chemiluminescence kit (Millipore). β-

Actin (1:1000, Santa Cruz) was used as the internal control.
Protein concentration was determined using a Bradford
assay.

Plasma Cytokines

Plasma concentration of IL-1β, IL-6, TNF-α, and
TGF-β1 was measured using Luminex® Screening
(R&D Systems).

Liquid Chromatography Quantification for
Endocannabinoids

Tissue samples were homogenized as previously
described [21]. Homogenate (20 μl) samples were
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added to a polypropylene plastic tube containing
2.0 mL chloroform and 1.0 mL methanol. After adding
aliquots of 10 pmol d5-2-arachidonoylglycerol and
5 pmol d8-arachidonoyl-ethanolamide, the mixture
was vortexed for 30 s, and centrifuged at 1400g for
10 min at 10 °C. The aqueous phase was dried using a
stream of nitrogen gas. The extraction was repeated
twice. The product was re-constituted in 0.1 ml 2:1
CHCl3:CH3OH and purified on silica columns. The
eluate from the column with 9:1 CHCl3:CH3OH was
dried for analysis of AEA with a liquid chromatogra-
phy coupled with an atmospheric pressure-chemical
ionization-single quadrupole mass spectrometer using

pos i t ive ion ana lys i s mode . The amount of
endocannabinoids was determined against deuterated
internal standards.

Xenograft Assays

Lewis lung carcinoma cells (LLCs; from Ameri-
can Type Culture Collection) were cultured in RPMI-
1640 medium (Hyclone) supplemented with 10% fetal
bovine serum (Hoffmann-La Roche) and 1% penicillin/
streptomycin at 37 °C in 5% CO2. Mice were subcu-
taneously injected with 1 × 106 LLC cells into the right
proximal hind leg. When the tumor volume reached
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70 mm3, mice received irradiat ion (16Gy at
297.43 cGy/min; directed to the lesions), followed by
URB937 (1 mg/kg, ip., once every 2 days) or vehicle
unt i l sacr i f ice (when tumor volume reached
2000 mm3). Tumour volume was calculated according
to the following formula: volume (V) = length × width
× width × 0.5.

Statistical Analyses

Data are represented as mean ± SEM, with at least
three independent experiments. All variables were ana-
lyzed by one-way ANOVA followed by Dunnett’s t test
for pairwise comparisons. Statistical significance was de-
fined at p < 0.05.

RESULTS

URB937 Prolonged the Survival of IrradiatedMice and
Increased Pulmonary Endocannabinoid Concentration

Figure1a is a schematic illustration of the in vivo
experiments. URB937 increased AEA in mice receiving
irradiation (Fig.1b). URB937 increased the mouse surviv-
al: 70 vs. 30% in the vehicle control at 32 weeks (Fig.1c).

URB937 Attenuated Inflammatory Infiltration to the
Lungs and Decreased Plasma Concentration of
Representative Pro-inflammatory Cytokines

URB937 attenuated irradiation-induced increase of
inflammatory cells in the BALF (Fig.2a) and plasma con-
centration of representative cytokines, including IL-1β, IL-
6, TNF-α, and active TGF-β1 (Fig.2b).

URB937 Attenuated Acute RILI (30 Days After
Irradiation)

Irradiation increased the number of inflammatory
cells outside the alveolar septa and alveolar thickness.
Interstitial edema was also apparent. Such change was
attenuated by URB937. Masson’s triple stain did not show
a difference in fibrosis of alveolar walls at day 30 (Fig.3a,
b).

URB937 decreased MDA content by 31% compared
with radiation only group (Fig.3c). Irradiation increased
messenger RNAs (mRNAs) for pro-inflammatory and pro-
fibrotic cytokines, including IL-1β, IL-6, TNF-α, and
TGF-β1 in the lungs. URB937 significantly reduced lung

concentration of these cytokines (Fig.3d). Western blot
showed a decrease of TGF-β1 in the lungs (Fig.3e).

URB937 Alleviated Lung Fibrosis

Histopathologic examination at 120 days after radia-
tion revealed significant fibrosis of the lungs, including
dramatic interstitial hyperplasia, vacuolization of the blood
vessels, and irregular thickening of the muscular layer.
Masson’s trichrome staining revealed collagen deposition
in alveolar septa and bronchiolar tissue. URB937 attenuat-
ed these changes (Fig.4a, b).

URB937 attenuated the elevation of MDA levels by
41% at day 120 (Fig.4c). Irradiation-induced increases in
mRNA level of pro-inflammatory cytokines and pro-
fibrotic cytokines in lung tissues were also attenuated by
URB937 (Fig.4d). Western blot analysis demonstrated that
irradiation-induced increase of TGF-β1 in the lungs was
decreased by URB937 (Fig.4e).

URB937 Did Not Affect the Antitumor Effects of
Irradiation

Irradiation resulted in a dramatic decrease in tumor
growth. URB937 did not alter the effects of the irradiation
(Fig.5).

DISCUSSION

Radiotherapy is recommended by the current guide-
lines for patients with thoracic carcinoma. However, RILI
not only affects the life quality of patients but also limit the
doses of radiotherapy [22]. To improve tumor locoregional
control and patient survival, new strategies that could
prevent this severe side effect without interfering with
anticancer treatments are needed.

Cannabinoids have been used clinically for a variety
of disease conditions, for example to alleviate nausea and
vomitting induced by chemotherapy. Cannabinoids have
been shown to attenuate oxidative stress, inflammation,
cell death, and fibrosis in both preclinical and clinical
researches [23, 24]. Cannabis-based pharmacological
agents, however, face legal and ethical concerns, but also
generate physical and psychological dependence symp-
tom. Targeting endocannabinoids clearly represents a strat-
egy that could circumvent such barriers.

The present study showed that inhibiting fatty acid
amide hydrolase with URB937 could attenuate lung injury
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in both acute and chronic stages of RILI. URB937 also
significantly prolonged the survival time of mice with
RILI. Mechanistic experiments showed that URB937 de-
creased inflammatory cell infiltration in BALF and cyto-
kine expression in plasma at early RILI and decreased
oxidative stress and pro-inflammatory/fibrotic cytokines
in lung tissue at the entire process of radiation-induced
lung injury. Importantly, URB937 did not alter tumor
growth inhibition caused by irradiation.

The observed increase of endocannabinoids upon
URB937 treatment in the current study supported the no-
tion that FAAH is the pharmacological target of URB937.
Radiation-induced lung injury is typified by lung structure
pathological changes such as pulmonary interstitial edema

and excessive collagen deposition [7, 25]. Pathologic ex-
amination in the current study showed that the severity of
lung structure damage induced by irradiation could be
attenuated by URB937, supporting the beneficial action
of URB937 in the radiation lung injury.

Tissues exposed to irradiation increase cytokine pro-
duction at early stage, which in turn induces inflammatory
cells in BLAF. In the current study, URB937 decreased
inflammatory cells in BLAF and cytokines in plasma. Such
a finding is consistent with the effects of URB937 inmouse
staphylococcal enterotoxin B-induced lung injury model
[26].

Irradiation increases lipid peroxidation which in turn
produces a variety of damages to tissues and cells [27].
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Decreasing lipid peroxidation product (e.g., MDA) could
protect lung tissue from radiation injury [28]. A previous
study showed that endocannabinoids could decrease the
MDA level in the gastric mucosa and colitis [29]. Our
study suggests that the protective effect of URB937 on
RILI involves reduction of the plasma lipid peroxidation.

Cytokines are essential for both inflammation estab-
lishment and phagocyte activation. Previous studies have
demonstrated the critical role of inflammatory cytokines in
the radiation injury process [30]. The cannabinoid-2 (CB2)
receptors are expressed in immune cells and have been
shown to reduce IL-1β and TNF-α RNA expression in
lung tissue [31, 32], whereas AEA has been shown to

decrease IL-6 expression and protect against the develop-
ment of intestinal radiation injury [33]. In the current study,
we observed a reduction in pro-inflammatory cytokine (IL-
1β, IL-6, TNF-α) in irradiated mice receiving URB937;
such a reduction might have contributed to attenuated
radiation pneumonia and fibrosis.

Irradiation accelerates the production of pro-fibritic
cytokine TGF-β1 in lung tissue, forming a perpetual cas-
cade of inflammatory cytokines. TGF-β1 overexpression
after radiation injury promotes the formation and inhibits
the breakdown of connective tissue [34, 35]. Recently,
Gonzalez and colleagues showed that endocannabinoids
could downregulate TGF-β1 and restrain fibrogenesis by
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stimulating PPAR-γ signaling [36]. Our study showed that
increasing endocannabinoids by URB937 could suppress
radiation-induced elevation of TGF-β1 expression.

Ideal radioprotective agents should alleviate radiation
pneumonia and fibrosis without compromising the antitu-
mor effects of radiotherapy. The anti-inflammatory and
analgesic therapeutic effects of FAAH inhibitors have been
shown in some clinical test [37]. Inhibiting FAAH attenu-
ate tumor proliferation, migration, and invasiveness and
was used in preclinical cancer treatment [38, 39]. In current
the study, we found URB937 did not alter tumor growth
inhibition caused by irradiation, confirming the selectivity
of the protective effects to healthy but not tumor cells.

The current study has several limitations. First,
URB937 is a chemical agent with limited selectivity. We
are now planning experiments using molecular approaches
such as gene knockout. Also, despite a preventive role of
endocannabinoids in early inflammation in most disease
models [40, 41], endocannabinoids have been shown to
produce opposite effects (either pro- or anti-fibrogenic
action), possibly due to involvement of distinct receptor
types [42, 43].

CONCLUSIONS

Increasing endogenous endocannabinoids by
inhibiting FAAH with URB937 could alleviate RILI in a
mou s e mo d e l . T h e s e f i n d i n g s im p l i c a t e d
endocannabinoids in controlling inflammation and fibro-
sis. The results also encourage future study of inhibiting
FAAH as a target in the treatment of RILI.
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